Address for Correspondence

Size: px
Start display at page:

Download "Address for Correspondence"

Transcription

1 Research Paper A NOVEL CONTROL SCHEME FOR THE MANAGEMENT OF OUTPUT VOLTAGE REGULATION WITH IMPROVED POWER QUALITY OF A MODULAR MULTI LEVEL INVERTER WITH FUZZY LOGIC CONTROL SYSTEM 1 A. V. Antony Albert, 2 Dr. V. Rajasekaran Address for Correspondence 1 Associate Professor, Department of ECE, SBM College of Engineering and Technology, Dindigul Professor and Head, Department of EEE, PSNA College of Engineering and Technology, Dindigul ABSTRACT Modular Multi Level Converters (MMC) are used for high voltage high power DC to AC conversion. The MMCs with increased number of levels offer close to sine wave operation with reduced THD on the AC side. In this paper a novel voltage control scheme for the regulation of the output voltage of a nine level MMC using Fuzzy Logic Control is discussed. The performance of the FLC in the face of load side and source side disturbances are studied and compared against the recorded performance of a PI controller in a similar situation. The real power pumping into the grid is forced to be at unity power factor with increased power quality ensured by the FLC managed average current mode control scheme The FLC based voltage regulation with unity power factor on the source side with sinusoidal source current as applied to a Nine Level MMC was simulated using MATLAB / SIMULINK. Key Words: Modular Multi level Converter ( MMC), Fuzzy Logic Controller (FLC), Average Current mode control. INTRODUCTION Modular Multi Level Converters (MMC) are suitable for high voltage and high power applications especially useful in the large power transaction systems like HVDC. Modular Multi Level Converters are also useful in static power filters and compensator in power systems [1,2,3,4,10,11]. With single DC source if a multi level inverter is opted for then the use of the cascaded H bridge inverter scheme will be ruled out as it need isolated DC sources [7]. The other options for constructing multi level inverters with single DC source will be the diode clamped or the flying capacitor type of multi level inverters. The uneven or unequal distribution of energy sourcing by each level of the converter leads to the uneven charge discharge characteristics and this leads to power quality problems [6,9]. With the modular multi level inverter the problem of capacitor voltage balancing as that found in the diode clamped inverter is eliminated. Another added feature with the MMC is that any number of MMC units or levels can be easily augmented [8,12,16]. In pumping large power into the three phase AC grid, from a huge DC source like the DC bus of the HVDC system or from that of a large DC power pool derived from large Photo Voltaic farm, the three important factors to be considered are that the terminal voltage is maintained in accordance with the grid, the incoming source should be in compliance with the power quality requirements as applicable to the grid and finally for the maximum utility of the MMC the power fed into the grid from the MMC should happen with unity power factor. As and when the command for real power demand to be met by the MMC is received the controller should govern the MMC in association with the existing PWM techniques like typical Multi Carrier Sinusoidal PWM or the Space Vector PWM such that the aforesaid power transaction requirements are met with. Since the inception of the MMC in [5, 13,14, 15] there has been a number of developments happening around the MMC. One of the two important directions of research, in the pursuit of ideal power support with the MMC, lead towards improved methods of PWM techniques like the SPWM with many styles of multi carrier methods and the SVPWM. The other direction of research points towards the novel control techniques exploiting the advantages of the modern digital systems like Digital Signal processor, Digital Signal Controller the VLSI technologies. The availability of high band width digital control schemes lead to the design of modern control systems like average current mode control system Fuzzy Logic Control system etc. A new modular voltage source inverter topology has been proposed in [14]. In [15], the authors proposed a new single-phase ac/ac multilevel converter for traction vehicles operating on ac line voltage In [16], the authors have discussed a prototype of multiphase modular-multilevel-converter with 2 MW power rating and 17-level-output-voltage. A new ac/ac multilevel converter family has been presented in [17]. The trends and scenario of multilevel VSC technologies for power transmission has been explained in [18]. New transformer less, scalable modular multilevel converters for HVDCtransmission is proposed in [19]. In [20] the authors analyze the control and performance of a transformer less cascade PWM STATCOM with star configuration. A transformer less energy storage system based on a cascade multilevel PWM converter with star configuration has been proposed in [21, 22]. The Novelty of this circuit is that it combines the features of the average current mode control and the Fuzzy Logic controller. Use of Fuzzy Logic Control system simplifies the design procedure while the average current mode controller leads to more closer a sinusoidal current through the load. The paper is arranged as follows. Next to this introduction under CHAPTER I, the Structure of the MMC and its modeling are given in CHAPTER II. The average current mode control scheme and the fuzzy logic control scheme are discussed in CHAPTER III. The sub systems of the MATLAB / SIMULINK based simulation is discussed in CHAPTER IV. The results and the related discussions are presented in CHAPTER V followed by the conclusion. CHAPTER II Structure of the MMC Figure 1 shows the structure of a modular multi level converter for three phase applications. The Nine Level MMC is fed from a single DC source Vdc. There are three legs with three nodes from where the out to the AC load is drawn.

