CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

Size: px
Start display at page:

Download "CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM"

Transcription

1 64 CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 4.1 INTRODUCTION Power electronic devices contribute an important part of harmonics in all kind of applications, such as power rectifiers, thyristor converters and SVC. The updated PWM techniques used to control modern static converters such as machine derives, power factor compensators, or active power filters do not produce perfect waveforms, which strongly depend on the semiconductors switching frequency. Voltage or current converters as they generate discrete output waveforms, force the use of machines with special isolation, and in some applications large inductances connected in series with the respective load. In other words, neither the voltage nor the current waveforms are as expected. Also, it is well known that distorted voltages and current waveforms produce harmonic contamination, additional power losses, and high frequency noise that can affect not only the power load but also the associated controllers. In this section, the enhancement of three phase voltage and reactive power is carried out with DVR when a non-linear and unbalanced load conditions are connected in the simulink block-set. A nine-level inverter is used to trigger the operation of DVR for the different load disturbance assessment by PWM technique. A practical implementation of the DVR is demonstrated with hardware at the last subsection of this chapter.

2 MULTI-LEVEL INVERTER CHARACTERISTICS Multi-level inverters have drawn tremendous interest in the power industry and are now becoming an established topology in higher power and higher voltage applications, such as HVDC Transmission, FACTS and high power variable speed drives. Compared with the traditional twolevel inverters, multi-level inverters offer better harmonic contents in the output voltage in a given switching frequency. The voltage stress across each switching device is reduced as the voltage levels increase. This leads to a possibility of raising the power rating of the inverter. Multi-level inverters can be mainly categorized into three topologies. They are diode-clamped multilevel inverters, flying-capacitors, multi-level inverters and cascaded multilevel inverters. Their circuit structures and basic operating principles are reviewed and presented next. The principal function of the inverters is to generate an AC voltage from a DC source voltage. If the DC voltage sources connected in series, it becomes possible to generate an output voltage with several steps. Multi-level inverters include an arrangement of semiconductors and DC voltage sources required to generate a staircase output voltage waveform. Figure 4.1 shows the schematic diagram of voltage source-inverters with a different number of levels. It is well known that a two-level inverter, such as the one shown in Figure 4.1.a, generates an output voltage with two different values (levels) V c and zero, with respect to the negative terminal of the DC source ( 0 ), while a three-level module, Figure 4.1(b) generates three different voltages at the output (2Vc, V c and zero). The different positions of the ideal switches are implemented with a number of semiconductors that are in direct relation with the output voltage number of levels.

3 66 Figure 4.1 Basic Multi-level inverters (a) two-levels, (b) three-levels and (c) m-levels Figure 4.2 Voltage waveform from an 11-level inverter

4 67 Multi-level inverters are implemented with small DC sources to form a staircase AC waveform, which follows a given reference template. For example, having ten DC sources with magnitudes equal to 20 V each a composed 11-level waveform can be obtained (five positives, five negatives and zero with respect to the middle point between the ten sources), generating a sinusoidal waveform with 100 V amplitude as shown in Figure 4.2, and with very low THD. It can be observed that the larger the number of the inverter DC supplies, the greater the number of steps that can be generated, obtaining smaller harmonic distortion. However the number of DC sources is directly related to the number of levels through the equation: n = m 1 (4.1) where, n is the number of DC supplies connected in series and m is the number of the output voltage levels. In order to get a 51-level inverter output voltage, 50 Voltage supplies would be required, which is too much for a simple topology. Besides the problem of having to use too many power supplies to get a multi-level inverter, there is a second problem which is also important, the number of power semiconductors required to implement the commutator, as shown in Figure Diode-clamped Inverter This inverter consists of a number of semiconductors connected in series, and another identical number of voltage sources, also connected in series. These two chains are connected with diodes at the upper and lower semiconductors as shown in Figure 4.3. For an m-level converter, the requires number of transistors T is given by T = 2 (m 1) (4.2)

5 68 then, for example of a 51-level converter, 100 power transistors would be required (which is an enormous amount of switches to be controlled). One of the most utilized configurations with this topology is that of the three-level inverter, which is shown in Figure 4.4. The capacitors act like two DC sources connected in series. Thus, in the diagram, each capacitor accumulates ½ V DC, giving voltages at the output of ½ V DC, 0, or - ½ V DC with respect to the middle point between the capacitors. Figure 4.3 m-level diode clamped inverter

6 69 Figure 4.4 Three-level diode clamped inverter Figure 4.5 m-level capacitor clamped inverter

7 Capacitor-clamped Inverter This inverter has a similar structure to that of the diode-clamped, however it can generate the voltage steps with capacitors connected as shown in Figure 4.5. The problem with this converter is that it requires a large number of capacitors, which translates is that it requires a large number of capacitors, which translates to a bulky and expensive converter as compared with the diode-clamped inverter. Besides, the number of transistors used is the same with the diode-clamped inverter, and therefore, for a 51-level inverter, 100 power transistors are required. In order to overcome all these problems, a third topology, which will be called the transistor-clamped inverter will be presented and analyzed Transistor-Clamped Inverter The transistor-clamped inverter has the advantage of requiring the same number of power transistors as the levels generated, and therefore, the semiconductors are reduced by half with respect to the previous topologies. A 51-level converter requires 51 transistors (instead of 100 transistors). For an m-level transistor clamped inverter, this satisfies, T = m (4.3) In this topology, the control of the gates is very simple because only one power transistor is switched-on at a time. Then, there is a direct relation between the output voltage, V out and the transistor that has to be turned-on. However, and despite the excellent characteristics of this topology, the number of transistors is still too large to allow the implementation of a practical converter with more than 50 levels.

