MatMap: An OpenSource Indoor Localization System

Size: px
Start display at page:

Download "MatMap: An OpenSource Indoor Localization System"

Transcription

1 MatMap: An OpenSource Indoor Localization System Richard Ižip and Marek Šuppa Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia Abstract. In the past few decades a huge amount of work has been done in the area of Indoor Localization Techniques and Systems. In this paper we present MatMap: A simple OpenSource Indoor Localization System which can be used on any device that is capable of scanning WiFi access points in its proximity, does not require addition of any specialized hardware in the building and only needs a simple pre-mapping of the desired locations. The system is based on the same design principles as the Redpin[2] system that is to the author s best knowledge the first open source indoor localization system that used the intensity of the received signal (received signal strength RSS). Unlike the Redpin system, MatMap uses a Naive Bayes Classifier whose performance has been shown to exceed that of the Redpin system. Keywords: indoor localization, mobile computing 1 Introduction Precise location of a mobile device has become a crucial information for mobile devices application in recent years. While it is currently possible to obtain position estimates that are satisfactory for vast amount of applications in outdoor settings by using GPS, indoor localization still remains to be an open problem for many applications. For instance, if meter-level accuracy is desired the state of the art approach is to install additional hardware which then greatly improves the accuracy of such a system. However, installation of additional hardware is undesirable in many applications. In such setting the existing infractructure of WiFi access points needs to be utilized and the current state of the art methods provide room-level accuracy of position estimates. In our work we focus on the design of a system that requires no additional hardware to be installed, is simple to implement and suitable to be used as part of a smartphone application while providing room-level accuracy. 1.1 Motivation The campus of Faculty of Mathematics, Physics and Informatics of Comenius University in Bratislava can be a very confusing place, especially for a stranger.

2 Given the vast amount of rooms and halls that look all alike, one can get lost fairly easily (most of the time this is the case of freshman students). Our goal is to provide a framework for official applications of the Faculty which would be capable of detecting user s position and then navigating them around the Faculty. 1.2 Related work In the past few decades a huge body of research has been done in the area of indoor localization. The systems it describes can be categorized by numerous factors into classes such as continuous (position is expressed as a coordinate in some sort of 2D or 3D coordinate system)[3], discrete (where the locations are represented in form of distinct labels, such as rooms)[5], those that rely on existing infrastructure (such as WiFi access points)[2] and those that rely on specific hardware that needs to be installed as part of their setup procedure (these solutions, such as [1], are usually based on ultrasound). The system proposed in this paper could be categorized as discrete, since locations are distinct labes of places and would also belong to the category of those systems that rely on existing infrastructure. It shares many principles with the Redpin system [2] but uses a localization method described in [6] that yields more accurate results in therms of localization precision. 2 Model 2.1 Naive Bayes As mentioned above, the system described in this work uses a naive Bayes classifier. All possible locations need to be known beforehand. We denote them L 1, L 2,..., L N where N is the number of locations. These locations are estimated by a set of features F 1 ( ), F 2 ( ),..., F M ( ). These features ought to depend on the location only 1. Under this assumption the probability that certain variables f 1, f 2,..., f M were observed can be denoted as P ( ) = P (f 1 ) P (f 2 )... P (f M ) P ( ) P (f 1 ) P (f 2 )... P (f M ) We then estimate the location where these variables were measured as the most probable location, that is P (f 1 ) P (f 2 )... P (f M ) P ( ) L prob = argmax P (f 1 ) P (f 2 )... P (f M ) We can note that the dominator would be the same for all, thus we can simplify the formula to 1 Hence the name naive, since this assumption often times does not hold.

3 L prob = argmax P (f 1 ) P (f 2 )... P (f M ) P ( ) In our definition of the problem we assume that all locations are equally likely to be observed. That means that P ( ) does not contribute to the overall result and thus we can remove it from the equation. L prob = argmax P (f 1 ) P (f 2 )... P (f M ) In many applications of naive Bayes classification it is customary to take the logarithm of the product of probabilities and then express it as the sum of logarithms of probabilities. This is done in order to simplify the computation since probabilities are often very small numbers and taking their product might be troublesome to implement 2. As we describe below this is not necessary in our use case. 2.2 Naive probability estimation In some works that use naive Bayesian classifier the strength of the WiFi access point signal at a given location is completely ignored and thus the features depend on existence of a given access point. This doesn t yield particularly good results, as described in [4]. We try to avoid this problem by taking the signal strength of an access point into consideration. The features f 1,..., f M are in our case access points that were observed at the current scan. They can be uniquely described as a tuple (ssid, signal) which we denote as (fi ssid, f signal i ). In the same way we can express the recorded features for locations as (L ssid i, L signal i ). It is necessary to note that since the features were recorded more than once in all locations they are grouped by L ssid and the final L signal is produced by taking the mean of all values L signal that belong to the same L ssid. The probability P (f i ) can be then expressed as P (F i = f i ) = S max L signal i f signal i where L ssid i = fi ssid and at the same time L signal i, f signal i are real values ranging from 0 to S max and S max is the value of maximal signal that is obtainable 3. The probability is therefore also a number ranging from 0 to S max and thus it is not necessary to use the logarithm trick described above to simplify the implementation of probability estimation. 2 Often times the biggest problems are with precision of floating point values, such as under-runs. 3 In many systems S max = 100

