General Purpose Controller Software for Controls Lab

Size: px
Start display at page:

Download "General Purpose Controller Software for Controls Lab"

Transcription

1 General Purpose Controller Software for Controls Lab Andrew J. Blauch School of Engineering Grand Valley State University Abstract Many industrial control compensators are implemented using microcontrollers. These embedded systems provide a versatile platform for the integration of various feedback signals and control algorithms. To be productive in industry, a control engineer should not only be comfortable using an embedded controller, but also familiar with the limitations and effects that a digital controller will have on the overall system performance. A Motorola 68HC11-based general purpose controller (GPC) application was developed for use in the laboratory portion of an undergraduate controls course. The 68HC11 family of processors has been incorporated into a wide variety of industrial applications and is currently used at many academic institutions. Evaluation boards are readily available at low cost. The GPC software that has been developed was designed for flexibility. It provides numerous configuration options for the type of input signal, feedback signal, output signal, and control algorithm. A simple command line interface allows for easy user interaction. This paper discusses the development of the GPC software and its use in an undergraduate controls course. Explanations of the user interface, software configuration options, and hardware interface capabilities are presented. A sample laboratory activity is also provided. The paper concludes with a summary of the educational benefits achieved as a result of incorporating the GPC software into the laboratory activities. Introduction Microcontrollers are appearing in more and more industrial applications and consumer products everyday. They have become a key component in many engineering projects. Because of the prevalence and importance of the microcontroller, it is vital that the academic community work at integrating the microcontroller into engineering courses. Many schools have incorporated embedded microcontroller-based systems into their curriculum, from introductory freshman engineering classes through senior level design courses. 1, 2 Control systems are an excellent illustration of embedded microcontroller application. Whether dealing with an industrial PLC controller or a home thermostat, most modern control systems are based on a microcontroller. In order to teach controls, it is helpful to have a system that can be easily interfaced with and can be configured for different types of control scenarios. Various control systems have been developed over the years for academic use. 3, 4

2 At Grand Valley State University, microcontrollers are being integrated into many courses across the engineering curriculum, including such courses as Introduction to Digital Systems 5, Dynamic System Modeling and Control 6, and Embedded System Design, to name a few. This paper discusses the development of an embedded general purpose controller (GPC) application for use in an undergraduate Automatic Controls course. The following sections provide a description of the development process and software operation, followed by a laboratory example and discussion of the corresponding educational benefits. GPC Development The GPC application was designed to be a flexible microcontroller-based data collection and control application. It is configurable for various types of input signals, feedback signals, output signals, and controllers. Communication between the user and the GPC is available via a serial connection and an easy to follow command line interface. The application was written primarily using C language. Only time critical and hardware interface code were written in assembly language. Structuring the program in this fashion provided an easier path for porting the application to different platforms. Currently, the GPC application is only available for the 68HC11 microcontroller. In the future, versions will be made for other microcontrollers such as the AVR and ARM processors. The latest software version and supporting documentation are available online. 7 The GPC reference manual provides complete details for the installation, interface, and operation of the GPC software. The software application is organized into five blocks as shown in Figure 1. The data collection block is for the acquisition and storage of real-time data. The input block is for reading the input, or reference, signal. It can be configured for direct user input, single/dual-ended analog input, or an internal waveform generator. The feedback block is for reading the feedback signal. It can be configured for single/dual-ended analog input, encoder input, or disabled for open-loop control. The output block is for generating the controller output, or actuating, signal. It can be configured for uni-directional or bi-directional pulse width modulation. The output block can also be used for deadband compensation. The control algorithm is implemented in the control block. It can be configured for either a proportional (P) or proportional + integral (PI) controller, with the ability to adjust the feedback, proportional, and integral gains. Input Block D in Control D ctrl Output D out Block Block Input Signal Control Signal Output Signal Feedback Block D fb Feedback Signal Data Collection Block Figure 1: GPC Application Block Diagram

3 GPC Software Operation When the application first starts, the version information is displayed followed by the command prompt as shown in Figure 2. The user can control and monitor the system by entering commands at the prompt. GPCImageBoot Version: 3.01 Created: Aug , 08:54:04 Type? for help GPC> Figure 2: GPC Sign-on and Command Prompt Table 1 provides a summary of the available commands. Commands are grouped into several categories. The first set of commands provides the user with general information and control. The configuration commands provide the user with control over displaying and manipulating numeric and string parameters. The data collection commands, along with the data collection parameters, provide the user with control over the data collection subsystem. The macro commands provide the user with more complex control options. All commands are entered at the prompt. The entire command syntax does not need to be entered for the command to execute. Only a sufficient number of characters to ensure a unique command match must be entered. For commands that take arguments, if no argument is specified a default value is used. Table 1: Command Summary Category Command Parameters Description General DELAY <Time> DELAY for fixed time interval QUIT QUIT application RESET RESETs system to default settings VER Display application VERsion Configuration Data Collection Macro NPGET <Name> Numeric Parameters, GET value NPMON <Name> Numeric Parameters, MONitor value NPSET <Name> <Value> Numeric Parameters, SET value SPGET <Name> String Parameters, GET value SPSET <Name> <Value> String Parameters, SET value DCARM DCGET Data Collection, ARM trigger Data Collection, GET values DBCOMP <X1> <X2> DeadBand COMPensation algorithm INFO Display configuration INFOrmation MSTEP <Amplitude> Motion STEP input

