PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED STANDALONE SYSTEM

Size: px
Start display at page:

Download "PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED STANDALONE SYSTEM"

Transcription

1 PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED STANDALONE SYSTEM Nandini.A, Isha T.B Department of electrical and Electronics Engineering Amrita Vishwa Vidyapeetham Amrita Nagar, Ettimadai, Coimbatore, India Abstract Energy crisis faced today, has thrown in new type of technological challenges forcing to search new power generation sources, especially for those living in remote and rural locations. In this paper, a standalone power generation system using Permanent Magnet Synchronous Generator (PMSG) is investigated. The system consists of a Permanent Magnet Synchronous Generator (PMSG), a diode rectifier, a buck-boost converter and an IGBT based inverter with a DC link capacitor. A stand alone load is connected to the inverter terminals. A simulation study of a wind turbine driven PMSG is done using SIMULINK in MATLAB. A laboratory model experimental set up of the system is developed in which the wind turbine was emulated by a separately excited dc motor mechanically coupled to the PM machine. The load voltage and frequency was kept constant. remote areas where power grid is not available. Locl, small scale stand-alone distributed generation system can utilize these renewable energy resources when grid connection is not feasible. In this paper, load voltage in terms of the amplitude and frequency are controlled in a standalone mode. Here wind turbine is used as the prime mover for PM generator. Since the characteristics of a wind turbine matches with that of a separately excited DC motor, it can be used to emulate the wind turbine characteristics. Wind speed variation is obtained by varying the input voltage to a dc motor, at rated field current. II. PROPOSED STANDALONE SYSTEM The basic block diagram of the system is shown in Figure 3.1. Keywords permanent magnet synchronous generator (PMSG), standalone, diode rectifier, wind turbine, space vector modulation, constant voltage and frequency. I. INTRODUCTION In many countries, there are remote communities where connection with the power grid is too expensive or impractical and diesel generators are often the source of electricity. Under such circumstances, a locally placed small-scale standalone distributed generation system can supply power to the customers. Presently, doubly fed induction generators (DFIGs) are widely used as the generator in a variable speed wind turbine system. In case of DFIG, there is a requirement of the gearbox to match the turbine and rotor speed. The gearbox many times suffers from faults and requires regular maintenance, making the system unreliable. The reliability of the variable speed wind turbine can be improved significantly using a direct drive-based permanent magnet synchronous generator (PMSG). PMSG has received much attention in wind energy applications because of its self-excitation capability, leading to a high power factor and high efficiency operation. In this paper, a control system is developed to control the load voltage in terms of the amplitude and frequency in a stand alone mode. In a standalone system, the output voltage of the load side converter has to be controlled in terms of amplitude and frequency. Literature related to PMSG based variable speed wind turbine is mostly concentrated on grid connected system. Much attention has not been paid for a standalone system. Many countries are affluent in renewable energy resources; however they are located in Figure 1: Basic block diagram of the standalone system It consists of the following: Wind turbine Permanent magnet synchronous generator (PMSG), which is directly driven by the gearless wind turbine. DC link capacitor Three phase diode bridge rectifier and a buck-boost dc-dc converter A space vector controlled voltage source inverter A. Permanent Magnet Synchronous Generator The PMSG consists of a rotor and stator. The rotor has poles lined on the outer wall. The permanent magnets are usually kept in pairs thereby to obtain the required flux. The stator has copper cable wound around it. A cross section of the PMSG is shown in Figure 2. It consists of A steel spine and shaft