2 Figure 1: Structure of three phase modular multi level converter Figure 2: Chopper cell unit In both the upper and lower arms of each leg of the MMC we have four numbers of chopper cells. The chopper cell units are as shown in figure 2. In each chopper module or cell we have two IGBTs and these two IGBTs are operated in a complementary fashion with the help of a NOT gate. Within each module is a capacitor connected across the two series connected IGBTs. The number of voltage level decides the sub modules in MMC. Equation 1 shows the relation between sub-modules voltage level: N n 2 1 V (1) where, Nv is the number of voltage levels, n is thetotal number of sub-module in the system. For phase R, V rn is the output voltage of phase-r with respect to the neutral point V r Vr0 Vdc Vru Vrl Vdc (2) 2 2 Vru Vrl Vdc (3) where, V ru and V rl, equivalent voltage sources of upper arm and lower arm. V dc is the DC voltage. The three phases are in symmetry. Hence, the current relationship is shown in Equation 4& iru idc ir (4) irl idc ir (5) 3 2 where i ru is the current of upper arm and i rl is the lower, i dc is the input current at the dc-side, i r is the output current at the ac-side. Figure 1 shows the structure of the system under consideration where the source is DC and it is converted into AC through the MMC and feeds an RL load. Voltage and Current measurements are carried out on both source and load sides. In between the source and the load a passive filter unit. CHAPTER III Average Current Mode Control The average current mode control is a technique used to ensure that the source current is sinusoidal and that the power factor on the source side is unity. In the case of a DC to AC power conversion system typically of the voltage source inverter it is essential that the modulation process leads to a sinusoidal output voltage. With suitable modulation procedures like the Sinusoidal PWM or the Space Vector PWM operated at fairly high frequency switching and with the aid of passive filters the output voltage waveform of the VSIs can be made sinusoidal. The basic objective of producing a sinusoidal voltage output is actually to drive the fundamental sinusoidal current alone through the loads demanding sinusoidal currents. In addition to using PWM techniques such as the SPWM or the SVPWM the average current mode control is a direct control technique that ensures that the current sourced by the inverter is as close to a sine wave as possible. A double stage control scheme is actually implemented in which one controller checks the error between the magnitude of the actual terminal voltage and the reference voltage. In addition to this a current controller is also implemented based on the fact that if a preset power is to be delivered to the load at the prescribed voltage then the current should be of the sinusoidal form in phase with the source voltage with appropriate amplitude to ensure the required power delivery to the load. Going by an example, in a star connected system of load, if 1 MW real power P is to be supplied to the load at a terminal phase voltage of V rms, at unity power factor, then the current to be supplied to the load will be given by the basic power formula. P = 1.732*VL*IL*Cos ф (6) Where VL and IL are RMS values. IL = P/ (1.732*VL*Cos ф) = P/ (3*VPh*Cos ф) with Cos ф = 1 (7) IL = = P/ (3*VPh) (8) If P = 1MWand Vph = 480v then IL = (1e^6)/480 amps. If the phase and frequency of the sinusoidal voltage source ф = 0 and f= 50 Hz then the instantaneous current to be drawn by the load can be given as (1e^6)/480 Sin((2*pi*50*t) + 0). The objective of the controller is to compare in real time, the instantaneous actual current with the instantaneous values of the set current. A PI controller with sufficiently large band width can be used here to track the actual load current and force it to be as close as the expected sinusoidal current. It is possible that the source current with the average current mode current with voltage regulation is of

3 better quality as compared to the case with simple voltage regulation. Fuzzy Logic control Fuzzy Logic control scheme is a technique to deal with approximate data to arrive at agreeable results. If the system model cannot be derived precisely, as required for the design of a PI controller design then the FLC can be used with competitively good results. The design of an FLC demands the experience of the user or the operator. The experience gained by the operator will be used as a knowledge base actually used in the FLC as a set of rules called the rule base. Importantly the meant here is not necessarily the same of the operator with the system under consideration. The experience of the user, designer or operator with other similar systems also counts in this situation. A person capable of driving one car, may in case of necessity drive another car with a little consideration and gets adopted for the new car. The main advantage of the FLC is that it can be used even under situations where the parameters of a system under control are not precisely known but where the experience of the user put in the mathematical form can make use of the experience in adapting to the task at hand. FLC is an intelligent control scheme as it is designed based on the human experience. While the FLC is fairly robust and is easier to design because of less mathematical overheads, it is not guaranteed that it should give better results as compared to the classical control systems like the PI variants. FLC can give practically acceptable results under linear and non linear control requirements and its major advantage is that it does not require a precise mathematical model of the system to be controlled. Fuzzy logic is a technique that deals with data presented in the form of linguistic variables rather than arithmetic variables. The entire universe of discourse or range of a variable is first normalized in a scale typically from -100 to 100 percentages and then this scale is divided into a number of segments. Each segment is assigned a name typically like Negative Big, Negative Small, Zero, Positive Small and Positive Big. The value of a variable after normalization will be accommodated in any of the segments with a certain degree of membership in that segment. With the fuzzy logic control the decision making process for the calculation of the control data is carried out in two phases. In the first phase a rule matrix is used to relate the segments of error and error rate and the segment of the output is found out. In the second phase considering the degree of membership of error and error rate in their respective segments the actual value of the output in its segment is found. In this application the universe of discourse of the error, the error rate and the output have been segmentised into five segments. There are 25 rules related in a slide rule matrix as shown in the figure. 3 and 4. The MATLAB SIMULINK based screen shots related to the Fuzzy Logic Controller are shown in figures Figure 5 The error and error rate input and the output functions as in Fuzzy Tool box in MATLAB SIMULINK. Figure 6 Membership function for Error. Figure 3. Typical universe discourse segmentised into number of segments Error NB NS ZE PS PB Error rate NB NB NB NB NS ZE NS NB NB NS ZE PS ZE NB NS ZE PS PB PS NS ZE PS PB PB PB ZE PS PB PB PB Figure 4. The rule matrix as used in the proposed application Figure 7 The Rule Base. Figure 8 The error erate and output surface.

4 Figures 13 and 14 respectively. The fuzzy logic unit is also shown in the figure 15. Figure 9 The Rule Base editor. CHAPTER IV MATLAB SIMULINK Simulation A three phase MMC with nine levels was simulated in the MATLAB / SIMULINK environment. The main system and the sub systems are as shown in figures Figure 13: Triangular carrier based PWM Figure 14: Sinusoidal carrier based PWM Figure 10: Main MATLAB simulink system of MMC Figure 11: A single cell structure Figure 15: FLC controller sub system Experimental Verification In order to validate the proposed system hardware based experimental verification unit was also fabricated and tested. A three phase MMC was designed to deliver 120 watts in each phase to a three phase star connected RL load. The chopper cells of the MMC were constructed using MOSFETS IRF 840. The control system was implemented in PIC 16 F 877A micro controller. The four sinusoidal wave carrier signals were developed using analog circuits. The reference signal was a sine wave of 50 Hz and for each phase the reference sine wave was generated from a three phase sinusoidal wave generator with facility to amplitude frequency and phase controls. Operational amplifier comparators were used for the staged comparison of the level shifted four carriers. Transistorized inverters were used to invert the gating pulses for the second MOSFET in each modular unit. The PIC 16F877A micro controller was mainly used for generating a control data based on the error that is based on the actual output voltage and current with respect the reference voltages and currents. The photograph is shown in Figure 16. Figure 12: Three phase load system Sinusoidal PWM with multiple sinusoidal carrier as well as triangular carriers were used. It was found that, under open loop operation with various modulation indices, the output of the sinusoidal carrier based PWM technique outperformed the triangular carrier based PWM. Therefore with the closed loop controller the sinusoidal carrier based PWM was considered. The subsystems of the triangular carrier based PWM and sinusoidal based PWM units are shown in Figure 16: Experimental setup for proposed system CHAPTER V