4 The configuration of the control system is based on numeric and string parameter settings. The user can modify these parameters by using the appropriate configuration commands. Table 2 provides a summary of the numeric and string parameters. Detailed explanations of the commands and parameters are available in the GPC reference manual. 7 Table 2: Parameter Summary Name Description AN1, AN2, AN3, AN4 Analog input signals INPUT, FEEDBACK, OUTPUT, CONTROL Input, feedback, output, and control signals DBNEG, DBPOS Deadband compensation values DCINC, DCPTS Data collection parameters GFB, GKI, GKP Controller gains ITYPE, FTYPE, OTYPE, CTYPE, WTYPE Block configuration parameters TCLOCK, TEXEC, TUPDATE Interrupt parameters WCONT, WINC, WOFFSET, WSCALE Waveform generation parameters GPC Hardware Operation The GPC application has been developed for the 68HC11 microcontroller, with the intent of providing ports for other microcontrollers in the future. Table 3 provides a summary of the microcontroller I/O pin usage. The signal name, pin, and I/O type are listed along with the signal usage. The schematic of the I/O pin usage for the 68HC11 is shown in Figure 3. Examples of hardware interface circuits are available in the GPC reference manual. 7 Table 3: Microcontroller I/O Pin Usage Summary Signal Name Pin I/O Type Usage SER_RX PD0 Digital Input Serial Communication SER_TX PD1 Digital Output Serial Communication PWM PA6 Digital Output Pulse Width Modulation PWM_POS PD2 Digital Output Pulse Width Modulation PWM_NEG PD3 Digital Output Pulse Width Modulation ENC_A PD4 Digital Input Encoder ENC_B PD5 Digital Input Encoder ANALOG1/INPUT(HI) PE4 Analog Input Analog-to-Digital Converter ANALOG2/INPUT(LO) PE5 Analog Input Analog-to-Digital Converter ANALOG3/FEEDBACK(HI) PE6 Analog Input Analog-to-Digital Converter ANALOG4/FEEDBACK(LO) PE7 Analog Input Analog-to-Digital Converter The SCI peripheral on the 68HC11 is used for serial communication purposes. It is configured for 9600 BAUD, 8 data bits, no parity, and 1 stop bit. The pins PD0 (SER_RX) and PD1 (SER_TX) are the serial receiver and transmitter signals, respectively. The 68HC11 does not have a built-in pulse-width modulation (PWM) circuit. Therefore, it must be generated using interrupts and the output compare peripherals. The actual PWM signal is created on pin PA6 (PWM) using the OC1 and OC2 timer features/interrupts. The software provides a full range of duty cycles with glitch free transitions. The period of the PWM signal is

5 127.5 μsec. The pulse width is set in 0.5 μsec steps (0 255 output value corresponds to 0 100% duty cycle). When enabled, the PWM consumes approximately 30% of the processor time. This has a significant effect on the minimum required update time of the control system. Bi-directional output signal capability is provided by the generation of two directional signals. The pins PD2 (PWM_POS) and PD3 (PWM_NEG) are the active high positive and negative directional signals, respectively. The 68HC11 has a single 8-bit analog-to-digital converter (ADC). The evaluation boards used are wired for a 0 to 5 volt analog input range. While different voltage ranges could be used, the software assumes a positive voltage range [0,V rh ]. The ADC is configured for continuous scan of multiple channels (PE4 PE7). In this configuration, each channel is scanned and converted one at a time. A single conversion takes 16 μsec. Therefore, each channel is converted every 64 μsec. Figure 3: Microcontroller Interface Connections

6 Laboratory Example The GPC application has been integrated into the laboratory activities of the EGR455 Automatic Control course. A motor and tachometer closed-loop control system is used for experimental modeling, analysis, and design activities. An illustration of the hardware setup is shown in Figure 4. A bi-directional driver circuit is used to interface the microcontroller to the motor. A second motor is mounted to the first motor to act as a tachometer. The tachometer is connected to a low pass filter and protection circuit to interface back to the microcontroller. The schematics for each of the hardware interface circuits are available in the GPC reference manual. 7 Figure 4: Example of Laboratory Setup The GPC application is configured for direct user input, dual-ended analog feedback, and bidirectional PWM output. Once the hardware and software setups are completed, the students can run experiments and collect data for various control scenarios using the appropriate GPC commands. As an example, Figure 5 shows the results for a closed-loop configuration with a PI controller. The step response was generated by executing the MSTEP command. The signals D fb, D ctrl, and D out correspond to the GPC variables illustrated in Figure 1 and are automatically recorded by the data collection subsystem during the MSTEP command. Once the step response was completed, the experimental results were downloaded using the DCGET command. The theoretical results were derived from the linearized model of the system. The simulated results were obtained from a non-linear Simulink model of the system.