2 A stator containing coils of wire Two magnet rotors The rotor of the PMSG is usually coupled to a prime mover. Normally the generator will be coupled to the wind turbine. When the rotor starts to rotate the flux linkage with respect to the stator winding changes and hence an emf is induced in the stator winding. This induced emf enables the flow of current. Figure 3: Control of buck -boost converter in the system Figure 2: Cross section of PMSG There are two PM synchronous machine types, the surfacemounted PM (SPM) and the interior-buried PM (IPM). The magnets of the SPM machine are attached on the surface of the rotor, while the IPM machine is buried inside. Due to the structure, the rotor of the SPM machine does not have saliency. The inductance measured at the motor terminal is constant regardless of the rotor position. For the IPM, however, the reluctance of the magnetic flux path varies according to the rotor position. Because of this, the inductance at the motor terminal varies according to the rotor position. Due to saliency, the control for an IPM machine is more difficult than SPM machine. A high value of overall efficiency can be achieved, while keeping the mechanical structure of the turbine simple. B. Wind turbine A wind turbine is a mechanical device that is capable of converting the potential energy present in the wind speed to kinetic energy which is used to generate electric energy. Typical modern wind turbine has one of two basic operating modes: constant or variable speed The power developed in a wind turbine is given by Pm= (1/2) ρ A Cp V³ Pm: the power generated by the wind turbine. ρ: the air density (1.225 kg/m³) A: the turbine blade sweep area (m2) Cp: the Aerodynamic Power Coefficient. V: the wind velocity (m/s) C. OUTPUT VOLTAGE CONTROL OF BUCK-BOOST CONVERTER Here the input of buck-boost converter varies with the variation in the wind speed. But the output voltage of the converter should be kept constant in order to have a constant voltage across the load. Thus the output voltage of the converter is kept constant despite the varying input voltage. In this work, the range of input voltage selected is volts. In this range output voltage is maintained at a constant value of 75 volts. This is done by comparing the output voltage with a reference value and the error is used to change the duty ratio of the switch. Thus each time when the input of buck boost converter changes, corresponding duty ratio of the switch is changed and output of converter is maintained constant. Reference value is selected depending on the output load voltage required. The buckboost power converter circuit is shown in Figure 3. D. CONTROL OF INVERTER USING SPACE VECTOR MODULATION TECHNIQUE The load side inverter is controlled to keep the frequency at constant value. Being a standalone load, the output voltage is controlled in terms of amplitude and frequency. The stator windings of a three-phase ac machine (with cylindrical rotor), when fed with a three-phase balanced current produce a resultant flux space-vector that rotates at synchronous speed in the space. The flux vector due to an individual phase winding is oriented along the axis of that particular winding and its magnitude alternates as the current through it is alternating. The magnitude of the resultant flux due to all three windings is, however, fixed at 1.5 times the peak magnitude due to individual phase windings. The resultant flux is commonly known as the synchronously rotating flux vector. The main aim here is to keep the output frequency constant at 50Hz. Amplitude of voltage is maintained constant by buck-boost converter and this DC voltage is the input to inverter which is converted to ac of fixed frequency by space vector modulation of the inverter. After passing through the output filter the sinusoidal voltage will have fixed amplitude and frequency. III. DETAILS OF PMSG USED: PMG 0.5kW, Number of poles=12, 200V, 1.5A, 500rpm DC Motor ratings Armature: 1.1kW, 4.7A, 1500rpm, 230/440V Field : 0.8A, 230/440V IV. SIMULATION OF STANDALONE SYSTEM WITH PMSG A simulation block diagram of this system is shown in Figure 4. Here PMSG is driven by wind turbine. Output terminals of the 356

3 PMG are connected to a rectifier and buck-boost converter and the inverter through DC link capacitance. Output LC filter is used for smoothening purpose. The output of buck boost converter is measured and is compared with reference value.this generates triggering pulses for the switch. Each time wind speed varies, the error signal varies and thus duty ratio of converter switch varies to keep voltage magnitude constant. Space vector code for inverter is written as embedded MATLAB function to keep frequency constant. Thus both the voltage and frequency are maintained constant in the system using simulation. The simulation results yielded a constant voltage and frequency at the load terminals. Figure 5: Wind speed variation in steps from m/s and corresponding dc link voltage Output line voltage of 415V, 50Hz obtained at the output terminals of the inverter is shown in Figure 6. Figure 6: Inverter output voltage Figure 4: Simulation of PMSG based standalone system Figure 7: Voltage obtained across the load A. Simulation Results Output of the buck-boost converter as per the variations in wind speed is shown in Figure 5, as observed by simulation. Irrespective of wind speed variation, the buck-boost output voltage is found to be constant. Inverter output voltage is filtered using an LC filter and the sinusoidal load terminal voltage is given in Figure 7. V. EXPERIMENTAL VALIDATION The hardware required for implementing a standalone system with output voltage and frequency constant is listed and explained. The hardware components used to implement the system are as follows: 1. Buck-boost converter 2. DC source timer circuit 4. RC snubber circuit and heat sink for MOSFET 5. One driver along with isolation 6. Three phase inverter V, 5 V, 9V, 15 V and -15V DC power supply A. Load test on PMSG A load test is performed to study the basic performance namely voltage regulation on PMSG. A DC motor is used as the prime mover.the field current of the dc motor was kept constant. The test results are given in Table 1 and Table 2 for speeds 500rpm and 700rpm respectively. The voltage regulation curve obtained is given in Figure 9. The experimental setup of the system is seen in Figure

4 (VOLTS) (AMPERES) Figure 8: Load test on PMSG TABLE I FOR SPEED=500rpm VOLTAGE (VOLTS) CURRENT (AMPERES) VOLTAGE TABLE II FOR SPEED=700 rpm CURRENT Figure 9: Regulation curves of the PMSG (a) speed =500 rpm (b) speed=700rpm The voltage regulation of the PM generator is studied by conducting load test on the generator. A good regulation was observed at speeds 500 rpm and 700 rpm and the curves are shown in Figure 9 (a) and 9 (b). B. Buck- boost converter design Buck boost converter is one of the basic part of the PMSG based standalone system. Main purpose of this system is to maintain the voltage constant. In order to design the converter switch and heat 358