8 71 Figure 4.6 m-level H-bridge inverter One solution for increasing the number of steps could be the use of H converters, like the one shown in Figure 4.6, which consists of connecting two of the previously discussed topologies in series (two legs). If transistor-clamped inverters are used to build an H converter, the number of transistors required for an m-level inverter is m+1, which means only one more transistor than what is required for a simple leg configuration. However, the number of DC source is reduced to 50%, which is the most important advantage of H converters. Another characteristic is that the H topology has many redundant combinations of switch positions to produce the same voltage levels. As an example, the level zero can be generated with switches in position S(1) and S(2), or S(3) and S(4), or S(5) and S(6), and so on. Another characteristic of

9 72 H converters is that they only produce an odd number of levels, which ensures the existence of the 0-V level at the load. Table 4.1 Component comparisons of the threem-level inverters Description Diode-clamped Flying-capacitor Cascaded Switching Devices 2 (m 1) 2 (m 1) 2 (m 1) Anti-parallel diodes 2 (m 1) 2 (m 1) 2 (m 1) Clamping Diodes (m 1) (m 2) Flying Capacitors ca (m 1) (m 2) / 2 DC Bus Capacitors (m 1) (m 1) (m 1)/2 Dc Supplies 1 1 (m 1) / 2 Table 4.1 shows the comparison of the component requirements among the above three multi-level inverters. All devices are assumed to have the same voltage rating. As shown in the table, the number of device increases when the required voltage level increases. Although the performance of the inverter would be better by increasing the number of levels, the cost and the circuit complexity would also increase. This makes the system unreasonable to implement when more levels are required. Tap changing transformers can give only magnitude variation. It cannot give voltage with variable phase angle. Multi-level inverter can give variable voltage and variable phase angle. From the above table it can be found that the cascaded multi-level inverters required less number of diodes, flying capacitors and DC bus capacitors. Since, this thesis proposes capacitors as DC supply, using (m-1)/2 capacitors will not affect the economy of the overall DVR system.

10 SIMULATION RESULTS AND DISCUSSION The THD present in the output of H-bridge based DVR is high. In order to reduce the THD value further inverter configuration is improved by using a nine-level inverter. Hence this chapter discusses the usage of ninelevel inverter for the applications of the DVR. To design the pulse duration for nine level inverter system, one cycle, i.e., (20 ms) is divided in to 18 modes, therefore each mode is having 1.11 ms. The pulses are designed such that the duration of each mode is 1.11ms. The cascaded nine-level inverter has been simulated using MATLAB software. The simulation circuit is illustrated in Figure 4.7. The voltage of the cascaded nine-level inverter can be synthesized from the following switching combinations. The Table 4.2 shows the switching sequence of nine-level inverter. Driving pulse sequence is selected such that nine-level output is obtained. Equal pulse width modulation technique is used. The driving pulses for switches S1 and S2 are shown in following Figure 4.8. The driving pulses for switches S5 and S6 are shown in Figure 4.9. The Figure 4.10 shows the output voltage across inverter-1. The Figure 4.11 shows the output voltage across inverter-2. Nine-level inverter output is shown in Figure The frequency spectrum for the output of the inverter is shown in Figure The value of THD is 19.6%. In a three-phase inverter, THD is further reduced due to elimination of third harmonic voltage.

11 Figure 4.7 Simulation circuit of cascaded nine-level inverter 74

12 75 Table 4.2 Switching sequence of nine-level inverter Output Voltage (V) SWITCHING SEQUENCE S1 S2 S3 S4 S5 S6 S7 S V V V V V V V V V V V V V V

13 Figure 4.8 Driving pulses for S1 and S 2 76

14 Figure 4.9 Driving pulses for S 5 and S 6 77

15 Figure 4.10 Output voltage across inverter-1 78

16 Figure 4.11 Output voltage across inverter-2 79

17 80 Figure 4.12 Output of nine-level inverter Figure 4.13 Frequency spectrum for output voltage

18 Figure 4.14 DVR using nine-level inverter with RL load 81

19 82 Figure 4.15 Nine-level inverter Figure 4.14 shows nine-level inverter based DVR system with RL load. Here single pulse PWM method is used. Figure 4.15 shows the ninelevel inverter circuit and Figure 4.16 shows the output voltage of nine-level inverter. Figure 4.17 shows the output voltage across load-1 and load-2. Upto 0.2 sec, load-1 is connected.at t=0.2 sec additional load (load-2) is connected. As a result voltage sag occurs. At t=0.4 sec the DVR is connected and as a result voltage gets compensated. Figure 4.18 shows the FFT analysis of line voltage. It has THD of 4.41%. This THD is very less compared to H-bridge based DVR.