5 Results and Discussions The results of MATLAB / SIMULINK simulation are analyzed from different angles. Firstly the performance in open loop with triangular carrier based PWM has been compared against the sinusoidal carrier based PWM. The second comparison is that the performance of a simple voltage control scheme has been compared with the performance of the case with additional average current mode control scheme. The various waveforms associated with the proposed system and the existing systems have all been compared in figures 17 and 18 and table1. Triangular waveform (a) Line voltage (b) Neutral voltages (a) Line voltage (c) phase current (b) Neutral voltage (d) Sinusoidal PWM carrier (c) Phase current (d)triangular PWM carrier (e) FFT Figure 17: MMC results based on Triangular carrier PWM (e) FFT Figure 18: MMC results based on Siusoidal carrier PWM Conclusion The design and performance study of the Modular Multi Level inverter with a fuzzy logic controller and an average current mode controller has been presented in this paper. It has been observed by both simulation and experimental verification that the use of sinusoidal multi carrier PWM technique with fuzzy logic control scheme incorporated with average current mode control scheme is promising in terms of reduction in terminal voltage harmonics and source current harmonics. References [1] S. Mori, K. Matsuno, T. Hasegawa, S. Ohnishi, M. Takeda, M. Seto, S. Murakami, and F. Ishiguro, Development of a large static var generator using selfcommutated inverters for improving power system

6 stability, IEEE Trans. Power Syst., vol. 8, no. 1, pp , Feb [2] K. Kunomura, K. Yoshida, K. Ito, N. Nagayama, M. Otsuki, T. Ishizuka, F. Aoyama, and T. Yoshino, Electronic frequency converter, in Proc. IEEJ IPEC, 2005, pp [3] T.Uzuka, S. Ikedo, andk.ueda, A static voltage fluctuation compensator for ac electric railway, in Conf. Rec. IEEE PESC, 2005, pp [4] T. Fujii, S. Funahashi, N. Morishima, M. Azuma, H. Teramoto, N. Iio, H.Yonezawa,D. Takayama, andy. Shinki, A±80MVAGCT STATCOM for the Kanzaki substation, in Proc. IEEJ IPEC, 2005, pp [5] M. Hagiwara, P. V. Pham, and H. Akagi, Calculation of dc magnetic flux deviation in the convertertransformer of a self-commutated BTB system during single-line-to-ground faults, IEEE Trans. Power Electron., vol. 23, no. 2, pp , Mar [6] F. Z. Peng, A generalized multilevel inverter topology with self voltage balancing, IEEE Trans. Ind. Appl., vol. 37, no. 2, pp , Mar./Apr [7] J. Rodriguez, J. S. Lai, and F. Z. Peng, Multilevel inverters: A survey of topologies, controls, and applications, IEEE Trans. Ind. Electron., vol. 49, no. 4, pp , Aug [8] T. A. Meynard and H. Foch, Multi-level choppers for high voltage applications, Proc. EPE, Mar. 1992, vol. 2, no. 1, pp [9] Nabae, I. Takahashi, and H. Akagi, A new neutralpoint-clamped PWM inverter, IEEE Trans. Ind. Appl., vol. IA-17, no. 5, pp , Sep./Oct [10] H. Akagi, Large static converters for industry and utility applications, Proc. IEEE, vol. 89, no. 6, pp , Jun [11] H. Akagi, H. Fujita, S. Yonetani, and Y. Kondo, A 6.6-kV transformerless STATCOM based on a fivelevel diode clamped PWM converter: System design and experimentation of a 200-V 10-kVA laboratory model, IEEE Trans. Ind. Appl., vol. 44, no. 2, pp , Mar./Apr [12] T. A. Meynard, H. Foch, P. Thomas, J. Courault, R. Jakob, and M. Nahrstaedt, Multicell converters: Basic concepts and industry applications, IEEE Trans. Ind. Electron., vol. 49, no. 5, pp , Oct [13] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, Multilevel voltage-source-converter topologies for industrial medium-voltage drives, IEEE Trans. Ind. Electron., vol. 54, no. 6, pp , Dec [14] R. Marquardt and A. Lesnicar, A new modular voltage source inverter topology, in Conf. Rec. EPE, 2003, CD-ROM. [15] M. Glinka and R. Marquardt, A new single-phase ac/ac-multilevel converter for traction vehicles operating on ac line voltage, in Proc. EPE, 2003, CD- ROM. [16] M. Glinka, Prototype of multiphase modularmultilevel-converter with 2 MWpower rating and 17- level-output-voltage, in Conf. Rec. IEEE PESC, 2004, pp [17] M. Glinka and R. Marquardt, A new ac/ac multilevel converter family, IEEE Trans. Ind. Electron., vol. 52, no. 3, pp , Jun [18] B. Gemmell, J. Dorn, D. Retzmann, and D. Soerangr, Prospects of multilevel VSC technologies for power transmission, in Conf. Rec. IEEETDCE, 2008, pp [19] S. Allebrod, R. Hamerski, and R. Marquardt, New transformerless, scalable modular multilevel converters for HVDC-transmission, in Conf. Rec. IEEE PESC, 2008, pp [20] H. Akagi, S. Inoue, and T. Yoshii, Control and performance of a transformerless cascade PWM STATCOM with star configuration, IEEE Trans. Ind. Appl., vol. 43, no. 4, pp , Jul./Aug [21] L. Maharjan, S. Inoue, and H. Akagi, A transformerless energy storage system based on a cascade multilevel PWM converter with star configuration, IEEE Trans. Ind. Appl., vol. 44, no. 5, pp , Sep./Oct [22] L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, A transformerless battery energy storage system based on a multilevel cascade PWMconverter, in Conf. Rec. IEEE PESC, 2008, pp

Modeling and Voltage Balance Control of MMLC Using PI Controller

Modeling and Voltage Balance Control of MMLC Using PI Controller Modeling and Voltage Balance Control of MMLC Using PI Controller V.M. Ramaa Priyaa Asst. Professor, Dept. of E&I, Bharath University,Chennai-600073, India ABSTRACT: A modular multilevel converter (MMC)

More information

SINGLE PHASE THIRTY ONE LEVEL INVERTER USING EIGHT SWITCHES TOWARDS THD REDUCTION

SINGLE PHASE THIRTY ONE LEVEL INVERTER USING EIGHT SWITCHES TOWARDS THD REDUCTION SINGLE PHASE THIRTY ONE LEVEL INVERTER USING EIGHT SWITCHES TOWARDS THD REDUCTION T.Ramachandran 1, P. Ebby Darney 2 and T. Sreedhar 3 1 Assistant Professor, Dept of EEE, U.P, Subharti Institute of Technology