5 sink required are to be selected. The specifications of converter is given below, DC input voltage V Output voltage - 75 V Switching frequency 20 khz For this MPLAB has a language tool suite add-on called MPLAB C30 compiler. The complete standard C library is provided with the MPLAB C compiler for dspic. The code is converted to hex file format after compiling and the dspic30f4011 DSC is programmed using LabProg IC programmer. C. Pulse generation using analog circuit for closed loop operation Closed loop operation of the converter is possible by sensing the dc link voltage using a dc isolation amplifier. The output of this amplifier ranges from 1-5 V. So in this case, 1V at the sensor output is considered to be 25V at the dc link. Thus to keep 75 volts at the dc link, 3V is considered to be the sensor output. This is kept as the reference input for hardware implementation. The hardware developed to keep this reference value at the dc link, is shown in Figure 10. E. Results 1) Buck- boost converter The developed buck boost converter is tested with dc input. Here pulse is generated by 555 timer for off line testing of the converter. Duty cycle is varied from 60% to 40% for an input voltage variation from 50 volts to 120 volts. A constant dc output of 75 volts is obtained. Pulses for two duty cycles are shown in Figure 11 and Figure 12. Output dc voltage obtained is shown in Figure 13. Figure 10: Circuit diagram of hardware developed to keep dc link at 75volts Figure 11: Pulse with duty cycle of 40% D. Three phase voltage source inverter Here a three phase inverter, SEMIKRON make is used. The controller used is dspic30f4011. The details of the card and program developed are described in the subsequent sections. In SEMIKRON make 3Ф inverter used, there are IGBT modules SKM75GB128D, chopper modules SKM100GAL123D, diode bridge MD8TU 100/16, IGBT drivers SKHI 22 AR, heat sink MDP3/250mm,fan and 80 C thermal strip.. Specifications: Maximum input AC voltage up to 3*415V 3Ф Maximum output current up to 30A Maximum switching frequency up to 20kHz PWM Maximum ambient temperature = 40 C The SEMIKRON inverter needs a minimum of 13V at the gate of IGBT to drive it. Since the pulses coming from dspic is of 5V, it should be amplified before connecting to the gate terminals. So a transistor amplifier circuit is used and the device used is 2N2222A transistor. The software development is one of the main parts of the project work. Here the controller used is dspic30f4011; a 16 bit microcontroller. It is used to generate triggering pulses for the inverter. It keeps the frequency constant at 50Hz by using Space Vector Modulation of the Inverter which is one of the objectives of the project. The coding for the digital signal controller is done in MPLAB IDE v8.10 from Microchip Technology Inc. The whole programming is done in C platform. 359 Figure 12: Pulse with duty cycle of 60% Figure13: DC Output voltage of buck- boost converter

6 2) Inverter testing In order to maintain the frequency constant, code for inverter using space vector modulation is written and the output of inverter is obtained as shown in Figure 14. VI. FUTURESCOPE From the hardware implementation it is observed that dspic30f4011 requires a lot of instruction cycles for performing complex operations. This leads to slow dynamic response. So advanced microcontrollers can be used for this purpose. This is a standalone system. This can be connected to the grid and methods can be implemented to maintain constant voltage and frequency in such a system. This system can be extended to perform maximum power point tracking at different wind speeds. Figure 14: Inverter output voltage V. CONCLUSIONS A PMSG based laboratory model standalone system was designed, developed, fabricated and tested successfully. A complete MATLAB/SIMULINK simulation is done for the analysis of standalone system with PMSG driven by wind turbine. Using the simulation for a wind speed range of 12m/s to 18m/s DC link voltage is maintained constant, also the inverter frequency. Hence, the voltage and frequency across the load is made 415 volts, 50Hz even if the wind speed varies. For hardware implementation buck-boost converter, inverter, controller circuit, three phase inverter are designed and tested. The controller selected is dspic30f4011. For implementation, the entire system is divided into smaller modules and each module is tested independently and verified. A program is written for keeping the frequency constant. REFERENCES [1] C.N. Bhende, S. Mishra and Siva Ganesh Malla, Permanent Magnet Synchronous Generator-Based Standalone Wind Energy Supply System, IEEE Transactions on Sustainable Energy, Vol. 2, No. 4, October [2] Henk Polinde r, Frank F. A. van der Pijl, Gert-Jan de Vilder, and Peter J. Tavner Comparison of Direct-Drive and Geared Generator Concepts for Wind Turbines, IEEE Transactions on Energy Conversion, Vol.21, No.3, September 2006 [3] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator, IEEE Trans. Ind. Appl., vol. 46, no. 1, pp , Jan./Feb [4] H. Polinder, F. F. A. van der Pijl, G. J. de Vilder, and P. J. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines, IEEE Trans. Energy Convers., vol. 21, no. 3, pp ,Sep [5]Anubhav Sinha,Devesh Kumar, Paulson Samuel and Rajesh Gupta A Two- Stage Converter based Controller for a Stand Alone Wind Energy System used for Remote Applications [6] Vladimir Lazarov, Daniel Roye, Dimitar Spirov and Zahari Zarkov, New Control Strategy for Variable Speed Wind Turbine with DC-DC converters, 14 th International Power Electronics and Motion Control Conference, 2010 [7] T. Tafticht, K. Agbossou and A. Chériti, in the paper DC Bus Control of Variable Speed Wind Turbine using a Buck-Boost Converter [8] Mahmoud M. Hussein, Tomonobu Senjyu, Mohamed Orabi, Mohamed A. A. Wahab, and Mohamed M. Hamada, Control of a Variable Speed Stand Alone Wind Energy Supply System, 2012 IEEE International conference on Power and Energy, 2-5 December 2012, Kota Kinabalu Sabah, Malaysia [9]Ned Mohan, Tore M.Undeland,William P. Robbins, Power Electronics Converters, Applications and Design,3 rd ed., Wiley India,2003 [10]Microchip dspic30f family reference manual 360