20 83 Figure 4.16 Nine-level inverter output Figure 4.17 Voltage across load-1 and load-2

21 84 Figure 4.18 FFT analysis for output voltage Figure 4.19 shows the nine-level inverter based DVR with non-linear load. Figure 4.20 shows the output voltage across load-1 and load-2. Here single pulse PWM method is used.upto 0.2 sec, load-1 is connected and at t=0.2 sec, load-2 is connected. As a result voltage sag occurs. At t=0.4 sec, the DVR is connected and as a result voltage gets compensated. Figure 4.21 shows the FFT analysis of line voltage. It has THD of 16.97%. This is lesser compared to H-bridge inverter based DVR.

22 Figure 4.19 DVR with non-linear load 85

23 86 Figure 4.20 Voltage across load-1 and load-2 Figure 4.21 FFT analysis for output voltage

24 87 The above simulation results show that, the nine-level inverter compensates the voltage sag satisfactorily in short period, i.e., with in the permissible limit and at very low THD, compare to that of H-bridge inverter. Hence, in this section, simulation is further extended to a three phase system without and with nine-level inverter based DVR device. The performance analysis of the DVR is discussed through the following case studies: i) unbalanced load condition ii) increase in load and non linear load conditions Case Study I: Unbalanced Load Condition Figure 4.22 shows the schematic diagram of a three phase system developed using simulink block-set. In this diagram, a three phase source is connected to a three phase load through a transmission line. The system is connected with unbalanced linear load as shown in the schematic diagram. The system is executed in the MATLAB environment, to determine the Voltage and current levels in the power components. The scopes in the diagram illustrate the three phase voltage and current waveforms during the unbalanced condition as given in figures 4.23 & 4.24 respectively. To demonstrate the unbalanced condition in the three phase system and to improve the voltage and reduce THD, a DVR is connected as shown in Figure Pulse width modulation technique is used to adjust the firing angle and the DVR through nine level inverter and the obtained balanced three phase voltage and current were form are given in Figures 4.26 & Table 4.3 summarizes the enhancement of three-phase voltage with and without connecting the DVR in the system. Hence it is inferred that the unbalanced voltage is rectified by adding the DVR in the three-phase system.

25 88 Figure phase system without DVR at unbalanced condition Figure 4.23 Three phase unbalanced voltage

26 89 Figure 4.24 Three-phase unbalanced current.

27 Figure 4.25 Three phase system with DVR 90

28 91 Figure 4.26 Three-phase unbalanced voltage Figure 4.27 Three phase unbalanced current

29 92 Table 4.3 Phase voltage variations without and with DVR PHASE VOLTAGE WITHOUT DVR (Volts) WITH DVR (Volts) V a V b V c Case Study II: Increased in Load and Non-linear Load Conditions In this subsection, the influence of DVR is analysed when the system is connected to increase in load and non-linear (rectifier) load condition. Figure 4.28 shows the Simulink diagram of the three-phase system when connected with a non-linear load condition. A rectifier is connected in parallel with a capacitor and this combination is connected in parallel with a resistive load. The effect of the rectifier charges/discharge through the capacitor and the output is taken in the resistor terminals. The impact of nonlinear load is studied with DVR connection. The switch connected below to the rectifier load is closed to connect the additional load in the system. In this case study, the additional load is connected after the time t = 0.75 seconds with the already connected non-linear load in the system. Figures 4.29 to 4.31 show the voltage, current and power tracings of the system, when the above loads are connected in the system. From Figures 4.29 & 4.30, it is inferred that the voltage and currents are distorted due to the non-linear and increase in load conditions. The spectrum analysis is also given in Figure It is inferred that the predominant harmonic components are within permissible limits. Hence the impact of DVR on non-linear load study is illustrated.

30 Figure 4.28 Three phase system without DVR with non-linear load 93

31 94 Figure 4.29 Three phase line voltage with non linear load Figure 4.30 Three phase current with non linear load

32 95 Figure 4.31 FFT analysis for voltage The DVR connected in the three phase system and the connections of the nine-level inverter are given in the Simulink blocks in Figures 4.32 & To study the voltage sag & THD performance of DVR, a 3 phase system is connected to the non-linear load. After the time interval of t = 0.75s, an additional load is connected with the non-linear load. DVR is connected in the system at t = 0.85s to improve the voltage profile and damp at the system parameters oscillation. When there is a change in load condition, the corresponding changes in the inverter voltage happened as illustrated in Figure The three phase voltage and current profiles are settled down with non-linear and increased in load conditions after connecting the DVR as illustrated in the Figures 4.35 & To illustrate the power quality of the system with non-linear load, the voltage harmonic analysis at this load condition is given in Figure From this Figure, it is observed that the predominant harmonics is considerably reduced after connecting to DVR in the three phase system with non-linear and increased in load conditions.