4 2.3 Other approaches to probability estimation In some works other approaches to estimating P (F i = f i ) are used, most notably modeling the data by normal distribution. The assumption is that the manually tagged locations are distributed normally. It is further supported by arguing that for WiFi singals this seems to be a sensible assumption since the variation in their levels can be attributed to to random noises from multiple sources which leads to Gaussian distribution. [6]. In order to estimate parameters of this distribution, mean values µ L1 f 1,..., µ L1 f M,..., µ L N f M and standard deviations σ L1 f 1,..., σf L1 M,..., σf LN M are computed. The probability P (F i = f i ) can be then estimated as P (F i = f i ) = 1 e σf Li i 2π (f i µ ) 2 f i 2(σ Li ) f 2 i as The formula for estimating the most probable location can then be rewritten L prob = argmax M m=1 1 e σf Li m 2π (fm µ fm )2 2(σ Li fm )2 2.4 Choosing probability estimation method In order to choose from the two methods described above we evaluated them on the same dataset which consisted of labeled locations and respective scans of access points in these locations. In order to avoid overfitting we did multiple rounds of evaluations. In each round the ordering of the data points in the data set was randomized and 10-fold cross validation was used. The results in Table. 1 show that the naive method has preformed better overall in terms of accuracy while maintaining a similar standard deviation than the method which used Gaussian distribution to model the data. round mean sd naive gaussian Table 1. Results of 10 evaluation rounds. Based on this evaluation we have decided to implement the naive method. Apart from being more accurate it is also simpler to implement and requires less computational resources.

5 3 Technical details of the localization application Application contains main activity from which another activities are called. Main activity is now blank, just with action bar and two icons in it. Also it contains two hidden elements called History and Setting. These two are available for user when he presses mobile button usually used for settings or info. When user presses History, Settings or action bar icon called New location nothing impressive happens just a new activity is created and a simple text message is written. When user presses search button in action bar, also a new Activity is created and it starts scanning for WiFi access points. The WiFi info is displayed in a text field which will later be used for users actual location. The historical information about scans is maintained for further use. 3.1 Volatile wifi into problem Instance of a class WifiManager is created when a user presses search button and creates a new activity. The problem is that there is no period in which new data are scanned. It might be that there is but the application does not react in this way. Sometimes it so happens than it takes some time while new data is delivered. There is also a problem when user is already connected to some WiFi access point. In this case data is delivered just when user creates an activity. We will try to solve this problem by using another tread or doing more research on this problem. 4 Goals 4.1 Short term goals localize the user and display his actual position use database to maintain location data on the device (SQLite) solve the problem with volatile wifi info Long term plans Use a graph and a breath-first search to find required path Make visual map to display real rooms and paths References 1. Filonenko, Viacheslav, Charlie Cullen, and James D. Carswell. Indoor positioning for smartphones using asynchronous ultrasound trilateration. ISPRS International Journal of Geo-Information 2.3 (2013):

6 2. Bolliger, Philipp. Redpin-adaptive, zero-configuration indoor localization through user collaboration. Proceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less environments. ACM, Kessel, Moritz, and Martin Werner. SMARTPOS: Accurate and precise indoor positioning on mobile phones. MOBILITY 2011, The First International Conference on Mobile Services, Resources, and Users Lin, Hsiuping, et al. Enhanced indoor locationing in a congested Wi-Fi environment. (2009) &context=silicon_valley 5. Luo, Yan, Orland Hoeber, and Yuanzhu Chen. Enhancing Wi-Fi fingerprinting for indoor positioning using human-centric collaborative feedback. Human-centric Computing and Information Sciences 3.1 (2013): com/content/3/1/2 6. Kovalev, Maxim. Indoor Positioning of Mobile Devices by Combined Wi-Fi and GPS Signals.

7 Fig. 1. Activity scanning information about nearby WiFi access points. Fig. 2. Main application window.

Wi-Fi Fingerprinting through Active Learning using Smartphones

Wi-Fi Fingerprinting through Active Learning using Smartphones Wi-Fi Fingerprinting through Active Learning using Smartphones Le T. Nguyen Carnegie Mellon University Moffet Field, CA, USA le.nguyen@sv.cmu.edu Joy Zhang Carnegie Mellon University Moffet Field, CA,

More information

Fingerprinting Based Indoor Positioning System using RSSI Bluetooth

Fingerprinting Based Indoor Positioning System using RSSI Bluetooth IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 4, 2013 ISSN (online): 2321-0613 Fingerprinting Based Indoor Positioning System using RSSI Bluetooth Disha Adalja 1 Girish

More information

SMARTPOS: Accurate and Precise Indoor Positioning on Mobile Phones

SMARTPOS: Accurate and Precise Indoor Positioning on Mobile Phones SMARTPOS: Accurate and Precise Indoor Positioning on Mobile Phones Moritz Kessel, Martin Werner Mobile and Distributed Systems Group Ludwig-Maximilians-University Munich Munich, Germany {moritz.essel,martin.werner}@ifi.lmu.de

More information

SMART RFID FOR LOCATION TRACKING

SMART RFID FOR LOCATION TRACKING SMART RFID FOR LOCATION TRACKING By: Rashid Rashidzadeh Electrical and Computer Engineering University of Windsor 1 Radio Frequency Identification (RFID) RFID is evolving as a major technology enabler

More information

IoT. Indoor Positioning with BLE Beacons. Author: Uday Agarwal

IoT. Indoor Positioning with BLE Beacons. Author: Uday Agarwal IoT Indoor Positioning with BLE Beacons Author: Uday Agarwal Contents Introduction 1 Bluetooth Low Energy and RSSI 2 Factors Affecting RSSI 3 Distance Calculation 4 Approach to Indoor Positioning 5 Zone