More information

MMC based D-STATCOM for Different Loading Conditions

MMC based D-STATCOM for Different Loading Conditions International Journal of Engineering Research And Management (IJERM) ISSN : 2349-2058, Volume-02, Issue-12, December 2015 MMC based D-STATCOM for Different Loading Conditions D.Satish Kumar, Geetanjali

More information

PF and THD Measurement for Power Electronic Converter

PF and THD Measurement for Power Electronic Converter PF and THD Measurement for Power Electronic Converter Mr.V.M.Deshmukh, Ms.V.L.Jadhav Department name: E&TC, E&TC, And Position: Assistant Professor, Lecturer Email: deshvm123@yahoo.co.in, vandanajadhav19jan@gmail.com

More information

Three Phase Parallel Multilevel Inverter Fed Induction Motor Using POD Modulation Scheme

Three Phase Parallel Multilevel Inverter Fed Induction Motor Using POD Modulation Scheme International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 7 No. 3 Aug. 2014, pp. 1209-1214 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Three

More information

A Novel Cascaded Multilevel Inverter Using A Single DC Source

A Novel Cascaded Multilevel Inverter Using A Single DC Source A Novel Cascaded Multilevel Inverter Using A Single DC Source Nimmy Charles 1, Femy P.H 2 P.G. Student, Department of EEE, KMEA Engineering College, Cochin, Kerala, India 1 Associate Professor, Department

More information

Reduction in Total Harmonic Distortion Using Multilevel Inverters

Reduction in Total Harmonic Distortion Using Multilevel Inverters Reduction in Total Harmonic Distortion Using Multilevel Inverters Apurva Tomar 1, Dr. Shailja Shukla 2 1 ME (Control System), Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur,

More information

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr Darshni M. Shukla Electrical Engineering Department Government Engineering College Valsad, India darshnishukla@yahoo.com Abstract:

More information

Simulation and Experimental Results of 7-Level Inverter System

Simulation and Experimental Results of 7-Level Inverter System Research Journal of Applied Sciences, Engineering and Technology 3(): 88-95, 0 ISSN: 040-7467 Maxwell Scientific Organization, 0 Received: November 3, 00 Accepted: January 0, 0 Published: February 0, 0

More information

A New Multilevel Inverter Topology with Reduced Number of Power Switches

A New Multilevel Inverter Topology with Reduced Number of Power Switches A New Multilevel Inverter Topology with Reduced Number of Power Switches L. M. A.Beigi 1, N. A. Azli 2, F. Khosravi 3, E. Najafi 4, and A. Kaykhosravi 5 Faculty of Electrical Engineering, Universiti Teknologi

More information

A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications

A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications I J C T A, 9(15), 2016, pp. 6983-6992 International Science Press A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications M. Arun Noyal Doss*, K. Harsha**, K. Mohanraj*

More information

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.

More information

Improvement Voltage Sag And Swell Under Various Abnormal Condition Using Series Compensation

Improvement Voltage Sag And Swell Under Various Abnormal Condition Using Series Compensation Improvement Voltage Sag And Swell Under Various Abnormal Condition Using Series Compensation Sumit Borakhade #1, Sumit Dabhade *2, Pravin Nagrale #3 # Department of Electrical Engineering, DMIETR Wardha.

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online): 2321-0613 Total Harmonic Distortion Analysis of Diode Clamped Multilevel Inverter with Resistive

More information

AEIJST - July Vol 3 - Issue 7 ISSN A Review of Modular Multilevel Converter based STATCOM Topology

AEIJST - July Vol 3 - Issue 7 ISSN A Review of Modular Multilevel Converter based STATCOM Topology A Review of Modular Multilevel Converter based STATCOM Topology * Ms. Bhagyashree B. Thool ** Prof. R.G. Shriwastva *** Prof. K.N. Sawalakhe * Dept. of Electrical Engineering, S.D.C.O.E, Selukate, Wardha,

More information

Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge

Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge Dareddy Lakshma Reddy B.Tech, Sri Satya Narayana Engineering College, Ongole. D.Sivanaga Raju, M.Tech Sri

More information

Analysis And Comparison Of Flying Capacitor And Modular Multilevel Converters Using SPWM

Analysis And Comparison Of Flying Capacitor And Modular Multilevel Converters Using SPWM Analysis And Comparison Of Flying Capacitor And Modular Multilevel Converters Using SPWM Akhila A M.Tech Student, Dept. Electrical and Electronics Engineering, Mar Baselios College of Engineering and Technology,

More information

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization D.Nagaraju M.Tech-PE, Vidya Bharathi Institute of Technology, T.S, India. L.Ramesh Associate Professor, Vidya

More information

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 42 CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 3.1 INTRODUCTION The concept of multilevel inverter control has opened a new avenue that induction motors can be controlled to achieve dynamic performance

More information

Hybrid Five-Level Inverter using Switched Capacitor Unit

Hybrid Five-Level Inverter using Switched Capacitor Unit IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 04 September 2016 ISSN (online): 2349-6010 Hybrid Five-Level Inverter using Switched Capacitor Unit Minu M Sageer

More information

Power Quality Improvement Using Cascaded Multilevel Statcom with Dc Voltage Control

Power Quality Improvement Using Cascaded Multilevel Statcom with Dc Voltage Control RESEARCH ARTICLE OPEN ACCESS Power Quality Improvement Using Cascaded Multilevel Statcom with Dc Voltage Control * M.R.Sreelakshmi, ** V.Prasannalakshmi, *** B.Divya 1,2,3 Asst. Prof., *(Department of

More information

SIMULATION, DESIGN AND CONTROL OF A MODIFIED H-BRIDGE SINGLE PHASE SEVEN LEVEL INVERTER 1 Atulkumar Verma, 2 Prof. Mrs.