7 60 Step Response: Closed-Loop K p =1 K i =100 D fb [u] 40 Input Experimental 20 Theoretical Simulation D ctrl [u] D out [u] Time [s] Figure 5: Example of Laboratory Results For this particular configuration, the only significant difference appears in the D out plot between the experimental/simulation data and the theoretical data. This difference is a result of the deadband compensation employed by the GPC software to counter the deadband in the DC motor. The GPC software was configured to compensate for the deadband in the DC motor by adding an offset to the output. The Simulink model created also takes both the DC motor deadband and the GPC deadband compensation into account. The theoretical model, however, assumes a linearized model for each component. Educational Benefits By incorporating the microcontroller-based system into the Automatic Controls course, students were introduced to a physical embedded control system, similar in many ways to the ones they are likely to encounter in industry. The flexible control interface allowed the students to test, analyze, and design different control configurations for the given system. During the laboratory activities, a number of practical embedded control topics arose that were not part of the traditional classical control topics covered in lecture. Table 4 lists some of the issues that arose as a result of incorporating the GPC embedded application into the control system. The topics listed were discussed and explained in the laboratory environment as they were encountered.

8 Table 4: Embedded Control Topics Sampling noise quantization of time effects on open-loop and closed-loop configuration Pulse Width Modulation analog signal from digital output frequency range constraints output saturation Analog-to-digital Conversion quantization of value sampling rate constraints input saturation Software execution time/delay interrupt starvation integer/floating-point math trade-offs numeric limitations As mentioned, these embedded topics are not typically covered in a traditional classical controls course. However, they are important issues for a practicing control engineer to understand. By incorporating the GPC embedded application into the course, the students were exposed to these issues in the laboratory environment and experienced their effects first hand. As problems came up, the issues were discussed along with their associated impact on the control system. In addition, the simulation models were expanded to include these digital and non-linear effects. Conclusion This paper provided an overview of the GPC software and its application in an undergraduate controls course. The software has been used for the past three years in the course with positive results. Development of the software is still ongoing. Comments, corrections, and suggestions are welcomed and should be sent directly to the author. Bibliography 1. E. Montanez, Microcontrollers in Education: Embedded Control Everywhere and Everyday, Proceedings of the 2005 ASEE Annual Conference and Exposition, Portland, OR. 2. L.F. Ferreira, E.L. Matos, L.M. Menendez, and E. Mandado, MILES: A Microcontroller Learning System combining Hardware and Software tools, Proceedings of the 2005 ASEE/IEEE Frontiers in Education Conference, Indianapolis, IN. 3. N. Krouglicof, Development of a Universal Controller for Pedagogical Applications Involving Data Acquisition, Data Logging and Control, Proceedings of the 2002 ASEE Annual Conference and Exposition, Montreal, Quebec Canada. 4. S.S. Moor, P.R. Piergiovanni, and M. Metzger, Process Control Kits: A Hardware and Software Resource, Proceedings of the 2005 ASEE/IEEE Frontiers in Education Conference, Indianapolis, IN. 5. A.J. Blauch and A. Sterian, A Practical Application Digital Systems Course For All Engineering Majors, Proceedings of the 2002 ASEE Annual Conference and Exposition, Montreal, Quebec Canada. 6. H. Jack and A. J. Blauch, A Modeling and Controls Course using Microcontrollers, Proceedings of the 2004 ASEE Annual Conference and Exposition, Salt Lake City, UT. 7. Software,

Training Schedule. Robotic System Design using Arduino Platform

Training Schedule. Robotic System Design using Arduino Platform Training Schedule Robotic System Design using Arduino Platform Session - 1 Embedded System Design Basics : Scope : To introduce Embedded Systems hardware design fundamentals to students. Processor Selection

More information

AN ARDUINO CONTROLLED CHAOTIC PENDULUM FOR A REMOTE PHYSICS LABORATORY

AN ARDUINO CONTROLLED CHAOTIC PENDULUM FOR A REMOTE PHYSICS LABORATORY AN ARDUINO CONTROLLED CHAOTIC PENDULUM FOR A REMOTE PHYSICS LABORATORY J. C. Álvarez, J. Lamas, A. J. López, A. Ramil Universidade da Coruña (SPAIN) carlos.alvarez@udc.es, jlamas@udc.es, ana.xesus.lopez@udc.es,

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #9 Closed Loop Control Overview and Introduction This project will bring together several pieces of software and draw on knowledge gained in

More information

AC : DEVELOPING A COURSE AND LABORATORY FOR EM- BEDDED CONTROL OF MECHATRONIC SYSTEMS

AC : DEVELOPING A COURSE AND LABORATORY FOR EM- BEDDED CONTROL OF MECHATRONIC SYSTEMS AC 2011-342: DEVELOPING A COURSE AND LABORATORY FOR EM- BEDDED CONTROL OF MECHATRONIC SYSTEMS M. Moallem, Simon Fraser University Prof. M. Moallem is with the School of Engineering Science, Simon Fraser

More information

Rochester Institute of Technology Real Time and Embedded Systems: Project 2a

Rochester Institute of Technology Real Time and Embedded Systems: Project 2a Rochester Institute of Technology Real Time and Embedded Systems: Project 2a Overview: Design and implement a STM32 Discovery board program exhibiting multitasking characteristics in simultaneously controlling