More information

Analyzing Passive Wi-Fi Fingerprinting for Privacy-Preserving Indoor-Positioning

Analyzing Passive Wi-Fi Fingerprinting for Privacy-Preserving Indoor-Positioning Analyzing Passive Wi-Fi Fingerprinting for Privacy-Preserving Indoor-Positioning Lorenz Schauer, Florian Dorfmeister, and Florian Wirth Mobile and Distributed Systems Group Ludwig-Maximilians-Universität

More information

IoT Wi-Fi- based Indoor Positioning System Using Smartphones

IoT Wi-Fi- based Indoor Positioning System Using Smartphones IoT Wi-Fi- based Indoor Positioning System Using Smartphones Author: Suyash Gupta Abstract The demand for Indoor Location Based Services (LBS) is increasing over the past years as smartphone market expands.

More information

Laboratory 1: Uncertainty Analysis

Laboratory 1: Uncertainty Analysis University of Alabama Department of Physics and Astronomy PH101 / LeClair May 26, 2014 Laboratory 1: Uncertainty Analysis Hypothesis: A statistical analysis including both mean and standard deviation can

More information

MOBILE DATA INTEROPERABILITY ALGORITHM USING CHESS GAMIFICATION

MOBILE DATA INTEROPERABILITY ALGORITHM USING CHESS GAMIFICATION MOBILE DATA INTEROPERABILITY ALGORITHM USING CHESS GAMIFICATION Shital Bhabad 1 1 Master of Engineering Student, Department of Computer Engineering, Pune Institute of Computer Technology, 411043, Savitribai

More information

Indoor Location System with Wi-Fi and Alternative Cellular Network Signal

Indoor Location System with Wi-Fi and Alternative Cellular Network Signal , pp. 59-70 http://dx.doi.org/10.14257/ijmue.2015.10.3.06 Indoor Location System with Wi-Fi and Alternative Cellular Network Signal Md Arafin Mahamud 1 and Mahfuzulhoq Chowdhury 1 1 Dept. of Computer Science

More information

B L E N e t w o r k A p p l i c a t i o n s f o r S m a r t M o b i l i t y S o l u t i o n s

B L E N e t w o r k A p p l i c a t i o n s f o r S m a r t M o b i l i t y S o l u t i o n s B L E N e t w o r k A p p l i c a t i o n s f o r S m a r t M o b i l i t y S o l u t i o n s A t e c h n i c a l r e v i e w i n t h e f r a m e w o r k o f t h e E U s Te t r a m a x P r o g r a m m

More information

Localization (Position Estimation) Problem in WSN

Localization (Position Estimation) Problem in WSN Localization (Position Estimation) Problem in WSN [1] Convex Position Estimation in Wireless Sensor Networks by L. Doherty, K.S.J. Pister, and L.E. Ghaoui [2] Semidefinite Programming for Ad Hoc Wireless

More information

Research on an Economic Localization Approach

Research on an Economic Localization Approach Computer and Information Science; Vol. 12, No. 1; 2019 ISSN 1913-8989 E-ISSN 1913-8997 Published by Canadian Center of Science and Education Research on an Economic Localization Approach 1 Yancheng Teachers

More information

On the GNSS integer ambiguity success rate

On the GNSS integer ambiguity success rate On the GNSS integer ambiguity success rate P.J.G. Teunissen Mathematical Geodesy and Positioning Faculty of Civil Engineering and Geosciences Introduction Global Navigation Satellite System (GNSS) ambiguity

More information

Agenda Motivation Systems and Sensors Algorithms Implementation Conclusion & Outlook

Agenda Motivation Systems and Sensors Algorithms Implementation Conclusion & Outlook Overview of Current Indoor Navigation Techniques and Implementation Studies FIG ww 2011 - Marrakech and Christian Lukianto HafenCity University Hamburg 21 May 2011 1 Agenda Motivation Systems and Sensors

More information

Indoor Positioning with a WLAN Access Point List on a Mobile Device

Indoor Positioning with a WLAN Access Point List on a Mobile Device Indoor Positioning with a WLAN Access Point List on a Mobile Device Marion Hermersdorf, Nokia Research Center Helsinki, Finland Abstract This paper presents indoor positioning results based on the 802.11

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 5 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 5.3 Properties of Logarithms Copyright Cengage Learning. All rights reserved. Objectives Use the change-of-base

More information

Study of WLAN Fingerprinting Indoor Positioning Technology based on Smart Phone Ye Yuan a, Daihong Chao, Lailiang Song

Study of WLAN Fingerprinting Indoor Positioning Technology based on Smart Phone Ye Yuan a, Daihong Chao, Lailiang Song International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) Study of WLAN Fingerprinting Indoor Positioning Technology based on Smart Phone Ye Yuan a, Daihong Chao,

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

Indoor Human Localization with Orientation using WiFi Fingerprinting

Indoor Human Localization with Orientation using WiFi Fingerprinting Indoor Human Localization with Orientation using WiFi Fingerprinting Mohd Nizam Husen Intelligent Systems Research Institute Sungkyunkwan University Republic of Korea +8231-299-6465 mnizam@skku.edu Sukhan

More information

Jitter in Digital Communication Systems, Part 2

Jitter in Digital Communication Systems, Part 2 Application Note: HFAN-4.0.4 Rev.; 04/08 Jitter in Digital Communication Systems, Part AVAILABLE Jitter in Digital Communication Systems, Part Introduction A previous application note on jitter, HFAN-4.0.3