SIMULATION, DESIGN AND CONTROL OF A MODIFIED H-BRIDGE SINGLE PHASE SEVEN LEVEL INVERTER 1 Atulkumar Verma, 2 Prof. Mrs. SIMULATION, DESIGN AND CONTROL OF A MODIFIED H-BRIDGE SINGLE PHASE SEVEN LEVEL INVERTER Atulkumar Verma, Prof. Mrs. Preeti Khatri Assistant Professor pursuing M.E. Electrical Power Systems in PVG s College

More information

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 2, Jun 2013, 309-318 TJPRC Pvt. Ltd. PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID

More information

International Journal of Advance Engineering and Research Development THREE PHASE 19 LEVEL MODULAR MULTI LEVEL INVERTER FOR RENEWABLE ENERGY RESOURCE

International Journal of Advance Engineering and Research Development THREE PHASE 19 LEVEL MODULAR MULTI LEVEL INVERTER FOR RENEWABLE ENERGY RESOURCE Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 6, June -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 THREE PHASE

More information

Voltage Unbalance Elimination in Multilevel Inverter using Coupled Inductor and Feedback Control

Voltage Unbalance Elimination in Multilevel Inverter using Coupled Inductor and Feedback Control Voltage Unbalance Elimination in Multilevel Inverter using Coupled Inductor and Feedback Control Divya S 1, G.Umamaheswari 2 PG student [Power Electronics and Drives], Department of EEE, Paavai Engineering

More information

Comparative Analysis of Control Strategies for Modular Multilevel Converters

Comparative Analysis of Control Strategies for Modular Multilevel Converters IEEE PEDS 2011, Singapore, 5-8 December 2011 Comparative Analysis of Control Strategies for Modular Multilevel Converters A. Lachichi 1, Member, IEEE, L. Harnefors 2, Senior Member, IEEE 1 ABB Corporate

More information

DC-LINK CURRENT RIPPLE ELIMINATION & BALANCING OF CAPACITOR VOLTAGE BY USING PHASE SHIFTED CARRIER PWM FOR MODULAR MULTILEVEL CONVERTER

DC-LINK CURRENT RIPPLE ELIMINATION & BALANCING OF CAPACITOR VOLTAGE BY USING PHASE SHIFTED CARRIER PWM FOR MODULAR MULTILEVEL CONVERTER DC-LINK CURRENT RIPPLE ELIMINATION & BALANCING OF CAPACITOR VOLTAGE BY USING PHASE SHIFTED CARRIER PWM FOR MODULAR MULTILEVEL CONVERTER K Venkata Ravi Kumar PG scholar, Rajeev Gandhi Memorial College of

More information

Analysis and Simulation of Multilevel DC-link Inverter Topology using Series-Parallel Switches

Analysis and Simulation of Multilevel DC-link Inverter Topology using Series-Parallel Switches Analysis and Simulation of Multilevel DC-link Inverter Topology using Series-Parallel Switches Raj Kiran Pandey 1, Ashok Verma 2, S. S. Thakur 3 1 PG Student, Electrical Engineering Department, S.A.T.I.,

More information

Simulation and Comparision of Back To Back System using Bidirectional Isolated DC-DC Converter with Active Energy Storage

Simulation and Comparision of Back To Back System using Bidirectional Isolated DC-DC Converter with Active Energy Storage International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 3 (2012), pp. 231-238 International Research Publication House http://www.irphouse.com Simulation and Comparision of Back

More information

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Venkata Anil Babu Polisetty 1, B.R.Narendra 2 PG Student [PE], Dept. of EEE, DVR. & Dr.H.S.MIC College of Technology, AP, India 1 Associate

More information

Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad.

Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad. Performance Analysis of Three Phase Five-Level Inverters Using Multi-Carrier PWM Technique Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad.

More information

A Five Level Inverter for Grid Connected PV System Employing Fuzzy Controller

A Five Level Inverter for Grid Connected PV System Employing Fuzzy Controller Vol.2, Issue.5, Sep-Oct. 2012 pp-3730-3735 ISSN: 2249-6645 A Five Level Inverter for Grid Connected PV System Employing Fuzzy Controller M. Pavan Kumar 1, A. Sri Hari Babu 2 1, 2, (Department of Electrical

More information

P. Sivakumar* 1 and V. Rajasekaran 2

P. Sivakumar* 1 and V. Rajasekaran 2 IJESC: Vol. 4, No. 1, January-June 2012, pp. 1 5 P. Sivakumar* 1 and V. Rajasekaran 2 Abstract: This project describes the design a controller for PWM boost Rectifier. This regulates the output voltage

More information

International Journal of Advance Engineering and Research Development THREE PHASE 19 LEVEL MODULAR MULTI LEVEL INVERTER

International Journal of Advance Engineering and Research Development THREE PHASE 19 LEVEL MODULAR MULTI LEVEL INVERTER Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 11, November -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 THREE

More information

Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution

Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution K.Srilatha 1, Prof. V.Bugga Rao 2 M.Tech Student, Department

More information

Analysis of IM Fed by Multi-Carrier SPWM and Low Switching Frequency Mixed CMLI

Analysis of IM Fed by Multi-Carrier SPWM and Low Switching Frequency Mixed CMLI Analysis of IM Fed by Multi-Carrier SPWM and Low Switching Frequency Mixed CMLI Srinivas Reddy Chalamalla 1, S. Tara Kalyani 2 M.Tech, Department of EEE, JNTU, Hyderabad, Andhra Pradesh, India 1 Professor,

More information

CASCADED H-BRIDGE THREE-PHASE MULTILEVEL INVERTERS CONTROLLED BY MULTI-CARRIER SPWM DEDICATED TO PV

CASCADED H-BRIDGE THREE-PHASE MULTILEVEL INVERTERS CONTROLLED BY MULTI-CARRIER SPWM DEDICATED TO PV CASCADED H-BRIDGE THREE-PHASE MULTILEVEL INVERTERS CONTROLLED BY MULTI-CARRIER SPWM DEDICATED TO PV 1 ABDELAZIZ FRI, 2 RACHID EL BACHTIRI, 3 ABDELAZIZ EL GHZIZAL 123 LESSI Lab, FSDM Faculty, USMBA University.

More information

EVALUATION OF VARIOUS UNIPOLAR MULTICARRIER PWM STRATEGIES FOR FIVE LEVEL FLYING CAPACITOR INVERTER

EVALUATION OF VARIOUS UNIPOLAR MULTICARRIER PWM STRATEGIES FOR FIVE LEVEL FLYING CAPACITOR INVERTER Journal of Engineering Science and Technology Vol. 7, No. 3 (2012) 379-392 School of Engineering, Taylor s University EVALUATION OF VARIOUS UNIPOLAR MULTICARRIER PWM STRATEGIES FOR FIVE LEVEL FLYING CAPACITOR

More information

Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches

Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches P.Bhagya [1], M.Thangadurai [2], V.Mohamed Ibrahim [3] PG Scholar [1],, Assistant Professor [2],

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 Simulation and

More information

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques Ashwini Kadam 1,A.N.Shaikh 2 1 Student, Department of Electronics Engineering, BAMUniversity,akadam572@gmail.com,9960158714