More information

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1 .A Basic Wireless Control ECEN 2270 Electronics Design Laboratory 1 Procedures 5.A.0 5.A.1 5.A.2 5.A.3 5.A.4 5.A.5 5.A.6 Turn in your pre lab before doing anything else. Receiver design band pass filter

More information

Peripheral Link Driver for ADSP In Embedded Control Application

Peripheral Link Driver for ADSP In Embedded Control Application Peripheral Link Driver for ADSP-21992 In Embedded Control Application Hany Ferdinando Jurusan Teknik Elektro Universitas Kristen Petra Siwalankerto 121-131 Surabaya 60236 Phone: +62 31 8494830, fax: +62

More information

GE 320: Introduction to Control Systems

GE 320: Introduction to Control Systems GE 320: Introduction to Control Systems Laboratory Section Manual 1 Welcome to GE 320.. 1 www.softbankrobotics.com 1 1 Introduction This section summarizes the course content and outlines the general procedure

More information

Course Introduction. Content 20 pages 3 questions. Learning Time 30 minutes

Course Introduction. Content 20 pages 3 questions. Learning Time 30 minutes Purpose The intent of this course is to provide you with information about the main features of the S08 Timer/PWM (TPM) interface module and how to configure and use it in common applications. Objectives

More information

Design of double loop-locked system for brush-less DC motor based on DSP

Design of double loop-locked system for brush-less DC motor based on DSP International Conference on Advanced Electronic Science and Technology (AEST 2016) Design of double loop-locked system for brush-less DC motor based on DSP Yunhong Zheng 1, a 2, Ziqiang Hua and Li Ma 3

More information

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System Introduction CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System The purpose of this lab is to introduce you to digital control systems. The most basic function of a control system is to

More information

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair Overview For this assignment, you will be controlling the light emitted from and received by an LED/phototransistor pair. There are many

More information

I hope you have completed Part 2 of the Experiment and is ready for Part 3.

I hope you have completed Part 2 of the Experiment and is ready for Part 3. I hope you have completed Part 2 of the Experiment and is ready for Part 3. In part 3, you are going to use the FPGA to interface with the external world through a DAC and a ADC on the add-on card. You

More information

Lab 23 Microcomputer-Based Motor Controller

Lab 23 Microcomputer-Based Motor Controller Lab 23 Microcomputer-Based Motor Controller Page 23.1 Lab 23 Microcomputer-Based Motor Controller This laboratory assignment accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing,

More information

Teaching Mechanical Students to Build and Analyze Motor Controllers

Teaching Mechanical Students to Build and Analyze Motor Controllers Teaching Mechanical Students to Build and Analyze Motor Controllers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Session

More information

Exercise 5: PWM and Control Theory

Exercise 5: PWM and Control Theory Exercise 5: PWM and Control Theory Overview In the previous sessions, we have seen how to use the input capture functionality of a microcontroller to capture external events. This functionality can also

More information

Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its

Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its main features and the application benefits of leveraging

More information

Programming and Interfacing

Programming and Interfacing AtmelAVR Microcontroller Primer: Programming and Interfacing Second Edition f^r**t>*-**n*c contents Preface xv AtmelAVRArchitecture Overview 1 1.1 ATmegal64 Architecture Overview 1 1.1.1 Reduced Instruction

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers Chapter 4 Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers 4.1. Introduction Data acquisition and control boards, also known as DAC boards, are used in virtually

More information

RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES

RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES Lukáš Pohl Doctoral Degree Programme (2), FEEC BUT E-mail: xpohll01@stud.feec.vutbr.cz Supervised by: Petr Blaha E-mail: blahap@feec.vutbr.cz Abstract: This

More information

Linear Motion Servo Plants: IP01 or IP02. Linear Experiment #0: Integration with WinCon. IP01 and IP02. Student Handout

Linear Motion Servo Plants: IP01 or IP02. Linear Experiment #0: Integration with WinCon. IP01 and IP02. Student Handout Linear Motion Servo Plants: IP01 or IP02 Linear Experiment #0: Integration with WinCon IP01 and IP02 Student Handout Table of Contents 1. Objectives...1 2. Prerequisites...1 3. References...1 4. Experimental

More information

Ch 5 Hardware Components for Automation

Ch 5 Hardware Components for Automation Ch 5 Hardware Components for Automation Sections: 1. Sensors 2. Actuators 3. Analog-to-Digital Conversion 4. Digital-to-Analog Conversion 5. Input/Output Devices for Discrete Data Computer-Process Interface

More information

UNIVERSITY OF VICTORIA FACULTY OF ENGINEERING. SENG 466 Software for Embedded and Mechatronic Systems. Project 1 Report. May 25, 2006.