More information

Hardware-free Indoor Navigation for Smartphones

Hardware-free Indoor Navigation for Smartphones Hardware-free Indoor Navigation for Smartphones 1 Navigation product line 1996-2015 1996 1998 RTK OTF solution with accuracy 1 cm 8-channel software GPS receiver 2004 2007 Program prototype of Super-sensitive

More information

Carrier Independent Localization Techniques for GSM Terminals

Carrier Independent Localization Techniques for GSM Terminals Carrier Independent Localization Techniques for GSM Terminals V. Loscrí, E. Natalizio and E. Viterbo DEIS University of Calabria - Cosenza, Italy Email: {vloscri,enatalizio,viterbo}@deis.unical.it D. Mauro,

More information

Visible Light Communication-based Indoor Positioning with Mobile Devices

Visible Light Communication-based Indoor Positioning with Mobile Devices Visible Light Communication-based Indoor Positioning with Mobile Devices Author: Zsolczai Viktor Introduction With the spreading of high power LED lighting fixtures, there is a growing interest in communication

More information

Indoor Localization and Tracking using Wi-Fi Access Points

Indoor Localization and Tracking using Wi-Fi Access Points Indoor Localization and Tracking using Wi-Fi Access Points Dubal Omkar #1,Prof. S. S. Koul *2. Department of Information Technology,Smt. Kashibai Navale college of Eng. Pune-41, India. Abstract Location

More information

Detection of the crowdedness of a place sensing the devices in the area

Detection of the crowdedness of a place sensing the devices in the area Faculty of Electrical Engineering, Mathematics & Computer Science Detection of the crowdedness of a place sensing the devices in the area Alejandro Ozaita Araico M.Sc. Thesis February 2017 Supervisors:

More information

LOCALIZATION AND ROUTING AGAINST JAMMERS IN WIRELESS NETWORKS

LOCALIZATION AND ROUTING AGAINST JAMMERS IN WIRELESS NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.955

More information

Research Article n-digit Benford Converges to Benford

Research Article n-digit Benford Converges to Benford International Mathematics and Mathematical Sciences Volume 2015, Article ID 123816, 4 pages http://dx.doi.org/10.1155/2015/123816 Research Article n-digit Benford Converges to Benford Azar Khosravani and

More information

Bayesian Positioning in Wireless Networks using Angle of Arrival

Bayesian Positioning in Wireless Networks using Angle of Arrival Bayesian Positioning in Wireless Networks using Angle of Arrival Presented by: Rich Martin Joint work with: David Madigan, Eiman Elnahrawy, Wen-Hua Ju, P. Krishnan, A.S. Krishnakumar Rutgers University

More information

WhereAReYou? An Offline Bluetooth Positioning Mobile Application

WhereAReYou? An Offline Bluetooth Positioning Mobile Application WhereAReYou? An Offline Bluetooth Positioning Mobile Application SPCL-2013 Project Report Daniel Lujan Villarreal dluj@itu.dk ABSTRACT The increasing use of social media and the integration of location

More information

Multi-Directional Weighted Interpolation for Wi-Fi Localisation

Multi-Directional Weighted Interpolation for Wi-Fi Localisation Multi-Directional Weighted Interpolation for Wi-Fi Localisation Author Bowie, Dale, Faichney, Jolon, Blumenstein, Michael Published 2014 Conference Title Robot Intelligence Technology and Applications

More information

Low-Cost Localization of Mobile Robots Through Probabilistic Sensor Fusion

Low-Cost Localization of Mobile Robots Through Probabilistic Sensor Fusion Low-Cost Localization of Mobile Robots Through Probabilistic Sensor Fusion Brian Chung December, Abstract Efforts to achieve mobile robotic localization have relied on probabilistic techniques such as

More information

LearnLoc: A Framework for Smart Indoor Localization with Mobile Devices

LearnLoc: A Framework for Smart Indoor Localization with Mobile Devices LearnLoc: A Framework for Smart Indoor Localization with Mobile Devices ABSTRACT There has been growing interest in location-based services and indoor localization in recent years. While several smartphone

More information

Improving Wi-Fi based Indoor Positioning using Particle Filter based on Signal Strength

Improving Wi-Fi based Indoor Positioning using Particle Filter based on Signal Strength 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) Symposium on Computational Intelligence Singapore, 21 24 April 2014 Improving Wi-Fi

More information

Latest trends in sentiment analysis - A survey

Latest trends in sentiment analysis - A survey Latest trends in sentiment analysis - A survey Anju Rose G Punneliparambil PG Scholar Department of Computer Science & Engineering Govt. Engineering College, Thrissur, India anjurose.ar@gmail.com Abstract

More information

iphone Independent Real Time Localization System Research and Its Healthcare Application

iphone Independent Real Time Localization System Research and Its Healthcare Application Advances in Internet of Things, 2013, 3, 53-65 http://dx.doi.org/10.4236/ait.2013.34008 Published Online October 2013 (http://www.scirp.org/journal/ait) iphone Independent Real Time Localization System

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES LINEAR EQUATIONS IN TWO VARIABLES What You Should Learn Use slope to graph linear equations in two " variables. Find the slope of a line given two points on the line. Write linear equations in two variables.