More information

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES Swathy C S 1, Jincy Mariam James 2 and Sherin Rachel chacko 3 1 Assistant Professor, Dept. of EEE, Sree Buddha College of Engineering

More information

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Application of Fuzzy Logic Controller in Shunt Active Power Filter IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Application of Fuzzy Logic Controller in Shunt Active Power Filter Ketan

More information

DC Link Capacitor Voltage Balance and Neutral Point Stabilization in Diode Clamped Multi Level Inverter

DC Link Capacitor Voltage Balance and Neutral Point Stabilization in Diode Clamped Multi Level Inverter IJCTA, 9(9), 016, pp. 361-367 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 361 DC Link Capacitor Voltage Balance and Neutral Point Stabilization

More information

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 64 CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 4.1 INTRODUCTION Power electronic devices contribute an important part of harmonics in all kind of applications, such as power rectifiers, thyristor converters

More information

A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity

A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity Prakash Singh, Dept. of Electrical & Electronics Engineering Oriental Institute of Science & Technology Bhopal,

More information

Voltage Control of Variable Speed Induction Generator Using PWM Converter

Voltage Control of Variable Speed Induction Generator Using PWM Converter International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-2, Issue-5, June 2013 Voltage Control of Variable Speed Induction Generator Using PWM Converter Sivakami.P,

More information

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES 1 M. KAVITHA, 2 A. SREEKANTH REDDY & 3 D. MOHAN REDDY Department of Computational Engineering, RGUKT, RK Valley, Kadapa

More information

A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems

A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems V. Balakrishna Reddy Professor, Department of EEE, Vijay Rural Engg College, Nizamabad, Telangana State, India Abstract

More information

Series Parallel Switched Multilevel DC Link Inverter Fed Induction Motor

Series Parallel Switched Multilevel DC Link Inverter Fed Induction Motor Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 327-332 Research India Publications http://www.ripublication.com/aeee.htm Series Parallel Switched Multilevel

More information

Development of Multilevel Inverters for Control Applications

Development of Multilevel Inverters for Control Applications International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 1 Jan-216 www.irjet.net p-issn: 2395-72 Development of Multilevel Inverters for Control Applications

More information

ADVANCED PWM SCHEMES FOR 3-PHASE CASCADED H-BRIDGE 5- LEVEL INVERTERS

ADVANCED PWM SCHEMES FOR 3-PHASE CASCADED H-BRIDGE 5- LEVEL INVERTERS Volume 120 No. 6 2018, 7795-7807 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ ADVANCED PWM SCHEMES FOR 3-PHASE CASCADED H-BRIDGE 5- LEVEL INVERTERS Devineni

More information

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive Vol.2, Issue.3, May-June 2012 pp-1028-1033 ISSN: 2249-6645 A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive B. SUSHMITHA M. tech Scholar, Power Electronics & Electrical

More information

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Hybrid PWM switching scheme for a three level neutral point clamped inverter Hybrid PWM switching scheme for a three level neutral point clamped inverter Sarath A N, Pradeep C NSS College of Engineering, Akathethara, Palakkad. sarathisme@gmail.com, cherukadp@gmail.com Abstract-

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

Multilevel Inverter Based Statcom For Power System Load Balancing System

Multilevel Inverter Based Statcom For Power System Load Balancing System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 36-43 www.iosrjournals.org Multilevel Inverter Based Statcom For Power System Load Balancing

More information

A NEW TOPOLOGY OF CASCADED MULTILEVEL INVERTER WITH SINGLE DC SOURCE

A NEW TOPOLOGY OF CASCADED MULTILEVEL INVERTER WITH SINGLE DC SOURCE A NEW TOPOLOGY OF CASCADED MULTILEVEL INVERTER WITH SINGLE DC SOURCE G.Kumara Swamy 1, R.Pradeepa 2 1 Associate professor, Dept of EEE, Rajeev Gandhi Memorial College, Nandyal, A.P, India 2 PG Student

More information

Study of Unsymmetrical Cascade H-bridge Multilevel Inverter Design for Induction Motor

Study of Unsymmetrical Cascade H-bridge Multilevel Inverter Design for Induction Motor Study of Unsymmetrical Cascade H-bridge Multilevel Inverter Design for Induction Motor Pinky Arathe 1, Prof. Sunil Kumar Bhatt 2 1Research scholar, Central India Institute of Technology, Indore, (M. P.),

More information

A Review of Modulation Techniques for Chopper cell based Modular Multilevel Converters

A Review of Modulation Techniques for Chopper cell based Modular Multilevel Converters A Review of Modulation Techniques for Chopper cell based Modular Multilevel Converters Gayathri G 1, Rajitha A R 2 1 P G Student, Electrical and Electronics, ASIET Kalady, Kerala,India 2 Assistant professor,

More information

New model multilevel inverter using Nearest Level Control Technique

New model multilevel inverter using Nearest Level Control Technique New model multilevel inverter using Nearest Level Control Technique P. Thirumurugan 1, D. Vinothin 2 and S.Arockia Edwin Xavier 3 1,2 Department of Electronics and Instrumentation Engineering,J.J. College

More information

A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources

A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources P.Umapathi Reddy 1, S.Sivanaga Raju 2 Professor, Dept. of EEE, Sree Vidyanikethan Engineering College, Tirupati, A.P.

More information

A Modified Apod Pulse Width Modulation Technique of Multilevel Cascaded Inverter Design

A Modified Apod Pulse Width Modulation Technique of Multilevel Cascaded Inverter Design A Modified Apod Pulse Width Modulation Technique of Multilevel Cascaded Inverter Design K.Sangeetha M.E student, Master of Engineering, Power Electronics and Drives, Dept. of Electrical and Electronics

More information

Multilevel Inverter for Grid-Connected PV SystemEmploying MPPT and PI Controller

Multilevel Inverter for Grid-Connected PV SystemEmploying MPPT and PI Controller Multilevel Inverter for Grid-Connected PV SystemEmploying MPPT and PI Controller Seena M Varghese P. G. Student, Department of Electrical and Electronics Engineering, Saintgits College of Engineering,

More information

Comparative Study of Multicarrier PWM Techniques for a Modular Multilevel Inverter

Comparative Study of Multicarrier PWM Techniques for a Modular Multilevel Inverter Comparative Study of Multicarrier PWM Techniques for a Modular Multilevel Inverter M.S.Rajan #, R.Seyezhai *2 # Research Scholar-Department of EEE, SSN College of Engineering Rajiv Gandhi Salai (OMR),