UNIVERSITY OF VICTORIA FACULTY OF ENGINEERING. SENG 466 Software for Embedded and Mechatronic Systems. Project 1 Report. May 25, 2006. UNIVERSITY OF VICTORIA FACULTY OF ENGINEERING SENG 466 Software for Embedded and Mechatronic Systems Project 1 Report May 25, 2006 Group 3 Carl Spani Abe Friesen Lianne Cheng 03-24523 01-27747 01-28963

More information

DC Brushed Motor Controller Module EDP-AM-MC1

DC Brushed Motor Controller Module EDP-AM-MC1 Embedded Development Platform DC Brushed Motor Controller Module EDP-AM-MC1 Electrocomponents plc Vsn 1.1 Page 1 DC Brushed Motor Controller Module EDP-AM-MC1 The motor controller module is designed to

More information

AC : THE UBIQUITOUS MICROCONTROLLER IN MECHANICAL ENGINEERING: MEASUREMENT SYSTEMS

AC : THE UBIQUITOUS MICROCONTROLLER IN MECHANICAL ENGINEERING: MEASUREMENT SYSTEMS AC 8-1513: THE UBIQUITOUS MICROCONTROLLER IN MECHANICAL ENGINEERING: MEASUREMENT SYSTEMS Michael Holden, California Maritime Academy Michael Holden teaches in the department of Mechanical Engineering at

More information

ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab

ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab The purpose of this lab is to learn about sensors and use the ADC module to digitize the sensor signals. You will use the digitized signals

More information

UART2PPM. User s Guide. Version 2.04 dated 02/20/16. Gregor Schlechtriem

UART2PPM. User s Guide. Version 2.04 dated 02/20/16. Gregor Schlechtriem UART2PPM User s Guide Version 2.04 dated 02/20/16 Gregor Schlechtriem www.pikoder.com UART2PPM User s Guide Content Overview 3 PCC PiKoder Control Center 5 Getting started... 5 Real-time Control... 7 minissc

More information

GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following

GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following Goals for this Lab Assignment: 1. Learn about the sensors available on the robot for environment sensing. 2. Learn about classical wall-following

More information

A Do-and-See Approach for Learning Mechatronics Concepts

A Do-and-See Approach for Learning Mechatronics Concepts Proceedings of the 5 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'18) Niagara Falls, Canada June 7 9, 2018 Paper No. 124 DOI: 10.11159/cdsr18.124 A Do-and-See Approach for

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Cerebot Reference Manual Revision: February 9, 2009 Note: This document applies to REV B-E of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The

More information

Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives

Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives Electrical and Computer Engineering E E 452. Electric Machines and Power Electronic Drives Laboratory #5 Buck Converter Embedded Code Generation Summary In this lab, you will design the control application

More information

Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville

Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville Using Magnetic Sensors for Absolute Position Detection and Feedback. Abstract Several types

More information

Designing with STM32F3x

Designing with STM32F3x Designing with STM32F3x Course Description Designing with STM32F3x is a 3 days ST official course. The course provides all necessary theoretical and practical know-how for start developing platforms based

More information

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Recommended Due Date: By your lab time the week of February 12 th Possible Points: If checked off before

More information

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ υιοπασδφγηϕκλζξχϖβνµθωερτψυιοπασδ φγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκλζ ξχϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµ EE 331 Design Project Final Report θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

DSP BASED SYSTEM FOR SYNCHRONOUS GENERATOR EXCITATION CONTROLL

DSP BASED SYSTEM FOR SYNCHRONOUS GENERATOR EXCITATION CONTROLL DSP BASED SYSTEM FOR SYNCHRONOUS GENERATOR EXCITATION CONTROLL N. Bulic *, M. Miletic ** and I.Erceg *** Faculty of electrical engineering and computing Department of Electric Machines, Drives and Automation,

More information

Arduino Platform Capabilities in Multitasking. environment.

Arduino Platform Capabilities in Multitasking. environment. 7 th International Scientific Conference Technics and Informatics in Education Faculty of Technical Sciences, Čačak, Serbia, 25-27 th May 2018 Session 3: Engineering Education and Practice UDC: 004.42

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

A Model-Based Development Environment and Its Application in Engine Control

A Model-Based Development Environment and Its Application in Engine Control A Model-Based Development Environment and Its Application in Engine Control Shugang Jiang, Michael Smith, Charles Halasz A&D Technology Inc. ABSTRACT To meet the ever increasing requirements for engine

More information

Big Blue Mars Final Report

Big Blue Mars Final Report Big Blue Mars Final Report Member Names Kyle Hart Dale McClure Michael McEwen Contact Information hartman1000@hotmail.com michaelmce@yahoo.com dale.mcclure@uky.edu 2006-04-02 Faculty Advisor Dr. Bill Smith

More information

COSC 3215 Embedded Systems Laboratory

COSC 3215 Embedded Systems Laboratory Introduction COSC 3215 Embedded Systems Laboratory Lab 5 Temperature Controller Your task will be to design a temperature controller using the Dragon12 board that will maintain the temperature of an object

More information

Lab 5 Timer Module PWM ReadMeFirst

Lab 5 Timer Module PWM ReadMeFirst Lab 5 Timer Module PWM ReadMeFirst Lab Folder Content 1) ReadMeFirst 2) Interrupt Vector Table 3) Pin out Summary 4) DriverLib API 5) SineTable Overview In this lab, we are going to use the output hardware

More information

B Robo Claw 2 Channel 25A Motor Controller Data Sheet

B Robo Claw 2 Channel 25A Motor Controller Data Sheet B0098 - Robo Claw 2 Channel 25A Motor Controller Feature Overview: 2 Channel at 25A, Peak 30A Hobby RC Radio Compatible Serial Mode TTL Input Analog Mode 2 Channel Quadrature Decoding Thermal Protection

More information

Module: Arduino as Signal Generator

Module: Arduino as Signal Generator Name/NetID: Teammate/NetID: Module: Laboratory Outline In our continuing quest to access the development and debugging capabilities of the equipment on your bench at home Arduino/RedBoard as signal generator.