Modeling & Simulation of Permanent Magnet Synchronous Wind Generator Based Stand-alone System

Modeling & Simulation of Permanent Magnet Synchronous Wind Generator Based Stand-alone System 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Modeling & Simulation of Permanent Magnet Synchronous Wind Generator Based Stand-alone

More information

CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM

CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM 1 TIN ZAR KHAING, 2 LWIN ZA KYIN 1,2 Department of Electrical Power Engineering, Mandalay Technological University,

More information

Extraction of Extreme Power and Standardize of Voltage and Frequency under Varying Wind Conditions

Extraction of Extreme Power and Standardize of Voltage and Frequency under Varying Wind Conditions Extraction of Extreme Power and Standardize of Voltage and Frequency under Varying Wind Conditions V. Karthikeyan 1 1 Department of ECE, SVSCE, Coimbatore, Tamilnadu, India, Karthick77keyan@gmail.com `

More information

Available online at ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015

Available online at  ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015 Available online at www.sciencedirect.com ScienceDirect Procedia Technology 21 (2015 ) 643 650 SMART GRID Technologies, August 6-8, 2015 DC-DC Chopper Excitation Control of WRSG for MPPT in Offshore Wind

More information

ADVANCED CONTROL TECHNIQUES IN VARIABLE SPEED STAND ALONE WIND TURBINE SYSTEM

ADVANCED CONTROL TECHNIQUES IN VARIABLE SPEED STAND ALONE WIND TURBINE SYSTEM ADVANCED CONTROL TECHNIQUES IN VARIABLE SPEED STAND ALONE WIND TURBINE SYSTEM V. Sharmila Deve and S. Karthiga Department of Electrical and Electronics Engineering Kumaraguru College of Technology, Coimbatore,

More information

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER N. Mohanraj and R. Sankaran Shanmugha Arts, Science, Technology and Research Academy University,

More information

Development of DC-AC Link Converter for Wind Generator

Development of DC-AC Link Converter for Wind Generator Development of DC-AC Link Converter for Wind Generator A.Z. Ahmad Firdaus *, Riza Muhida *, Ahmed M. Tahir *, A.Z.Ahmad Mujahid ** * Department of Mechatronics Engineering, International Islamic University

More information

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications Shilpa G.K #1, Plasin Francis Dias *2 #1 Student, Department of E&CE,

More information

DC BUS VOLTAGE CONTROL OF PWM CONVERTERS IN PMSG IN WIND POWER SYSTEM Krishnamoorthy.M 1 Andal. S 2 M.Varatharaj 3

DC BUS VOLTAGE CONTROL OF PWM CONVERTERS IN PMSG IN WIND POWER SYSTEM Krishnamoorthy.M 1 Andal. S 2 M.Varatharaj 3 ISSN: 2349-2503 DC BUS VOLTAGE CONTROL OF PWM CONVERTERS IN PMSG IN WIND POWER SYSTEM Krishnamoorthy.M 1 Andal. S 2 M.Varatharaj 3 1 (Dept of EEE, Christ the king engineering college, Coimbatore, India,

More information

IN recent years the development of the Wind Energy Conversion Systems (WECS)

IN recent years the development of the Wind Energy Conversion Systems (WECS) FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 2009, 235-244 Analysis of DC Converters for Wind Generators Vladimir Lazarov, Daniel Roye, Zahari Zarkov, and Dimitar Spirov Abstract:

More information

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG Anjali R. D PG Scholar, EEE Dept Mar Baselios College of Engineering & Technology Trivandrum, Kerala, India Sheenu. P

More information

SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS

SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS Akshay Prasad Dubey and Saravana Kumar R. School of Electrical Engineering, VIT University, Vellore, Tamil Nadu, India E-Mail:

More information

DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions

DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions P Kamalchandran 1, A.L.Kumarappan 2 PG Scholar, Sri Sairam Engineering College,

More information

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 3, Aug 2013, 59-70 TJPRC Pvt. Ltd. A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE

More information

Simulation of Solar Powered PMBLDC Motor Drive

Simulation of Solar Powered PMBLDC Motor Drive Simulation of Solar Powered PMBLDC Motor Drive 1 Deepa A B, 2 Prof. Maheshkant pawar 1 Students, 2 Assistant Professor P.D.A College of Engineering Abstract - Recent global developments lead to the use

More information

Design and Development of MPPT for Wind Electrical Power System under Variable Speed Generation Using Fuzzy Logic

Design and Development of MPPT for Wind Electrical Power System under Variable Speed Generation Using Fuzzy Logic Design and Development of MPPT for Wind Electrical Power System under Variable Speed Generation Using Fuzzy Logic J.Pavalam 1, R.Ramesh Kumar 2, Prof. K.Umadevi 3 PG scholar-me (PED), Excel College of

More information

Development of Variable Speed Drive for Single Phase Induction Motor Based on Frequency Control

Development of Variable Speed Drive for Single Phase Induction Motor Based on Frequency Control Development of Variable Speed Drive for Single Phase Induction Motor Based on Frequency Control W.I.Ibrahim, R.M.T.Raja Ismail,M.R.Ghazali Faculty of Electrical & Electronics Engineering Universiti Malaysia