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 14 Multi Level PWM Switched Voltage Source Inverter R.Kavin 1 and M.Ranjith kumar 2 1 Assistant Professor Dept of

More information

A SOLUTION TO BALANCE THE VOLTAGE OF DC-LINK CAPACITOR USING BOOST CONVERTER IN DIODE CLAMPED MULTILEVEL INVERTER

A SOLUTION TO BALANCE THE VOLTAGE OF DC-LINK CAPACITOR USING BOOST CONVERTER IN DIODE CLAMPED MULTILEVEL INVERTER ISSN No: 2454-9614 A SOLUTION TO BALANCE THE VOLTAGE OF DC-LINK CAPACITOR USING BOOST CONVERTER IN DIODE CLAMPED MULTILEVEL INVERTER M. Ranjitha,S. Ravivarman *Corresponding Author: M. Ranjitha K.S.Rangasamy

More information

29 Level H- Bridge VSC for HVDC Application

29 Level H- Bridge VSC for HVDC Application 29 Level H- Bridge VSC for HVDC Application Syamdev.C.S 1, Asha Anu Kurian 2 PG Scholar, SAINTGITS College of Engineering, Kottayam, Kerala, India 1 Assistant Professor, SAINTGITS College of Engineering,

More information

Harmonic mitigation in secondary distribution by using cascaded based nine-level inverters in solar generation stations

Harmonic mitigation in secondary distribution by using cascaded based nine-level inverters in solar generation stations Harmonic mitigation in secondary distribution by using cascaded based nine-level inverters in solar generation stations Sandeep Mamidoju M.Tech Student, Department of EEE, Bharat Institute of Engineering

More information

A Comparative Study of Different Topologies of Multilevel Inverters

A Comparative Study of Different Topologies of Multilevel Inverters A Comparative Study of Different Topologies of Multilevel Inverters Jainy Bhatnagar 1, Vikramaditya Dave 2 1 Department of Electrical Engineering, CTAE (India) 2 Department of Electrical Engineering, CTAE

More information

Operation of Multilevel Inverters under Unbalanced DC Sources Using Neutral Voltage Modulation

Operation of Multilevel Inverters under Unbalanced DC Sources Using Neutral Voltage Modulation Operation of Multilevel Inverters under Unbalanced DC Sources Using Neutral Voltage Modulation 1 Kandula Ramesh K. Nagalinga Chary 2 1 (M.tech studenteee department LBRCE mylavaram india) 2 (Assistant

More information

A Comparative Modelling Study of PWM Control Techniques for Multilevel Cascaded Inverter

A Comparative Modelling Study of PWM Control Techniques for Multilevel Cascaded Inverter A Comparative Modelling Study of PWM Control Techniques for Multilevel Cascaded Inverter Applied Power Electronics Laboratory, Department of Electrotechnics, University of Sciences and Technology of Oran,

More information

Crossover Switches Cell (CSC): A New Multilevel Inverter Topology with Maximum Voltage Levels and Minimum DC Sources

Crossover Switches Cell (CSC): A New Multilevel Inverter Topology with Maximum Voltage Levels and Minimum DC Sources Crossover Switches Cell (CSC): A New Multilevel Inverter Topology with Maximum Voltage Levels and Minimum DC Sources Hani Vahedi, Kamal Al-Haddad, Youssef Ounejjar, Khaled Addoweesh GREPCI, Ecole de Technologie

More information

Single Phase Multi- Level Inverter using Single DC Source and Reduced Switches

Single Phase Multi- Level Inverter using Single DC Source and Reduced Switches DOI: 10.7763/IPEDR. 2014. V75. 12 Single Phase Multi- Level Inverter using Single DC Source and Reduced Switches Varsha Singh 1 +, Santosh Kumar Sappati 2 1 Assistant Professor, Department of EE, NIT Raipur

More information

New Inverter Topology for Independent Control of Multiple Loads

New Inverter Topology for Independent Control of Multiple Loads International Journal of Applied Engineering Research ISSN 973-4562 Volume 2, Number 9 (27) pp. 893-892 New Inverter Topology for Independent Control of Multiple Loads aurav N oyal Assistant Professor

More information

B.Tech Academic Projects EEE (Simulation)

B.Tech Academic Projects EEE (Simulation) B.Tech Academic Projects EEE (Simulation) Head office: 2 nd floor, Solitaire plaza, beside Image Hospital, Ameerpet Ameerpet : 040-44433434, email id : info@kresttechnology.com Dilsukhnagar : 9000404181,

More information

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 3, JUNE Juan Dixon, Senior Member, IEEE, and Luis Morán, Senior Member, IEEE IEEE

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 3, JUNE Juan Dixon, Senior Member, IEEE, and Luis Morán, Senior Member, IEEE IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 3, JUNE 2005 1 A Clean Four-Quadrant Sinusoidal Power Rectifier Using Multistage Converters for Subway Applications Juan Dixon, Senior Member,, and

More information

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter Journal of Engineering Science and Technology Review 3 (1) (2010) 65-69 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Intelligence Controller for STATCOM Using Cascaded

More information

MATLAB Implementation of a Various Topologies of Multilevel Inverter with Improved THD

MATLAB Implementation of a Various Topologies of Multilevel Inverter with Improved THD 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology MATLAB Implementation of a Various Topologies of Multilevel Inverter with Improved

More information

IEEE Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 12, p

IEEE Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 12, p Title A new switched-capacitor boost-multilevel inverter using partial charging Author(s) Chan, MSW; Chau, KT Citation IEEE Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 12, p.

More information

PERFORMANCE ANALYSIS OF SEVEN LEVEL INVERTER WITH SOFT SWITCHING CONVERTER FOR PHOTOVOLTAIC SYSTEM

PERFORMANCE ANALYSIS OF SEVEN LEVEL INVERTER WITH SOFT SWITCHING CONVERTER FOR PHOTOVOLTAIC SYSTEM 50 PERFORMANCE ANALYSIS OF SEVEN LEVEL INVERTER WITH SOFT SWITCHING CONVERTER FOR PHOTOVOLTAIC SYSTEM M.Vidhya 1, Dr.P.Radika 2, Dr.J.Baskaran 3 1 PG Scholar, Dept.of EEE, Adhiparasakthi Engineering College,

More information

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

CHAPTER 3 H BRIDGE BASED DVR SYSTEM 23 CHAPTER 3 H BRIDGE BASED DVR SYSTEM 3.1 GENERAL The power inverter is an electronic circuit for converting DC power into AC power. It has been playing an important role in our daily life, as well as