More information

Indoor Localization Alessandro Redondi

Indoor Localization Alessandro Redondi Indoor Localization Alessandro Redondi Introduction Indoor localization in wireless networks Ranging and trilateration Practical example using python 2 Localization Process to determine the physical location

More information

A Study of Devising Neural Network Based Indoor Localization Using Beacons: First Results

A Study of Devising Neural Network Based Indoor Localization Using Beacons: First Results A Study of Devising Neural Network Based Indoor Localization Using Beacons: First Results Filip Mazan and Alena Kovarova Faculty of Informatics and Information Technologies Slovak University of Technology

More information

Location-Enhanced Computing

Location-Enhanced Computing Location-Enhanced Computing Today s Outline Applications! Lots of different apps out there! Stepping back, big picture Ways of Determining Location Location Privacy Location-Enhanced Applications Provide

More information

Indoor Positioning 101 TECHNICAL)WHITEPAPER) SenionLab)AB) Teknikringen)7) 583)30)Linköping)Sweden)

Indoor Positioning 101 TECHNICAL)WHITEPAPER) SenionLab)AB) Teknikringen)7) 583)30)Linköping)Sweden) Indoor Positioning 101 TECHNICAL)WHITEPAPER) SenionLab)AB) Teknikringen)7) 583)30)Linköping)Sweden) TechnicalWhitepaper)) Satellite-based GPS positioning systems provide users with the position of their

More information

Using Bluetooth Low Energy Beacons for Indoor Localization

Using Bluetooth Low Energy Beacons for Indoor Localization International Journal of Intelligent Systems and Applications in Engineering Advanced Technology and Science ISSN:2147-67992147-6799 www.atscience.org/ijisae Original Research Paper Using Bluetooth Low

More information

Detecting Intra-Room Mobility with Signal Strength Descriptors

Detecting Intra-Room Mobility with Signal Strength Descriptors Detecting Intra-Room Mobility with Signal Strength Descriptors Authors: Konstantinos Kleisouris Bernhard Firner Richard Howard Yanyong Zhang Richard Martin WINLAB Background: Internet of Things (Iot) Attaching

More information

Guess the Mean. Joshua Hill. January 2, 2010

Guess the Mean. Joshua Hill. January 2, 2010 Guess the Mean Joshua Hill January, 010 Challenge: Provide a rational number in the interval [1, 100]. The winner will be the person whose guess is closest to /3rds of the mean of all the guesses. Answer:

More information

Auto-tagging The Facebook

Auto-tagging The Facebook Auto-tagging The Facebook Jonathan Michelson and Jorge Ortiz Stanford University 2006 E-mail: JonMich@Stanford.edu, jorge.ortiz@stanford.com Introduction For those not familiar, The Facebook is an extremely

More information

Optimal Yahtzee performance in multi-player games

Optimal Yahtzee performance in multi-player games Optimal Yahtzee performance in multi-player games Andreas Serra aserra@kth.se Kai Widell Niigata kaiwn@kth.se April 12, 2013 Abstract Yahtzee is a game with a moderately large search space, dependent on

More information

THE IMPLEMENTATION OF INDOOR CHILD MONITORING SYSTEM USING TRILATERATION APPROACH

THE IMPLEMENTATION OF INDOOR CHILD MONITORING SYSTEM USING TRILATERATION APPROACH THE IMPLEMENTATION OF INDOOR CHILD MONITORING SYSTEM USING TRILATERATION APPROACH Normazatul Shakira Darmawati and Nurul Hazlina Noordin Faculty of Electrical & Electronics Engineering, Universiti Malaysia

More information

Mobile Positioning in Wireless Mobile Networks

Mobile Positioning in Wireless Mobile Networks Mobile Positioning in Wireless Mobile Networks Peter Brída Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina SLOVAKIA Outline Why Mobile Positioning?

More information

Enhanced indoor localization using GPS information

Enhanced indoor localization using GPS information Enhanced indoor localization using GPS information Taegyung Oh, Yujin Kim, Seung Yeob Nam Dept. of information and Communication Engineering Yeongnam University Gyeong-san, Korea a49094909@ynu.ac.kr, swyj90486@nate.com,

More information

Study Impact of Architectural Style and Partial View on Landmark Recognition

Study Impact of Architectural Style and Partial View on Landmark Recognition Study Impact of Architectural Style and Partial View on Landmark Recognition Ying Chen smileyc@stanford.edu 1. Introduction Landmark recognition in image processing is one of the important object recognition

More information

Enhancements to the RADAR User Location and Tracking System

Enhancements to the RADAR User Location and Tracking System Enhancements to the RADAR User Location and Tracking System By Nnenna Paul-Ugochukwu, Qunyi Bao, Olutoni Okelana and Astrit Zhushi 9 th February 2009 Outline Introduction User location and tracking system

More information

SPTF: Smart Photo-Tagging Framework on Smart Phones

SPTF: Smart Photo-Tagging Framework on Smart Phones , pp.123-132 http://dx.doi.org/10.14257/ijmue.2014.9.9.14 SPTF: Smart Photo-Tagging Framework on Smart Phones Hao Xu 1 and Hong-Ning Dai 2* and Walter Hon-Wai Lau 2 1 School of Computer Science and Engineering,

More information

Logarithms ID1050 Quantitative & Qualitative Reasoning

Logarithms ID1050 Quantitative & Qualitative Reasoning Logarithms ID1050 Quantitative & Qualitative Reasoning History and Uses We noticed that when we multiply two numbers that are the same base raised to different exponents, that the result is the base raised