More information

CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones 1 Announcements HW8: Due Sunday 10/29 (midnight) Exam 2: In class Thursday 11/9 This object detection lab

More information

ME 4447 / ME 6405 MICROPROCESSOR CONTROL OF MANUFACTURING SYSTEMS / INTRODUCTION TO MECHATRONICS

ME 4447 / ME 6405 MICROPROCESSOR CONTROL OF MANUFACTURING SYSTEMS / INTRODUCTION TO MECHATRONICS ME 4447 / ME 6405 MICROPROCESSOR CONTROL OF MANUFACTURING SYSTEMS / INTRODUCTION TO MECHATRONICS Instructor: Professor I. Charles Ume Phone: 404-894-7411 Office: MARC Building, Room 453 Office Hours: Wednesday

More information

Microcontroller Based Closed Loop Speed and Position Control of DC Motor

Microcontroller Based Closed Loop Speed and Position Control of DC Motor International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-3, Issue-5, June 2014 Microcontroller Based Closed Loop Speed and Position Control of DC Motor Panduranga Talavaru,

More information

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK Team Members: Andrew Blanford Matthew Drummond Krishnaveni Das Dheeraj Reddy 1 Abstract: The goal of the project was to build an interactive and mobile

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

RX23T inverter ref. kit

RX23T inverter ref. kit RX23T inverter ref. kit Deep Dive October 2015 YROTATE-IT-RX23T kit content Page 2 YROTATE-IT-RX23T kit: 3-ph. Brushless Motor Specs Page 3 Motors & driving methods supported Brushless DC Permanent Magnet

More information

ARDUINO / GENUINO. start as professional. short course in a book. faculty of engineering technology

ARDUINO / GENUINO. start as professional. short course in a book. faculty of engineering technology ARDUINO / GENUINO start as professional short course in a book faculty of engineering technology Publisher Universiti Malaysia Pahang Kuantan 2017 Copyright Universiti Malaysia Pahang, 2017 First Published,

More information

Electronics Design Laboratory Lecture #6. ECEN2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #6. ECEN2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #6 Electronics Design Laboratory 1 Soldering tips ECEN 227 Electronics Design Laboratory 2 Introduction to Lab 3 Part B: Closed-Loop Speed Control -1V Experiment 3A

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 07 October 26, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Finish Analog to Digital Conversion

More information

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Angelo Zucchetti Advantest angelo.zucchetti@advantest.com Introduction Presented in this article is a technique for generating

More information

B RoboClaw 2 Channel 30A Motor Controller Data Sheet

B RoboClaw 2 Channel 30A Motor Controller Data Sheet B0098 - RoboClaw 2 Channel 30A Motor Controller (c) 2010 BasicMicro. All Rights Reserved. Feature Overview: 2 Channel at 30Amp, Peak 60Amp Battery Elimination Circuit (BEC) Switching Mode BEC Hobby RC

More information

Project Final Report: Directional Remote Control

Project Final Report: Directional Remote Control Project Final Report: by Luca Zappaterra xxxx@gwu.edu CS 297 Embedded Systems The George Washington University April 25, 2010 Project Abstract In the project, a prototype of TV remote control which reacts

More information

Stensat Transmitter Module

Stensat Transmitter Module Stensat Transmitter Module Stensat Group LLC Introduction The Stensat Transmitter Module is an RF subsystem designed for applications where a low-cost low-power radio link is required. The Transmitter

More information

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which behaves like ADC with external analog part and configurable

More information

Fixed-function (FF) implementation for PSoC 3 and PSoC 5 devices

Fixed-function (FF) implementation for PSoC 3 and PSoC 5 devices 2.40 Features 8- or 16-bit resolution Multiple pulse width output modes Configurable trigger Configurable capture Configurable hardware/software enable Configurable dead band Multiple configurable kill

More information

EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER

EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER A Thesis Submitted in partial Fulfillment Of the Requirements of the Degree of Bachelor of Technology In Electronics

More information

Speed Control of Single Phase Induction Motor Using Infrared Receiver Module

Speed Control of Single Phase Induction Motor Using Infrared Receiver Module Speed Control of Single Phase Induction Motor Using Infrared Receiver Module Souvik Kumar Dolui 1, Dr.Soumitra Kumar Mandal 2 M.Tech Student, Dept. of Electrical Engineering, NITTTR, Kolkata, Salt Lake

More information

AC : MICROPROCESSOR BASED, GLOBAL POSITIONING SYSTEM GUIDED ROBOT IN A PROJECT LABORATORY

AC : MICROPROCESSOR BASED, GLOBAL POSITIONING SYSTEM GUIDED ROBOT IN A PROJECT LABORATORY AC 2007-2528: MICROPROCESSOR BASED, GLOBAL POSITIONING SYSTEM GUIDED ROBOT IN A PROJECT LABORATORY Michael Parten, Texas Tech University Michael Giesselmann, Texas Tech University American Society for