More information

International Journal of Modern Engineering and Research Technology

International Journal of Modern Engineering and Research Technology Volume 5, Issue 3, July 2018 ISSN: 2348-8565 (Online) International Journal of Modern Engineering and Research Technology Website: http://www.ijmert.org Modulation of Five Level Inverter Topology for Open

More information

Power Quality Improvement Using Cascaded Multilevel Statcom with Dc Voltage Control

Power Quality Improvement Using Cascaded Multilevel Statcom with Dc Voltage Control Research Inventy: International Journal of Engineering And Science Vol.4, Issue 3 (March 2014), PP -88-93 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Power Quality Improvement Using

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 11 Nov p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 11 Nov p-issn: THD COMPARISON OF F1 AND F2 FAILURES OF MLI USING AMPLITUDE LIMITED MODULATION TECHNIQUE S.Santhalakshmy 1, V.Thebinaa 2, D.Muruganandhan 3 1Assisstant professor, Department of Electrical and Electronics

More information

Performance Evaluation of a Cascaded Multilevel Inverter with a Single DC Source using ISCPWM

Performance Evaluation of a Cascaded Multilevel Inverter with a Single DC Source using ISCPWM International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 1 (2012), pp. 49-60 International Research Publication House http://www.irphouse.com Performance Evaluation of a Cascaded

More information

Speed Control of Induction Motor using Multilevel Inverter

Speed Control of Induction Motor using Multilevel Inverter Speed Control of Induction Motor using Multilevel Inverter 1 Arya Shibu, 2 Haritha S, 3 Renu Rajan 1, 2, 3 Amrita School of Engineering, EEE Department, Amritapuri, Kollam, India Abstract: Multilevel converters

More information

SEVEN LEVEL HYBRID ACTIVE NEUTRAL POINT CLAMPED FLYING CAPACITOR INVERTER

SEVEN LEVEL HYBRID ACTIVE NEUTRAL POINT CLAMPED FLYING CAPACITOR INVERTER SEVEN LEVEL HYBRID ACTIVE NEUTRAL POINT CLAMPED FLYING CAPACITOR INVERTER 1 GOVINDARAJULU.D, 2 NAGULU.SK 1,2 Dept. of EEE, Eluru college of Engineering & Technology, Eluru, India Abstract Multilevel converters

More information

DESIGN OF A HYBRID ACTIVE FILTER FOR HARMONICS SUPPRESSION WITH VARIABLE CONDUCTANCE IN INDUSTRIAL POWER SYSTEMS USING FUZZY

DESIGN OF A HYBRID ACTIVE FILTER FOR HARMONICS SUPPRESSION WITH VARIABLE CONDUCTANCE IN INDUSTRIAL POWER SYSTEMS USING FUZZY DESIGN OF A HYBRID ACTIVE FILTER FOR HARMONICS SUPPRESSION WITH VARIABLE CONDUCTANCE IN INDUSTRIAL POWER SYSTEMS USING FUZZY K.REDDI THULASI 1 MR B. SREENIVAS REDDY 2 V.VEERA NAGI REDDY 3 M.Tech (EPS),

More information

Minimization Of Total Harmonic Distortion Using Pulse Width Modulation Technique

Minimization Of Total Harmonic Distortion Using Pulse Width Modulation Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 3 Ver. IV (May Jun. 2015), PP 01-12 www.iosrjournals.org Minimization Of Total Harmonic

More information

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor Divya Subramanian 1, Rebiya Rasheed 2 M.Tech Student, Federal Institute of Science And Technology, Ernakulam, Kerala, India

More information

Multilevel Inverter with Coupled Inductors with Sine PWM Techniques

Multilevel Inverter with Coupled Inductors with Sine PWM Techniques Multilevel Inverter with Coupled Inductors with Sine PWM Techniques S.Subalakshmi 1, A.Mangaiyarkarasi 2, T.Jothi 3, S.Rajeshwari 4 Assistant Professor-I, Dept. of EEE, Prathyusha Institute of Technology

More information

COMPARATIVE STUDY OF PWM TECHNIQUES FOR DIODE- CLAMPED MULTILEVEL-INVERTER

COMPARATIVE STUDY OF PWM TECHNIQUES FOR DIODE- CLAMPED MULTILEVEL-INVERTER COMPARATIVE STUDY OF PWM TECHNIQUES FOR DIODE- CLAMPED MULTILEVEL-INVERTER 1 ANIL D. MATKAR, 2 PRASAD M. JOSHI 1 P. G. Scholar, Department of Electrical Engineering, Government College of Engineering,

More information

Multilevel Inverter Based on Resonant Switched Capacitor Converter

Multilevel Inverter Based on Resonant Switched Capacitor Converter Multilevel Inverter Based on Resonant Switched Capacitor Converter K. Sheshu Kumar, V. Bharath *, Shankar.B Department of Electronics & Communication, Vignan Institute of Technology and Science, Deshmukhi,

More information

MULTILEVEL pulsewidth modulation (PWM) inverters

MULTILEVEL pulsewidth modulation (PWM) inverters 1098 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 1999 Novel Multilevel Inverter Carrier-Based PWM Method Leon M. Tolbert, Senior Member, IEEE, and Thomas G. Habetler,

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

Five-level active NPC converter topology: SHE- PWM control and operation principles

Five-level active NPC converter topology: SHE- PWM control and operation principles University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2007 Five-level active NPC converter topology:

More information

Voltage Balancing in SVM Controlled Diode Clamped Multilevel Inverter for Adjustable drives

Voltage Balancing in SVM Controlled Diode Clamped Multilevel Inverter for Adjustable drives International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-1, March 2012 Voltage Balancing in SVM Controlled Diode Clamped Multilevel Inverter for Adjustable drives

More information

Multilevel Inverter for Single Phase System with Reduced Number of Switches

Multilevel Inverter for Single Phase System with Reduced Number of Switches IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676 Volume 4, Issue 3 (Jan. - Feb. 2013), PP 49-57 Multilevel Inverter for Single Phase System with Reduced Number of Switches

More information

Hybrid Modulation Switching Strategy for Grid Connected Photovoltaic Systems

Hybrid Modulation Switching Strategy for Grid Connected Photovoltaic Systems ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Speed control of Induction Motor drive using five level Multilevel inverter

Speed control of Induction Motor drive using five level Multilevel inverter Speed control of Induction Motor drive using five level Multilevel inverter Siddayya hiremath 1, Dr. Basavaraj Amarapur 2 [1,2] Dept of Electrical & Electronics Engg,Poojya Doddappa Appa college of Engg,

More information