More information

Empirical Path Loss Models

Empirical Path Loss Models Empirical Path Loss Models 1 Free space and direct plus reflected path loss 2 Hata model 3 Lee model 4 Other models 5 Examples Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1

More information

Wi-Fi Localization and its

Wi-Fi Localization and its Stanford's 2010 PNT Challenges and Opportunities Symposium Wi-Fi Localization and its Emerging Applications Kaveh Pahlavan, CWINS/WPI & Skyhook Wireless November 9, 2010 LBS Apps from 10s to 10s of Thousands

More information

One-to-many data transmission for smart devices at close range

One-to-many data transmission for smart devices at close range 2016 IEEE First International Conference on Internet-of-Things Design and Implementation One-to-many data transmission for smart devices at close range Myoungbeom Chung Division of Computer Engineering

More information

Range Free Localization of Wireless Sensor Networks Based on Sugeno Fuzzy Inference

Range Free Localization of Wireless Sensor Networks Based on Sugeno Fuzzy Inference Range Free Localization of Wireless Sensor Networks Based on Sugeno Fuzzy Inference Mostafa Arbabi Monfared Department of Electrical & Electronic Engineering Eastern Mediterranean University Famagusta,

More information

Univariate Descriptive Statistics

Univariate Descriptive Statistics Univariate Descriptive Statistics Displays: pie charts, bar graphs, box plots, histograms, density estimates, dot plots, stemleaf plots, tables, lists. Example: sea urchin sizes Boxplot Histogram Urchin

More information

Dynamic Nearest Neighbors and Online Error Estimation for SMARTPOS

Dynamic Nearest Neighbors and Online Error Estimation for SMARTPOS International Journal on Advances in Internet Technology, vol no &, year, http://www.iariajournals.org/internet_technology/ Dynamic Nearest Neighbors and Online Error Estimation for SMARTPOS Philipp Marcus,

More information

E 322 DESIGN 6 SMART PARKING SYSTEM. Section 1

E 322 DESIGN 6 SMART PARKING SYSTEM. Section 1 E 322 DESIGN 6 SMART PARKING SYSTEM Section 1 Summary of Assignments of Individual Group Members Joany Jores Project overview, GPS Limitations and Solutions Afiq Izzat Mohamad Fuzi SFPark, GPS System Mohd

More information

An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach

An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach Kriangkrai Maneerat, Chutima Prommak 1 Abstract Indoor wireless localization systems have

More information

A 3D Ubiquitous Multi-Platform Localization and Tracking System for Smartphones. Seyyed Mahmood Jafari Sadeghi

A 3D Ubiquitous Multi-Platform Localization and Tracking System for Smartphones. Seyyed Mahmood Jafari Sadeghi A 3D Ubiquitous Multi-Platform Localization and Tracking System for Smartphones by Seyyed Mahmood Jafari Sadeghi A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy

More information

Benthic Photo Survey Documentation

Benthic Photo Survey Documentation Benthic Photo Survey Documentation Release 1.0.1 Jared Kibele December 18, 2014 Contents 1 Contents 3 1.1 Introduction............................................... 3 1.2 Installation................................................

More information

Dynamic threshold adjustment in a proximity-based location tracking system using reference modules

Dynamic threshold adjustment in a proximity-based location tracking system using reference modules Dynamic threshold adjustment in a proximity-based location tracking system using reference modules Gel Han Technische Universität München Boltzmannstraße 3 D-85748 Garching b. München Email: hang@in.tum.de

More information

Semantic Localization of Indoor Places. Lukas Kuster

Semantic Localization of Indoor Places. Lukas Kuster Semantic Localization of Indoor Places Lukas Kuster Motivation GPS for localization [7] 2 Motivation Indoor navigation [8] 3 Motivation Crowd sensing [9] 4 Motivation Targeted Advertisement [10] 5 Motivation

More information

Enhanced Positioning Method using WLAN RSSI Measurements considering Dilution of Precision of AP Configuration

Enhanced Positioning Method using WLAN RSSI Measurements considering Dilution of Precision of AP Configuration Enhanced Positioning Method using WLAN RSSI Measurements considering Dilution of Precision of AP Configuration Cong Zou, A Sol Kim, Jun Gyu Hwang, Joon Goo Park Graduate School of Electrical Engineering

More information

SSD BASED LOCATION IDENTIFICATION USING FINGERPRINT BASED APPROACH

SSD BASED LOCATION IDENTIFICATION USING FINGERPRINT BASED APPROACH SSD BASED LOCATION IDENTIFICATION USING FINGERPRINT BASED APPROACH Mr. M. Dinesh babu 1, Mr.V.Tamizhazhagan Dr. R. Saminathan 3 1,, 3 (Department of Computer Science & Engineering, Annamalai University,

More information

Sketching Interface. Larry Rudolph April 24, Pervasive Computing MIT SMA 5508 Spring 2006 Larry Rudolph

Sketching Interface. Larry Rudolph April 24, Pervasive Computing MIT SMA 5508 Spring 2006 Larry Rudolph Sketching Interface Larry April 24, 2006 1 Motivation Natural Interface touch screens + more Mass-market of h/w devices available Still lack of s/w & applications for it Similar and different from speech

More information

idocent: Indoor Digital Orientation Communication and Enabling Navigational Technology

idocent: Indoor Digital Orientation Communication and Enabling Navigational Technology idocent: Indoor Digital Orientation Communication and Enabling Navigational Technology Final Proposal Team #2 Gordie Stein Matt Gottshall Jacob Donofrio Andrew Kling Facilitator: Michael Shanblatt Sponsor:

More information

Sponsored by. Nisarg Kothari Carnegie Mellon University April 26, 2011

Sponsored by. Nisarg Kothari Carnegie Mellon University April 26, 2011 Sponsored by Nisarg Kothari Carnegie Mellon University April 26, 2011 Motivation Why indoor localization? Navigating malls, airports, office buildings Museum tours, context aware apps Augmented reality

More information

You could identify a point on the graph of a function as (x,y) or (x, f(x)). You may have only one function value for each x number.