More information

SIMULATION OF MPPT TECHNIQUE USING BOOST CONVERTER FOR WIND ENERGY CONVERSION SYSTEM

SIMULATION OF MPPT TECHNIQUE USING BOOST CONVERTER FOR WIND ENERGY CONVERSION SYSTEM SIMULATION OF MPPT TECHNIQUE USING BOOST CONVERTER FOR WIND ENERGY CONVERSION SYSTEM Pallavi Behera 1, D.K. Khatod 2 1 M.Tech Scholar, 2 Assistant Professor, Alternate Hydro Energy Centre, Indian Institute

More information

PMSG based Stand alone Variable Speed Wind Turbine

PMSG based Stand alone Variable Speed Wind Turbine PMSG based Stand alone Variable Speed Wind Turbine 1 M.Anandakumar, 2 N.Sundarkumar, 3 U.Kanagalalitha, 4 A.Ramu 1,2 Research Scholar Techno, global University,Meghalaya 3 Research Scholar, bundelkhand

More information

Speed Control Of Transformer Cooler Control By Using PWM

Speed Control Of Transformer Cooler Control By Using PWM Speed Control Of Transformer Cooler Control By Using PWM Bhushan Rakhonde 1, Santosh V. Shinde 2, Swapnil R. Unhone 3 1 (assistant professor,department Electrical Egg.(E&P), Des s Coet / S.G.B.A.University,

More information

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents User Guide 08092 IRMCS3043 System Overview/Guide By International Rectifier s imotion Team Table of Contents IRMCS3043 System Overview/Guide... 1 Introduction... 1 IRMCF343 Application Circuit... 2 Power

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

Grid Interconnection of Wind Energy System at Distribution Level Using Intelligence Controller

Grid Interconnection of Wind Energy System at Distribution Level Using Intelligence Controller Energy and Power Engineering, 2013, 5, 382-386 doi:10.4236/epe.2013.54b074 Published Online July 2013 (http://www.scirp.org/journal/epe) Grid Interconnection of Wind Energy System at Distribution Level

More information

Pak. J. Biotechnol. Vol. 13 (special issue on Innovations in information Embedded and communication Systems) Pp (2016)

Pak. J. Biotechnol. Vol. 13 (special issue on Innovations in information Embedded and communication Systems) Pp (2016) COORDINATED CONTROL OF DFIG SYSTEM DURING UNBALANCED GRID VOLTAGE CONDITIONS USING REDUCED ORDER GENERALIZED INTEGRATORS Sudhanandhi, K. 1 and Bharath S 2 Department of EEE, SNS college of Technology,

More information

MPPT for PMSG Based Standalone Wind Energy Conversion System (WECS)

MPPT for PMSG Based Standalone Wind Energy Conversion System (WECS) IJCTA, 9(33), 2016, pp. 197-204 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 197 MPPT for PMSG Based Standalone Wind Energy Conversion

More information

A Novel H Bridge based Active inductor as DC link Reactor for ASD Systems

A Novel H Bridge based Active inductor as DC link Reactor for ASD Systems A Novel H Bridge based Active inductor as DC link Reactor for ASD Systems K Siva Shankar, J SambasivaRao Abstract- Power converters for mobile devices and consumer electronics have become extremely lightweight

More information

Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics

Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics 15-830 Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics J. Zico Kolter October 9, 2012 1 Generators Basic AC Generator Rotating Magnet Loop of Wire 2 Generator operation Voltage

More information

Inductance Based Sensorless Control of Switched Reluctance Motor

Inductance Based Sensorless Control of Switched Reluctance Motor I J C T A, 9(16), 2016, pp. 8135-8142 International Science Press Inductance Based Sensorless Control of Switched Reluctance Motor Pradeep Vishnuram*, Siva T.**, Sridhar R.* and Narayanamoorthi R.* ABSTRACT

More information

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control...

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 3, Issue 1, January -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Design

More information

Sensorless Control of BLDC Motor Drive Fed by Isolated DC-DC Converter

Sensorless Control of BLDC Motor Drive Fed by Isolated DC-DC Converter Sensorless Control of BLDC Motor Drive Fed by Isolated DC-DC Converter Sonia Sunny, Rajesh K PG Student, Department of EEE, Rajiv Gandhi Institute of Technology, Kottayam, India 1 Asst. Prof, Department

More information

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques A. Sneha M.Tech. Student Scholar Department of Electrical &

More information

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination Efficiency Optimized Brushless DC Motor Drive based on Input Current Harmonic Elimination International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 869~875

More information

Power Factor Correction of Three Phase Induction Motor

Power Factor Correction of Three Phase Induction Motor IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 08 February 2017 ISSN (online): 2349-784X Power Factor Correction of Three Phase Induction Motor Shashikanth. Matapathi

More information

Design and Implementation of Closed Loop LCL-T Resonant DC-to- DC Converter Using Low Cost Embedded Controller

Design and Implementation of Closed Loop LCL-T Resonant DC-to- DC Converter Using Low Cost Embedded Controller American Journal of Engineering and Applied Sciences, 2012, 5 (4), 291-300 ISSN: 1941-7020 2014 Annamalai and Kumar, This open access article is distributed under a Creative Commons Attribution (CC-BY)