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

DIGITAL SIGNAL PROCESSING LABORATORY

DIGITAL SIGNAL PROCESSING LABORATORY DIGITAL SIGNAL PROCESSING LABORATORY SECOND EDITION В. Preetham Kumar CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

Lab 9. Speed Control of a D.C. motor. Sensing Motor Speed (Tachometer Frequency Method)

Lab 9. Speed Control of a D.C. motor. Sensing Motor Speed (Tachometer Frequency Method) Lab 9. Speed Control of a D.C. motor Sensing Motor Speed (Tachometer Frequency Method) Motor Speed Control Project 1. Generate PWM waveform 2. Amplify the waveform to drive the motor 3. Measure motor speed

More information

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge L298 Full H-Bridge HEF4071B OR Gate Brushed DC Motor with Optical Encoder & Load Inertia Flyback Diodes Arduino Microcontroller

More information

USB-UT350(T) Portable Ultrasonic Pulser/Receiver and Analog to Digital Converter. User s Guide

USB-UT350(T) Portable Ultrasonic Pulser/Receiver and Analog to Digital Converter. User s Guide USB-UT350(T) Portable Ultrasonic Pulser/Receiver and Analog to Digital Converter User s Guide 2000-2009 US Ultratek, Inc. Revision 1.77 September 30, 2009 US Ultratek, Inc. 4070 Nelson Ave., Suite B Concord,

More information

Robotic Swing Drive as Exploit of Stiffness Control Implementation

Robotic Swing Drive as Exploit of Stiffness Control Implementation Robotic Swing Drive as Exploit of Stiffness Control Implementation Nathan J. Nipper, Johnny Godowski, A. Arroyo, E. Schwartz njnipper@ufl.edu, jgodows@admin.ufl.edu http://www.mil.ufl.edu/~swing Machine

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Innovative Communications Experiments Using an Integrated Design Laboratory

Innovative Communications Experiments Using an Integrated Design Laboratory Innovative Communications Experiments Using an Integrated Design Laboratory Frank K. Tuffner, John W. Pierre, Robert F. Kubichek University of Wyoming Abstract In traditional undergraduate teaching laboratory

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

Laboratory Assignment Number 3 for Mech 143. Pre-Lab: Part 1 Interfacing to a DC Motor and Potentiometer

Laboratory Assignment Number 3 for Mech 143. Pre-Lab: Part 1 Interfacing to a DC Motor and Potentiometer Purpose: Minimum Parts Required: Laboratory Assignment Number 3 for Mech 143 Due by 5:00 pm on Thursday, February 11, 1999 Pre-Lab Due by 5:00pm on Tuesday, February 9, 1999 This lab is intended to acquaint

More information

EKT 314/4 LABORATORIES SHEET

EKT 314/4 LABORATORIES SHEET EKT 314/4 LABORATORIES SHEET WEEK DAY HOUR 4 1 2 PREPARED BY: EN. MUHAMAD ASMI BIN ROMLI EN. MOHD FISOL BIN OSMAN JULY 2009 Creating a Typical Measurement Application 5 This chapter introduces you to common

More information

Effective Teaching Learning Process for PID Controller Based on Experimental Setup with LabVIEW

Effective Teaching Learning Process for PID Controller Based on Experimental Setup with LabVIEW Effective Teaching Learning Process for PID Controller Based on Experimental Setup with LabVIEW Komal Sampatrao Patil & D.R.Patil Electrical Department, Walchand college of Engineering, Sangli E-mail :

More information

OVEN INDUSTRIES, INC. Model 5C7-362

OVEN INDUSTRIES, INC. Model 5C7-362 OVEN INDUSTRIES, INC. OPERATING MANUAL Model 5C7-362 THERMOELECTRIC MODULE TEMPERATURE CONTROLLER TABLE OF CONTENTS Features... 1 Description... 2 Block Diagram... 3 RS232 Communications Connections...

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

HILINK REAL-TIME HARDWARE-IN-THE-LOOP CONTROL PLATFORM FOR MATLAB/SIMULINK

HILINK REAL-TIME HARDWARE-IN-THE-LOOP CONTROL PLATFORM FOR MATLAB/SIMULINK REAL-TIME HARDWARE-IN-THE-LOOP CONTROL PLATFORM FOR MATLAB/SIMULINK Quick Reference release 1.7 May 1, 2016 Disclaimer The developers of the platform (hardware and software) have used their best efforts

More information

Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW

Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW Hare Ram Jha,

More information

FPGA Implementation of a PID Controller with DC Motor Application

FPGA Implementation of a PID Controller with DC Motor Application FPGA Implementation of a PID Controller with DC Motor Application Members Paul Leisher Christopher Meyers Advisors Dr. Stewart Dr. Dempsey This project aims to implement a digital PID controller by means

More information

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours)

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) nfi Industrial Automation Training Academy Presents Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) For: Electronics & Communication Engineering Electrical Engineering Instrumentation

More information

MICROPROCESSOR TECHNICS II

MICROPROCESSOR TECHNICS II AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunication Department of Electronics MICROPROCESSOR TECHNICS II Tutorial 5 Combining ADC & PWM Mariusz Sokołowski

More information

PWM, ALT, HALT, HAST.