You could identify a point on the graph of a function as (x,y) or (x, f(x)). You may have only one function value for each x number. Function Before we review exponential and logarithmic functions, let's review the definition of a function and the graph of a function. A function is just a rule. The rule links one number to a second

More information

Sketching Interface. Motivation

Sketching Interface. Motivation Sketching Interface Larry Rudolph April 5, 2007 1 1 Natural Interface Motivation touch screens + more Mass-market of h/w devices available Still lack of s/w & applications for it Similar and different

More information

Centaur: Locating Devices in an Office Environment

Centaur: Locating Devices in an Office Environment Centaur: Locating Devices in an Office Environment MobiCom 12 August 2012 IN4316 Seminar Wireless Sensor Networks Javier Hernando Bravo September 29 th, 2012 1 2 LOCALIZATION TECHNIQUES Based on Models

More information

Laser Printer Source Forensics for Arbitrary Chinese Characters

Laser Printer Source Forensics for Arbitrary Chinese Characters Laser Printer Source Forensics for Arbitrary Chinese Characters Xiangwei Kong, Xin gang You,, Bo Wang, Shize Shang and Linjie Shen Information Security Research Center, Dalian University of Technology,

More information

MA10103: Foundation Mathematics I. Lecture Notes Week 3

MA10103: Foundation Mathematics I. Lecture Notes Week 3 MA10103: Foundation Mathematics I Lecture Notes Week 3 Indices/Powers In an expression a n, a is called the base and n is called the index or power or exponent. Multiplication/Division of Powers a 3 a

More information

A Received Signal Strength based Self-adaptive Algorithm Targeting Indoor Positioning

A Received Signal Strength based Self-adaptive Algorithm Targeting Indoor Positioning A Received Signal Strength based Self-adaptive Algorithm Targeting Indoor Positioning Xiaoyue Hou, Tughrul Arslan, Arief Juri University of Edinburgh Abstract This paper proposes a novel received signal

More information

Wifi bluetooth based combined positioning algorithm

Wifi bluetooth based combined positioning algorithm Wifi bluetooth based combined positioning algorithm Title Wifi bluetooth based combined positioning algorithm Publisher Elsevier Ltd Item Type Conferencia Downloaded 01/11/2018 17:43:07 Link to Item http://hdl.handle.net/11285/630414

More information

Pros and Cons for Each Type of Image Extensions

Pros and Cons for Each Type of Image Extensions motocms.com http://www.motocms.com/blog/en/pros-cons-types-image-extensions/ Pros and Cons for Each Type of Image Extensions A proper image may better transmit an idea or a feeling than a hundred words

More information

best practice guide Ruckus SPoT Best Practices SOLUTION OVERVIEW AND BEST PRACTICES FOR DEPLOYMENT

best practice guide Ruckus SPoT Best Practices SOLUTION OVERVIEW AND BEST PRACTICES FOR DEPLOYMENT best practice guide Ruckus SPoT Best Practices SOLUTION OVERVIEW AND BEST PRACTICES FOR DEPLOYMENT Overview Since the mobile device industry is alive and well, every corner of the ever-opportunistic tech

More information

INDOOR LOCATION SENSING AMBIENT MAGNETIC FIELD. Jaewoo Chung

INDOOR LOCATION SENSING AMBIENT MAGNETIC FIELD. Jaewoo Chung INDOOR LOCATION SENSING AMBIENT MAGNETIC FIELD Jaewoo Chung Positioning System INTRODUCTION Indoor positioning system using magnetic field as location reference Magnetic field inside building? Heading

More information

An Adaptive Indoor Positioning Algorithm for ZigBee WSN

An Adaptive Indoor Positioning Algorithm for ZigBee WSN An Adaptive Indoor Positioning Algorithm for ZigBee WSN Tareq Alhmiedat Department of Information Technology Tabuk University Tabuk, Saudi Arabia t.alhmiedat@ut.edu.sa ABSTRACT: The areas of positioning

More information

Nonuniform multi level crossing for signal reconstruction

Nonuniform multi level crossing for signal reconstruction 6 Nonuniform multi level crossing for signal reconstruction 6.1 Introduction In recent years, there has been considerable interest in level crossing algorithms for sampling continuous time signals. Driven

More information

4D-Particle filter localization for a simulated UAV

4D-Particle filter localization for a simulated UAV 4D-Particle filter localization for a simulated UAV Anna Chiara Bellini annachiara.bellini@gmail.com Abstract. Particle filters are a mathematical method that can be used to build a belief about the location

More information

Enhanced wireless indoor tracking system in multi-floor buildings with location prediction

Enhanced wireless indoor tracking system in multi-floor buildings with location prediction Enhanced wireless indoor tracking system in multi-floor buildings with location prediction Rui Zhou University of Freiburg, Germany June 29, 2006 Conference, Tartu, Estonia Content Location based services