33 Figure 4.32 Three phase system with DVR for non-linear load 96

34 97 Figure 4.33 Nine-level inverter Figure 4.34 Inverter output voltage

35 98 Figure 4.35 Three phase balanced voltage waveform Figure 4.36 Three phase current waveform

36 99 Figure 4.37 FFT analysis for voltage SIMULATION OF 8-BUS SYSTEM WITHOUT DVR Figure 4.38 shows the 8 bus system without DVR. The system consists of three generator buses and five load buses. Additional load is connected at t = 0.2 seconds. As a result the load voltage is changed across the load in each bus. Voltage at bus 4 is shown in Figure RMS value of voltage at bus 4 is shown in Figure RMS value decreases when the additional load is applied. Voltage at bus 7 is shown in Figure RMS value of voltage at bus 7 is shown in Figure The above mentioned figures show that additional loads affect the voltage in other busses also. To tackle the voltage sag DVR is introduced to the system in the next simulation.

37 100 Figure 4.38 Eight bus system without DVR. Figure 4.39 Voltage at bus-4

38 101 Figure 4.40 RMS value of voltage at bus-4 Figure 4.41 Voltage at bus-7

39 102 Figure 4.42 RMS value of voltage at bus-7 SIMULATION OF 8-BUS SYSTEM WITH DVR Figure 4.43 shows the 8 bus system with DVR. Figure 4.44 shows nine-level inverter based DVR circuit. The system consists of three generator buses and five load buses and two nine level inverter based DVR The load is increased at t = 0.2 seconds. As a result the load voltage and power are changed across the load in each bus. The DVRs are connected between bus 1 & 7 and bus 3 & 4. After compensation the voltage is maintained at original level. Figures 4.45 and 4.46 show the instantaneous and RMS voltage in bus 4. Figures 4.47, 4.48 show the instantaneous and RMS voltage in bus 7. Figures 4.47, 4.48 show the instantaneous and RMS voltage in bus 8. Table 4.4 shows the variation in voltage with and without DVR system at different busses.

40 103 Figure 4.43 Eight bus system with DVR Figure 4.44 Nine-level inverter based DVR circuit

41 104 Figure 4.45 Voltage at bus-4 Figure 4.46 RMS value of voltage at bus-4

42 105 Figure 4.47 Voltage at bus-7 Figure 4.48 RMS value of voltage at bus-7

43 106 Figure 4.49 Voltage at bus-8 Figure 4.50 RMS value of voltage at bus-8

44 107 Table 4.4 Variation in voltages at different busses with and without DVR Bus No. without DVR Bus voltage (KV) with DVR The nine-level inverter based DVR for 8 bus system has improved the voltage sag produced by external disturbances introduced to the system. Hence it is proved that nine-level inverter based DVR system can tackle the voltage sag issue at various busses in a multi-bus system. This helps the electrical utility to supply power to the customers with better quality. 4.4 EXPERIMENTAL RESULTS A laboratory model for nine-level inverter is fabricated and tested. The hardware consists of power supply board, MOSFET board and Driver IC board. The pulses required by the MOSFETs are generated by using microcontroller PIC16F84, features and description of the same is given in appendix 3. The control circuit is shown in Figure The regulators 7812 and 7805 supply the voltage required by the IC 2110 and IC 16F84. Crystal and capacitors are connected to generate the clock. Pulses from the port A are amplified. The flow chart of the microcontroller is shown in Figure Delay subroutine is given in Figure Assembly language program is given in Appendix 7. Experimental set up is shown in Figure The pulses are amplified using the driver IC IR2110. Driving pulses for S 1 and S 5 are shown in Figures 4.55 and 4.56 respectively. Output voltage of inverter 1 is

45 108 shown in Figure Output voltage of inverter-2 is shown in Figure Nine-level output is shown in Figure D1 D V AC Supply 230V/15V C V 560 LED D4 D RA2 RA Driver IC IR k C2 S1 C5 10uF uF 33pF C8 0 C9 33pF PIC MICROCONTROLLER PIC16F84A RA1 RA C6 47uF C7 47uF Driver IC IR k 1k C3 47uF 1k S2 S3 C4 10uF S4 Figure 4.51 Control circuit

46 109 FLOW CHART START PORT INITIALIZATION CALCULATE DELAY1, DELAY 2, DELAY3, DELAY4 AND DELAY5 OUT DATA 00H D CALL DELAY 1 OUT DATA 44H CALL DELAY 2 OUT DATA 99H CALL DELAY 3 A

47 110 Figure 4.52 Flow chart of main routine A OUT DATA 11H CALL DELAY 4 OUT DATA 55H CALL DELAY 5 OUT DATA 11H CALL DELAY 4 OUT DATA 99H CALL DELAY 3 OUT DATA 44H CALL DELAY 2 B