PWM, ALT, HALT, HAST. CLOSED LOOP IMPLEMENTATION OF SPEED CONTROL OF A BRUSHED PMDC MOTOR OF AN X-RAY SYSTEM AND VALIDATION OF RELIABILITY OF THE CONTROLLER Mutum Meenakshi Devi 1, V Chayapathy 2 Dept. of Electrical and Electronics

More information

EE 308 Lab Spring 2009

EE 308 Lab Spring 2009 9S12 Subsystems: Pulse Width Modulation, A/D Converter, and Synchronous Serial Interface In this sequence of three labs you will learn to use three of the MC9S12's hardware subsystems. WEEK 1 Pulse Width

More information

DC Motor and Servo motor Control with ARM and Arduino. Created by:

DC Motor and Servo motor Control with ARM and Arduino. Created by: DC Motor and Servo motor Control with ARM and Arduino Created by: Andrew Kaler (39345) Tucker Boyd (46434) Mohammed Chowdhury (860822) Tazwar Muttaqi (901700) Mark Murdock (98071) May 4th, 2017 Objective

More information

Roland Kammerer. 13. October 2010

Roland Kammerer. 13. October 2010 Peripherals Roland Institute of Computer Engineering Vienna University of Technology 13. October 2010 Overview 1. Analog/Digital Converter (ADC) 2. Pulse Width Modulation (PWM) 3. Serial Peripheral Interface

More information

Technique for Measuring System Temperature Using the On-chip Temperature Sensor of the Z8 Encore! XP

Technique for Measuring System Temperature Using the On-chip Temperature Sensor of the Z8 Encore! XP Technique for Measuring System Temperature Using the On-chip TN004201-0905 Introduction The Z8 Encore! XP is a high performance 8-bit microcontroller with a unique set of analog and digital peripherals,

More information

Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018

Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018 EE314 Systems Spring Semester 2018 College of Engineering Prof. C.R. Tolle South Dakota School of Mines & Technology Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018 In this lab we will setup Matlab

More information

Fixed-function (FF) implementation for PSoC 3 and PSoC 5LP devices

Fixed-function (FF) implementation for PSoC 3 and PSoC 5LP devices 3.30 Features 8- or 16-bit resolution Multiple pulse width output modes Configurable trigger Configurable capture Configurable hardware/software enable Configurable dead band Multiple configurable kill

More information

A Project-based Laboratory for Learning Embedded System Designs with Support from the Industry

A Project-based Laboratory for Learning Embedded System Designs with Support from the Industry Session FB A Project-based Laboratory for Learning Embedded System Designs with Support from the Industry Chyi-Shyong Lee, Juing-Huei Su, Kuo-En Lin, Jia-Hao Chang and Gu-Hong Lin Lunghwa University of

More information

Release Notes MC73110 version 2.2

Release Notes MC73110 version 2.2 PerformanceMotionDevices +1 781 674 9860 engineering@pmdcorp.com Release Notes MC73110 version 2.2 Document last updated: 11/14/2007 Product name: MC73110 Source control archive name: MC73110 v2.2 Date

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs 10-11 Introduction to Arduino In this lab we will introduce the idea of using a microcontroller as a tool for controlling

More information

Design and Implementation of AT Mega 328 microcontroller based firing control for a tri-phase thyristor control rectifier

Design and Implementation of AT Mega 328 microcontroller based firing control for a tri-phase thyristor control rectifier Design and Implementation of AT Mega 328 microcontroller based firing control for a tri-phase thyristor control rectifier 1 Mr. Gangul M.R PG Student WIT, Solapur 2 Mr. G.P Jain Assistant Professor WIT,

More information

The Signals and Systems Toolbox: Comparing Theory, Simulation and Implementation using MATLAB and Programmable Instruments

The Signals and Systems Toolbox: Comparing Theory, Simulation and Implementation using MATLAB and Programmable Instruments Session 222, ASEE 23 The Signals and Systems Toolbox: Comparing Theory, Simulation and Implementation using MATLAB and Programmable Instruments John M. Spinelli Union College Abstract A software system

More information

Electronics Design Laboratory Lecture #4. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #4. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #4 Electronics Design Laboratory 1 Part A Experiment 2 Robot DC Motor Measure DC motor characteristics Develop a Spice circuit model for the DC motor and determine

More information

Real Time Implementation of Power Electronics System

Real Time Implementation of Power Electronics System Real Time Implementation of Power Electronics System Prof.Darshan S.Patel M.Tech (Power Electronics & Drives) Assistant Professor,Department of Electrical Engineering Sankalchand Patel College of Engineerig-Visnagar

More information

Applications: Power generation, Cogeneration, Stationary power Large engines

Applications: Power generation, Cogeneration, Stationary power Large engines Features: 8 inputs are user selectable from the following. 0-5V, 0-10V, 4-20 ma or 0-20 ma Digital inputs for interface to switches, etc. PWM signal, pulse or 16-bit counter inputs from sensors or diesel

More information

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control...

More information