More information

Knowledge discovery & data mining Classification & fraud detection

Knowledge discovery & data mining Classification & fraud detection Knowledge discovery & data mining Classification & fraud detection Knowledge discovery & data mining Classification & fraud detection 5/24/00 Click here to start Table of Contents Author: Dino Pedreschi

More information

Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition

Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition Shigueo Nomura and José Ricardo Gonçalves Manzan Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, MG,

More information

Analysis of Compass Sensor Accuracy on Several Mobile Devices in an Industrial Environment

Analysis of Compass Sensor Accuracy on Several Mobile Devices in an Industrial Environment Analysis of Compass Sensor Accuracy on Several Mobile Devices in an Industrial Environment Michael Hölzl, Roland Neumeier and Gerald Ostermayer University of Applied Sciences Hagenberg michael.hoelzl@fh-hagenberg.at,

More information

Computationally Tractable Location Estimation on WiFi Enabled Mobile Phones

Computationally Tractable Location Estimation on WiFi Enabled Mobile Phones ISSC 2009, UCD, June 10 11 th Computationally Tractable Location Estimation on WiFi Enabled Mobile Phones Damian Kelly, Ross Behan, Rudi Villing and Seán McLoone Department of Electronic Engineering National

More information

Capacity of collusion secure fingerprinting a tradeoff between rate and efficiency

Capacity of collusion secure fingerprinting a tradeoff between rate and efficiency Capacity of collusion secure fingerprinting a tradeoff between rate and efficiency Gábor Tardos School of Computing Science Simon Fraser University and Rényi Institute, Budapest tardos@cs.sfu.ca Abstract

More information

Extended Gradient Predictor and Filter for Smoothing RSSI

Extended Gradient Predictor and Filter for Smoothing RSSI Extended Gradient Predictor and Filter for Smoothing RSSI Fazli Subhan 1, Salman Ahmed 2 and Khalid Ashraf 3 1 Department of Information Technology and Engineering, National University of Modern Languages-NUML,

More information

An Investigation of Scalable Anomaly Detection Techniques for a Large Network of Wi-Fi Hotspots

An Investigation of Scalable Anomaly Detection Techniques for a Large Network of Wi-Fi Hotspots An Investigation of Scalable Anomaly Detection Techniques for a Large Network of Wi-Fi Hotspots Pheeha Machaka 1 and Antoine Bagula 2 1 Council for Scientific and Industrial Research, Modelling and Digital

More information

Collaborative Wi-Fi fingerprint training for indoor positioning

Collaborative Wi-Fi fingerprint training for indoor positioning Collaborative Wi-Fi fingerprint training for indoor positioning Hao Jing 1,2, James Pinchin 1, Chris Hill 1, Terry Moore 1 1 Nottingham Geospatial Institute, University of Nottingham, UK 2 lgxhj2@nottingham.ac.uk

More information

Multimodal Algorithm Based on Particle Filter for Indoor Localization with Smartphones

Multimodal Algorithm Based on Particle Filter for Indoor Localization with Smartphones International Conference on Computer, Communications and Information Technology (CCIT 2014) Multimodal Algorithm Based on Particle Filter for Indoor Localization with Smartphones Rui Tao1, Haiyong Luo2,

More information

Learning with Confidence: Theory and Practice of Information Geometric Learning from High-dim Sensory Data

Learning with Confidence: Theory and Practice of Information Geometric Learning from High-dim Sensory Data Learning with Confidence: Theory and Practice of Information Geometric Learning from High-dim Sensory Data Professor Lin Zhang Department of Electronic Engineering, Tsinghua University Co-director, Tsinghua-Berkeley

More information

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks.

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks. Networking Learn Wireless Basics Introduction This document covers the basics of how wireless technology works, and how it is used to create networks. Wireless technology is used in many types of communication.

More information

Context Information vs. Sensor Information: A Model for Categorizing Context in Context-Aware Mobile Computing

Context Information vs. Sensor Information: A Model for Categorizing Context in Context-Aware Mobile Computing Context Information vs. Sensor Information: A Model for Categorizing Context in Context-Aware Mobile Computing Louise Barkhuus Department of Design and Use of Information Technology The IT University of

More information

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS Nuno Sousa Eugénio Oliveira Faculdade de Egenharia da Universidade do Porto, Portugal Abstract: This paper describes a platform that enables

More information

On the Optimality of WLAN Location Determination Systems

On the Optimality of WLAN Location Determination Systems On the Optimality of WLAN Location Determination Systems Moustafa A. Youssef, Ashok Agrawala Department of Comupter Science and UMIACS University of Maryland College Park, Maryland 2742 {moustafa,agrawala}@cs.umd.edu

More information

A TWO-PART PREDICTIVE CODER FOR MULTITASK SIGNAL COMPRESSION. Scott Deeann Chen and Pierre Moulin

A TWO-PART PREDICTIVE CODER FOR MULTITASK SIGNAL COMPRESSION. Scott Deeann Chen and Pierre Moulin A TWO-PART PREDICTIVE CODER FOR MULTITASK SIGNAL COMPRESSION Scott Deeann Chen and Pierre Moulin University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering 5 North Mathews

More information

arxiv: v1 [eess.sp] 16 Jul 2018

arxiv: v1 [eess.sp] 16 Jul 2018 Smartphone-based user positioning in a multiple-user context with Wi-Fi and Bluetooth Viet-Cuong Ta 1, Trung-Kien Dao 2, Dominique Vaufreydaz 3, Eric Castelli 3 1 Human Machine Interaction, University

More information