48 111 Figure 4.52 (Continued) B OUT DATA 00H CALL DELAY 1 OUT DATA 00H CALL DELAY 1 OUT DATA 88H CALL DELAY 2 OUT DATA 66H CALL DELAY 3 OUT DATA 22H CALL DELAY 4 C

49 112 Figure 4.52 (Continued) C OUT DATA AAH CALL DELAY 5 OUT DATA 22H CALL DELAY 4 OUT DATA 66H CALL DELAY 3 OUT DATA 88H CALL DELAY 2 OUT DATA 00H CALL DELAY 1 S JUMP D

50 113 Figure 4.52 (Continued) DELAY SUBROUTINE COUNT DEC COUNT NO IS COUNT =0? YES RETURN Figure 4.53 Delay Subroutine

51 114 Figure 4.54 Experimental set-up Amplitude 1 unit=5 V Time 1 unit = 5 ms Figure 4.55 Driving pulse for S1

52 Amplitude 1 unit=10 V 115 Time 1 unit = 5 ms Amplitude 1 unit= 10V Figure 4.56 Driving pulse for S5 Time 1 unit = 5 ms Figure 4.57 Output voltage of inverter-1

53 Amplitude 1 unit= 10V 116 Time 1 unit = 5 ms Amplitude 1 unit= 10V Figure 4.58 Output voltage of inverter-2 Time 1 unit = 5 ms Figure 4.59 Nine-level output

54 CONCLUSION In this Chapter, nine-level inverter is proposed for the DVR system. Multi-level inverters with large number of steps have been used in the DVR system. Multi-level inverter which requires minimum power supplies have been used in DVR system. MATLAB Simulink model for nine-level inverter system is developed. Pulse width in the hardware is designed based on the values obtained from simulation. This chapter gives simulation results of nine-level inverter based DVR. THD is found to be lesser than that of single pulse PWM inverter. The THD in the output of nine-level inverter is 8.9%. Therefore nine-level inverter gives the better solution to the voltage sag and harmonic issues. A hardware laboratory model for nine-level inverter is fabricated and the results are also presented. The results obtained from the simulation of nine-level inverter based DVR for 3 phase non-linear load, unbalanced load and increased in load conditions show that the voltage sag is mitigated and THD is maintained within the limit. Hence the nine-level inverter based DVR presents a viable solution to different disturbance conditions.

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

CHAPTER 3 H BRIDGE BASED DVR SYSTEM 23 CHAPTER 3 H BRIDGE BASED DVR SYSTEM 3.1 GENERAL The power inverter is an electronic circuit for converting DC power into AC power. It has been playing an important role in our daily life, as well as

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

HIGH-LEVEL MULTI-STEP INVERTER OPTIMIZATION, USING A MINIMUM NUMBER OF POWER TRANSISTORS.

HIGH-LEVEL MULTI-STEP INVERTER OPTIMIZATION, USING A MINIMUM NUMBER OF POWER TRANSISTORS. HIGH-LEVEL MULTI-STEP INVERTER OPTIMIZATION, USING A MINIMUM NUMBER OF POWER TRANSISTORS. Juan Dixon (SM) Department of Electrical Engineering Pontificia Universidad Católica de Chile Casilla 306, Correo

More information

Multilevel Inverter for Single Phase System with Reduced Number of Switches

Multilevel Inverter for Single Phase System with Reduced Number of Switches IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676 Volume 4, Issue 3 (Jan. - Feb. 2013), PP 49-57 Multilevel Inverter for Single Phase System with Reduced Number of Switches

More information

Simulation and Experimental Results of 7-Level Inverter System

Simulation and Experimental Results of 7-Level Inverter System Research Journal of Applied Sciences, Engineering and Technology 3(): 88-95, 0 ISSN: 040-7467 Maxwell Scientific Organization, 0 Received: November 3, 00 Accepted: January 0, 0 Published: February 0, 0

More information

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 90 CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 5.1 INTRODUCTION This chapter deals with the performance comparison between a closed loop and open loop UPFC system on the aspects of power quality. The UPFC

More information

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 42 CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 3.1 INTRODUCTION The concept of multilevel inverter control has opened a new avenue that induction motors can be controlled to achieve dynamic performance

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Venkata Anil Babu Polisetty 1, B.R.Narendra 2 PG Student [PE], Dept. of EEE, DVR. & Dr.H.S.MIC College of Technology, AP, India 1 Associate

More information

Comparative Analysis of Single Phase Cascaded H-Bridge Multilevel Inverter

Comparative Analysis of Single Phase Cascaded H-Bridge Multilevel Inverter Comparative Analysis of Single Phase Cascaded H-Bridge Multilevel Inverter Jainil K. Shah 1, Manish S. Patel 2 P.G.Student, Electrical Engineering Department, U.V.P.C.E, Mehsana, Ganpat University, Gujarat,

More information

PF and THD Measurement for Power Electronic Converter

PF and THD Measurement for Power Electronic Converter PF and THD Measurement for Power Electronic Converter Mr.V.M.Deshmukh, Ms.V.L.Jadhav Department name: E&TC, E&TC, And Position: Assistant Professor, Lecturer Email: deshvm123@yahoo.co.in, vandanajadhav19jan@gmail.com

More information

Multi Level Inverter Based Active Power Filter for Harmonic Reduction

Multi Level Inverter Based Active Power Filter for Harmonic Reduction Multi Level Inverter Based Active Power Filter for Harmonic Reduction K Siva Gopi Raju Department of Electrical and Electronics Engineering, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India.