More information

Simulation Study of MOSFET Based Drive Circuit Design of Sensorless BLDC Motor for Space Vehicle

Simulation Study of MOSFET Based Drive Circuit Design of Sensorless BLDC Motor for Space Vehicle Simulation Study of MOSFET Based Drive Circuit Design of Sensorless BLDC Motor for Space Vehicle Rajashekar J.S. 1 and Dr. S.C. Prasanna Kumar 2 1 Associate Professor, Dept. of Instrumentation Technology,

More information

Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method

Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method Nitin Goel 1, Shashi yadav 2, Shilpa 3 Assistant Professor, Dept. of EE, YMCA University of Science & Technology, Faridabad,

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85822-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

IJESRT. (I2OR), Publication Impact Factor: (ISRA), Impact Factor: Student, SV University, Tirupati, India.

IJESRT. (I2OR), Publication Impact Factor: (ISRA), Impact Factor: Student, SV University, Tirupati, India. IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DC-DC CONVERTER WITH VOLTAGE CONTROLLER FOR STAND ALONE WIND ENERGY SYSTEM A. Bala Chandana*, P.Sangameswara Raju * Student, SV

More information

Open Loop Speed Control of Brushless DC Motor

Open Loop Speed Control of Brushless DC Motor Open Loop Speed Control of Brushless DC Motor K Uday Bhargav 1, Nayana T N 2 PG Student, Department of Electrical & Electronics Engineering, BNMIT, Bangalore, Karnataka, India 1 Assistant Professor, Department

More information

Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter

Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter Liqin Ni Email: liqin.ni@huskers.unl.edu Dean J. Patterson Email: patterson@ieee.org Jerry L. Hudgins Email:

More information

Application of Matrix Converter in Wind Energy Conventional System Employing PMSG

Application of Matrix Converter in Wind Energy Conventional System Employing PMSG IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 1, Issue 2 (May-June 2012), PP 22-29 Application of Matrix Converter in Wind Energy Conventional System Employing

More information

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 2018, pp. 778 786, Article ID: IJMET_09_12_078 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG

Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG Bipin Biharee Srivastava 1, Er. Sudhanshu Tripathi

More information

Constant voltage and Constant frequency operation of DFIG using Lab view FPGA and crio

Constant voltage and Constant frequency operation of DFIG using Lab view FPGA and crio IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 13, Issue 1 Ver. I (Jan. Feb. 2018), PP 73-78 www.iosrjournals.org Constant voltage and Constant

More information

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science Motor Driver and Feedback Control: The feedback control system of a dc motor typically consists of a microcontroller, which provides drive commands (rotation and direction) to the driver. The driver is

More information

ELECTRONIC CONTROL OF A.C. MOTORS

ELECTRONIC CONTROL OF A.C. MOTORS CONTENTS C H A P T E R46 Learning Objectives es Classes of Electronic AC Drives Variable Frequency Speed Control of a SCIM Variable Voltage Speed Control of a SCIM Chopper Speed Control of a WRIM Electronic

More information

Harmonics Reduction in a Wind Energy Conversion System with a Permanent Magnet Synchronous Generator

Harmonics Reduction in a Wind Energy Conversion System with a Permanent Magnet Synchronous Generator International Journal of Data Science and Analysis 2017; 3(6): 58-68 http://www.sciencepublishinggroup.com/j/ijdsa doi: 10.11648/j.ijdsa.20170306.11 ISSN: 2575-1883 (Print); ISSN: 2575-1891 (Online) Conference

More information

ROBUST ANALYSIS OF PID CONTROLLED INVERTER SYSTEM FOR GRID INTERCONNECTED VARIABLE SPEED WIND GENERATOR

ROBUST ANALYSIS OF PID CONTROLLED INVERTER SYSTEM FOR GRID INTERCONNECTED VARIABLE SPEED WIND GENERATOR ROBUST ANALYSIS OF PID CONTROLLED INVERTER SYSTEM FOR GRID INTERCONNECTED VARIABLE SPEED WIND GENERATOR Prof. Kherdekar P.D 1, Prof. Khandekar N.V 2, Prof. Yadrami M.S. 3 1 Assistant Prof,Electrical, Aditya

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System

Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System Vol., Issue., Mar-Apr 01 pp-454-461 ISSN: 49-6645 Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System 1 K. Premalatha, S.Sudha 1, Department of

More information

Renewable Energy Based Interleaved Boost Converter

Renewable Energy Based Interleaved Boost Converter Renewable Energy Based Interleaved Boost Converter Pradeepakumara V 1, Nagabhushan patil 2 PG Scholar 1, Professor 2 Department of EEE Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka,

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

Comparison of Simulation and Experimental Results of Class - D Inverter Fed Induction Heater

Comparison of Simulation and Experimental Results of Class - D Inverter Fed Induction Heater Research Journal of Applied Sciences, Engineering and Technology 2(7): 635-641, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: July 01, 2010 Accepted Date: August 26, 2010 Published

More information

VIENNA RECTIFIER FED BLDC MOTOR

VIENNA RECTIFIER FED BLDC MOTOR VIENNA RECTIFIER FED BLDC MOTOR Dr. P. Sweety Jose #1, R.Gowthamraj *2, #Assistant Professor, * PG Scholar, Dept. of EEE, PSG College of Technology, Coimbatore, India 1psj.eee@psgtech.ac.in, 2 gowtham0932@gmail.com