More information

CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER

CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER 8 CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER 6.1 INTRODUCTION In this part of research, a proto type model of FPGA based nine level cascaded inverter has been fabricated to improve

More information

Comparison between Conventional and Modified Cascaded H-Bridge Multilevel Inverter-Fed Drive

Comparison between Conventional and Modified Cascaded H-Bridge Multilevel Inverter-Fed Drive Comparison between Conventional and Modified Cascaded H-Bridge Multilevel Inverter-Fed Drive Gleena Varghese 1, Tissa Tom 2, Jithin K Sajeev 3 PG Student, Dept. of Electrical and Electronics Engg., St.Joseph

More information

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 86 CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 5.1 POWER QUALITY IMPROVEMENT This chapter deals with the harmonic elimination in Power System by adopting various methods. Due to the

More information

Speed Control of Induction Motor using Multilevel Inverter

Speed Control of Induction Motor using Multilevel Inverter Speed Control of Induction Motor using Multilevel Inverter 1 Arya Shibu, 2 Haritha S, 3 Renu Rajan 1, 2, 3 Amrita School of Engineering, EEE Department, Amritapuri, Kollam, India Abstract: Multilevel converters

More information

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES 1 M. KAVITHA, 2 A. SREEKANTH REDDY & 3 D. MOHAN REDDY Department of Computational Engineering, RGUKT, RK Valley, Kadapa

More information

CAPACITOR VOLTAGE BALANCING IN SINGLE PHASE SEVEN-LEVEL PWM INVERTER

CAPACITOR VOLTAGE BALANCING IN SINGLE PHASE SEVEN-LEVEL PWM INVERTER Journal of Research in Engineering and Applied Sciences CAPACITOR VOLTAGE BALANCING IN SINGLE PHASE SEVEN-LEVEL PWM INVERTER Midhun G, 2Aleena T Mathew Assistant Professor, Department of EEE, PG Student

More information

Multilevel Inverter Based Statcom For Power System Load Balancing System

Multilevel Inverter Based Statcom For Power System Load Balancing System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 36-43 www.iosrjournals.org Multilevel Inverter Based Statcom For Power System Load Balancing

More information

Development of Multilevel Inverters for Control Applications

Development of Multilevel Inverters for Control Applications International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 1 Jan-216 www.irjet.net p-issn: 2395-72 Development of Multilevel Inverters for Control Applications

More information

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques Ashwini Kadam 1,A.N.Shaikh 2 1 Student, Department of Electronics Engineering, BAMUniversity,akadam572@gmail.com,9960158714

More information

A Comparative Study of Different Topologies of Multilevel Inverters

A Comparative Study of Different Topologies of Multilevel Inverters A Comparative Study of Different Topologies of Multilevel Inverters Jainy Bhatnagar 1, Vikramaditya Dave 2 1 Department of Electrical Engineering, CTAE (India) 2 Department of Electrical Engineering, CTAE

More information

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2.

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2. PIC Based Seven-Level Cascaded H-Bridge Multilevel Inverter R.M.Sekar, Baladhandapani.R Abstract- This paper presents a multilevel inverter topology in which a low switching frequency is made use taking

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER 39 CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER The cascaded H-bridge inverter has drawn tremendous interest due to the greater demand of medium-voltage high-power inverters. It is composed of multiple

More information

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives 1

More information

New Approaches for Harmonic Reduction Using Cascaded H- Bridge and Level Modules

New Approaches for Harmonic Reduction Using Cascaded H- Bridge and Level Modules New Approaches for Harmonic Reduction Using Cascaded H- Bridge and Level Modules ABSTRACT Prof. P.K.Sankala AISSMS College of Engineering, Pune University/Pune, Maharashtra, India K.N.Nandargi AISSMS College

More information

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE CHAPTER 2 VI FE INUCTION MOTOR RIVE 2.1 INTROUCTION C motors have been used during the last century in industries for variable speed applications, because its flux and torque can be controlled easily by

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE

3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE 3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE Mahendra G. Mathukiya 1 1 Electrical Department, C.U. Shah College of Engineering & Technology Abstract Today most of the appliances and machine works

More information

DESIGN OF SINGLE PHASE H-BRIDGE MULTILEVEL INVERTER USING MICROCONTROLLER ATMEL 89C51

DESIGN OF SINGLE PHASE H-BRIDGE MULTILEVEL INVERTER USING MICROCONTROLLER ATMEL 89C51 DESIGN OF SINGLE PHASE H-BRIDGE MULTILEVEL INVERTER USING MICROCONTROLLER ATMEL 89C51 A Project report submitted in partial fulfillment of the requirements for the Award of Degree of BACHELOR OF TECHNOLOGY