More information

Simulation and Implementation of FPGA based three phase BLDC drive for Electric Vehicles

Simulation and Implementation of FPGA based three phase BLDC drive for Electric Vehicles Volume 118 No. 16 2018, 815-829 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Simulation and Implementation of FPGA based three phase BLDC drive

More information

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Application of Sparse Matrix Converter for Microturbine-Permanent Magnet Synchronous Generator output Voltage Quality Enhancement

Application of Sparse Matrix Converter for Microturbine-Permanent Magnet Synchronous Generator output Voltage Quality Enhancement Application of Sparse Matrix Converter for Microturbine-Permanent Magnet Synchronous Generator output Voltage Quality Enhancement N.Vinay Kumar 1, A.Bhaskar 2 1 PG Scholar, Department of Electrical and

More information

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine T. Neumann, C. Feltes, I. Erlich University Duisburg-Essen Institute of Electrical Power Systems Bismarckstr. 81,

More information

PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE

PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE P. Karlovský, J. Lettl Department of electric drives and traction, Faculty of Electrical Engineering, Czech Technical University in Prague Abstract

More information

Induction Motor Drive using SPWM Fed Five Level NPC Inverter for Electric Vehicle Application

Induction Motor Drive using SPWM Fed Five Level NPC Inverter for Electric Vehicle Application IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 7 November 2017 ISSN (online): 2349-6010 Induction Motor Drive using SPWM Fed Five Level NPC Inverter for Electric

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 10, October -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Single

More information

Performance Evaluation of PWM Converter Control Strategy for PMSG Based Variable Speed Wind Turbine

Performance Evaluation of PWM Converter Control Strategy for PMSG Based Variable Speed Wind Turbine Y. Malleswara Rao et al Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Performance Evaluation of PWM Converter Control Strategy for PMSG Based Variable Speed Wind Turbine

More information

Gate drive card converts logic level turn on/off commands. Gate Drive Card for High Power Three Phase PWM Converters. Engineer R&D

Gate drive card converts logic level turn on/off commands. Gate Drive Card for High Power Three Phase PWM Converters. Engineer R&D Gate Drive Card for High Power Three Phase PWM Converters 1 Anil Kumar Adapa Engineer R&D Medha Servo Drive Pvt. Ltd., India Email: anilkumaradapa@gmail.com Vinod John Department of Electrical Engineering

More information

MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM

MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM RESEARCH ARTICLE OPEN ACCESS MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM S.Lavanya 1 1(Department of EEE, SCSVMV University, and Enathur, Kanchipuram)

More information

Simulation of Dc-Link Power Converter for Integrating Offshore Wind Turbine Generator to Grid

Simulation of Dc-Link Power Converter for Integrating Offshore Wind Turbine Generator to Grid Simulation of Dc-Link Power Converter for Integrating Offshore Wind Turbine Generator to Grid Chaitanya Krishna Jambotkar #1, Prof. Uttam S Satpute #2 #1Department of Electronics and Communication Engineering,

More information

A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous Generator

A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous Generator International Journal of Modern Engineering Research (IJMER) Vol.2, Issue.2, Mar-Apr 2012 pp-398-402 ISSN: 2249-6645 A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous

More information

IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION

IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION 1 SARBARI DAS, 2 MANISH BHARAT 1 M.E., Assistant Professor, Sri Venkateshwara College of Engg., Bengaluru 2 Sri Venkateshwara

More information

3.1.Introduction. Synchronous Machines

3.1.Introduction. Synchronous Machines 3.1.Introduction Synchronous Machines A synchronous machine is an ac rotating machine whose speed under steady state condition is proportional to the frequency of the current in its armature. The magnetic

More information

GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY COMPENSATION

GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY COMPENSATION e-issn 2455 1392 Volume 3 Issue 3, March 2017 pp. 150 157 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY

More information

Application of Buck-Boost Converter for Wind Energy Control

Application of Buck-Boost Converter for Wind Energy Control IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 10 March 2017 ISSN (online): 2349-6010 Application of Buck-Boost Converter for Wind Energy Control Mr. Kiran

More information

Fuzzy Logic Controller Based Direct Torque Control of PMBLDC Motor

Fuzzy Logic Controller Based Direct Torque Control of PMBLDC Motor Fuzzy Logic Controller Based Direct Torque Control of PMBLDC Motor Madasamy P 1, Ramadas K 2, Nagapriya S 3 1, 2, 3 Department of Electrical and Electronics Engineering, Alagappa Chettiar College of Engineering

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

CONTROL OF AIR FLOW RATE OF SINGLE PHASE INDUCTION MOTOR FOR BLOWER APPLICATION USING V/F METHOD

CONTROL OF AIR FLOW RATE OF SINGLE PHASE INDUCTION MOTOR FOR BLOWER APPLICATION USING V/F METHOD CONTROL OF AIR FLOW RATE OF SINGLE PHASE INDUCTION MOTOR FOR BLOWER APPLICATION USING V/F METHOD Atul M. Gajare 1, Nitin R. Bhasme 2 1 PG Student, 2 Associate Professor, Department of Electrical Engineering,

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

DESIGN OF A WIND POWER GENERATION SYSTEM USING A PERMANENT MAGNET SYNCHRONOUS MACHINE, A BOOST REGULATOR AND A TRANSFORMER-LESS STEP DOWN CIRCUIT

DESIGN OF A WIND POWER GENERATION SYSTEM USING A PERMANENT MAGNET SYNCHRONOUS MACHINE, A BOOST REGULATOR AND A TRANSFORMER-LESS STEP DOWN CIRCUIT DESIGN OF A WIND POWER GENERATION SYSTEM USING A PERMANENT MAGNET SYNCHRONOUS MACHINE, A BOOST REGULATOR AND A TRANSFORMER-LESS STEP DOWN CIRCUIT Sameer Ahmed Khan Mojlish Lecturer, Department of Electrical

More information

Design of A Closed Loop Speed Control For BLDC Motor

Design of A Closed Loop Speed Control For BLDC Motor International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 11 (November 214), PP.17-111 Design of A Closed Loop Speed Control For BLDC

More information

Design, Implementation, and Dynamic Behavior of a Power Plant Model

Design, Implementation, and Dynamic Behavior of a Power Plant Model Design, Implementation, and Dynamic Behavior of a Power Plant Model M.M. A. Rahman, Member ASEE Grand Valley State University Grand Rapids, MI rahmana@gvsu.edu Daniel Mutuku Consumers Energy West Olive,

More information

EMBEDDED CONTROLLED ZVS DC-DC CONVERTER FOR ELECTROLYZER APPLICATION

EMBEDDED CONTROLLED ZVS DC-DC CONVERTER FOR ELECTROLYZER APPLICATION International Journal on Intelligent Electronic Systems, Vol. 5, No.1, January 2011 6 Abstract EMBEDDED CONTROLLED ZVS DC-DC CONVERTER FOR ELECTROLYZER APPLICATION Samuel Rajesh Babu R. 1, Henry Joseph

More information

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm Ajin Sebastian PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Benny

More information

Single Phase Grid Connected Wind Power Using Chopper Based Pi Controller

Single Phase Grid Connected Wind Power Using Chopper Based Pi Controller ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion

Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion Published in IET Power Electronics Received on 18th May 2013 Revised on 11th September 2013 Accepted on 17th October 2013 ISSN 1755-4535 Single switch three-phase ac to dc converter with reduced voltage

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xii xiii xxi 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 LITERATURE SURVEY 1 1.3 OBJECTIVES

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

Direct AC/AC power converter for wind power application

Direct AC/AC power converter for wind power application Direct AC/AC power converter for wind power application Kristian Prestrud Astad, Marta Molinas Norwegian University of Science and Technology Department of Electric Power Engineering Trondheim, Norway

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions National Infotech A way to Power Electronics and Embedded System Solutions Electrical Drive Trainers In every industry there are industrial processes where electrical motors are used as a part of process

More information

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE Mrs. M. Rama Subbamma 1, Dr. V. Madhusudhan 2, Dr. K. S. R. Anjaneyulu 3 and Dr. P. Sujatha 4 1 Professor, Department of E.E.E, G.C.E.T, Y.S.R Kadapa,

More information

Analysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive

Analysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 6 (Sep-Oct. 2012), PP 14-19 Analysis of Voltage Source Inverters using Space Vector PWM for Induction

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

DsPIC based Fixed Speed Induction Motor Drive

DsPIC based Fixed Speed Induction Motor Drive DsPIC based Fixed Speed Induction Motor Drive Amogh Jain B A 1, Smt. S. Poornima 2 1 PG Scholar, Dept. of EEE, M.S. Ramaiah Institute of Technology, Bangalore, India 2 Assistant professor, Dept. of EEE,

More information

II. L-Z SOURCE INVERTER

II. L-Z SOURCE INVERTER V/F Speed Control of Induction Motor by using L- Z Source Inverter Priyanka A. Jadhav 1, Amruta A. Patil 2, Punam P. Patil 3, Supriya S. Yadav 4, Rupali S. Patil 5, Renu C. Lohana 6 1,2,3,4,5,6 Electrical

More information

Wind energy conversion system based on Vienna rectifier with fuzzy logic control technique

Wind energy conversion system based on Vienna rectifier with fuzzy logic control technique Wind energy conversion system based on Vienna rectifier with fuzzy logic control technique Meenakumari.S Department of Electrical and Electronics Engineering,Er.Perumal Manimekalai College of Engineering,

More information

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 22 CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 2.1 INTRODUCTION For the accurate analysis of synchronous machines using the two axis frame models, the d-axis and q-axis magnetic characteristics

More information

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation Exercise 3 Doubly-Fed Induction Generators EXERCISE OBJECTIVE hen you have completed this exercise, you will be familiar with the operation of three-phase wound-rotor induction machines used as doubly-fed

More information

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE Bhushan P. Mokal 1, Dr. K. Vadirajacharya 2 1,2 Department of Electrical Engineering,Dr.

More information

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER Volume 116 No. 11 2017, 141-149 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v116i11.15 ijpam.eu AN EXPERIMENTAL INVESTIGATION OF PFC

More information