More information

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Jaykant Vishwakarma 1, Dr. Arvind Kumar Sharma 2 1 PG Student, High voltage and Power system, Jabalpur Engineering College,

More information

A Comparative Modelling Study of PWM Control Techniques for Multilevel Cascaded Inverter

A Comparative Modelling Study of PWM Control Techniques for Multilevel Cascaded Inverter A Comparative Modelling Study of PWM Control Techniques for Multilevel Cascaded Inverter Applied Power Electronics Laboratory, Department of Electrotechnics, University of Sciences and Technology of Oran,

More information

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter Journal of Engineering Science and Technology Review 3 (1) (2010) 65-69 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Intelligence Controller for STATCOM Using Cascaded

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Lecture Note 10 DC-AC PWM Inverters Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Email: 30205@uotechnology.edu.iq Scan QR DC-AC PWM Inverters Inverters are AC converters used

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 30 CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 2.1 INTRODUCTION This chapter introduces the phase shifted series resonant converter (PSRC). Operation of the circuit is explained. Design

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

Symmetrical Multilevel Inverter with Reduced Number of switches With Level Doubling Network

Symmetrical Multilevel Inverter with Reduced Number of switches With Level Doubling Network International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 10 (October 2016), PP.70-74 Symmetrical Multilevel Inverter with Reduced

More information

Reduced PWM Harmonic Distortion for a New Topology of Multilevel Inverters

Reduced PWM Harmonic Distortion for a New Topology of Multilevel Inverters Asian Power Electronics Journal, Vol. 1, No. 1, Aug 7 Reduced PWM Harmonic Distortion for a New Topology of Multi Inverters Tamer H. Abdelhamid Abstract Harmonic elimination problem using iterative methods

More information

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 36-41 Analysis, Modeling and Simulation of Dynamic Voltage

More information

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 20-26 www.iosrjournals.org Shunt Active Power Filter based on SRF theory and Hysteresis Band Current

More information

Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad.

Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad. Performance Analysis of Three Phase Five-Level Inverters Using Multi-Carrier PWM Technique Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad.

More information

Speed control of Induction Motor drive using five level Multilevel inverter

Speed control of Induction Motor drive using five level Multilevel inverter Speed control of Induction Motor drive using five level Multilevel inverter Siddayya hiremath 1, Dr. Basavaraj Amarapur 2 [1,2] Dept of Electrical & Electronics Engg,Poojya Doddappa Appa college of Engg,

More information

World Journal of Engineering Research and Technology WJERT

World Journal of Engineering Research and Technology WJERT wjert, 2017, Vol. 3, Issue 4, 120-128 Original Article ISSN 2454-695X Vimalakeerthy. WJERT www.wjert.org SJIF Impact Factor: 4.326 HARMONICS ELIMINATION IN ISOLATED POWER SYSTEM USING COMPENSATORS Dr.

More information

DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER

DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER PROF. A. N. WADEKAR, abhijitwadekar69@gmai.com J B BANDGAR, bandgarjayshri3@gmail.com S V JADHAV swapnalij1996@gmail.com U.S MANE, ulkamane@gmail.com

More information

A Modified Cascaded H-Bridge Multilevel Inverter topology with Reduced Number of Power Electronic Switching Components

A Modified Cascaded H-Bridge Multilevel Inverter topology with Reduced Number of Power Electronic Switching Components International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 2 (2013), pp. 137-149 International Research Publication House http://www.irphouse.com A Modified Cascaded H-Bridge Multilevel

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique O. Hemakesavulu 1, T. Brahmananda Reddy 2 1 Research Scholar [PP EEE 0011], EEE Department, Rayalaseema University, Kurnool,

More information

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) VOL. 4, NO. 4, JUNE 9 ISSN 89-668 6-9 Asian Research Publishing Network (ARPN). All rights reserved. MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) Rosli Omar and Nasrudin Abd Rahim

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 3, Issue 1, January -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Design

More information

Mosfet Based Inverter with Three Phase Preventer & Selector for Industrial Application

Mosfet Based Inverter with Three Phase Preventer & Selector for Industrial Application International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 10 No. 1 Oct. 2014, pp. 232-237 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 100 CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 7.1 INTRODUCTION An efficient Photovoltaic system is implemented in any place with minimum modifications. The PV energy conversion

More information

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Abstract: The objective of this research is to develop a novel voltage control scheme that

More information

A Single-Phase Cascaded Multilevel Inverter Based on a New Basic Unit with Reduced Number of Power Switches

A Single-Phase Cascaded Multilevel Inverter Based on a New Basic Unit with Reduced Number of Power Switches Page number 1 A Single-Phase Cascaded Multilevel Inverter Based on a New Basic Unit with Reduced Number of Power Switches Abstract The demand for high-voltage high-power inverters is increasing, and it

More information

CHAPTER 5 MITIGATION OF VOLTAGE SAG AND SWELL USING DIRECT CONVERTERS WITH MINIMUM SWITCH COUNT

CHAPTER 5 MITIGATION OF VOLTAGE SAG AND SWELL USING DIRECT CONVERTERS WITH MINIMUM SWITCH COUNT 75 CHAPTER 5 MITIGATION OF VOLTAGE SAG AND SWELL USING DIRECT CONVERTERS WITH MINIMUM SWITCH COUNT 5.1 INTRODUCTION Though many DVR topologies have been proposed based on direct converters, in the literature

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL Basically the HVDC transmission consists in the basic case of two convertor stations which are connected to each other by a transmission link consisting of an overhead

More information

Harmonic Reduction in Induction Motor: Multilevel Inverter

Harmonic Reduction in Induction Motor: Multilevel Inverter International Journal of Multidisciplinary and Current Research Research Article ISSN: 2321-3124 Available at: http://ijmcr.com Harmonic Reduction in Induction Motor: Multilevel Inverter D. Suganyadevi,

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar Electrical Engineering department, Jabalpur Engineering College Jabalpur, India Abstract:

More information

Cascaded Connection of Single-Phase & Three-Phase Multilevel Bridge Type Inverter

Cascaded Connection of Single-Phase & Three-Phase Multilevel Bridge Type Inverter Cascaded Connection of Single-Phase & Three-Phase Multilevel Bridge Type Inverter Mukesh Kumar Sharma 1 Ram Swaroop 2 Mukesh Kumar Kuldeep 3 1 PG Scholar 2 Assistant Professor 3 PG Scholar SIET, SIKAR

More information

e-issn: p-issn:

e-issn: p-issn: Available online at www.ijiere.com International Journal of Innovative and Emerging Research in Engineering e-issn: 2394-3343 p-issn: 2394-5494 PFC Boost Topology Using Average Current Control Method Gemlawala

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER 61 CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER This Chapter deals with the procedure of embedding PI controller in the ARM processor LPC2148. The error signal which is generated from the reference

More information

Harmonic Reduction in Five Level Inverter Based Dynamic Voltage Restorer

Harmonic Reduction in Five Level Inverter Based Dynamic Voltage Restorer Research Journal of Applied Sciences, Engineering and Technology 2(8): 789-797, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted date: September 27, 2010 Accepted date: November 18,

More information

Comparison of Reference Current Extraction Methods for Shunt Active Power Filters

Comparison of Reference Current Extraction Methods for Shunt Active Power Filters Comparison of Reference Current Extraction Methods for Shunt Active Power s B. Geethalakshmi and M. Kavitha Abstract Generation of references constitutes an important part in the control of active power

More information

Performance of DVR under various Fault conditions in Electrical Distribution System

Performance of DVR under various Fault conditions in Electrical Distribution System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 1 (Nov. - Dec. 2013), PP 06-12 Performance of DVR under various Fault conditions

More information

Literature Review. Chapter 2

Literature Review. Chapter 2 Chapter 2 Literature Review Research has been carried out in two ways one is on the track of an AC-AC converter and other is on track of an AC-DC converter. Researchers have worked in AC-AC conversion

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

Introduction to Rectifiers and their Performance Parameters

Introduction to Rectifiers and their Performance Parameters Electrical Engineering Division Page 1 of 10 Rectification is the process of conversion of alternating input voltage to direct output voltage. Rectifier is a circuit that convert AC voltage to a DC voltage

More information

3-Ф VSI FOR HARMONIC IMPROVEMENT USING MICROCONTROLLER AND SIMULATION IN MATLAB

3-Ф VSI FOR HARMONIC IMPROVEMENT USING MICROCONTROLLER AND SIMULATION IN MATLAB ISSN 2277-2685 IJESR/Dec. 2015/ Vol-5/Issue-12/1503-1511 Dr. B. Gavaskar Reddy et. al.,/ International Journal of Engineering & Science Research 3-Ф VSI FOR HARMONIC IMPROVEMENT USING MICROCONTROLLER AND

More information

Hybrid Five-Level Inverter using Switched Capacitor Unit

Hybrid Five-Level Inverter using Switched Capacitor Unit IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 04 September 2016 ISSN (online): 2349-6010 Hybrid Five-Level Inverter using Switched Capacitor Unit Minu M Sageer

More information

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES Swathy C S 1, Jincy Mariam James 2 and Sherin Rachel chacko 3 1 Assistant Professor, Dept. of EEE, Sree Buddha College of Engineering

More information

Modular Grid Connected Photovoltaic System with New Multilevel Inverter

Modular Grid Connected Photovoltaic System with New Multilevel Inverter Modular Grid Connected Photovoltaic System with New Multilevel Inverter Arya Sasi 1, Jasmy Paul 2 M.Tech Scholar, Dept. of EEE, ASIET, Kalady, Mahatma Gandhi University, Kottayam, Kerala, India 1 Assistant

More information

Multilevel Inverters : Comparison of Various Topologies and its Simulation

Multilevel Inverters : Comparison of Various Topologies and its Simulation 2017 IJSRST Volume 3 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 16 th February 2017 In association with International

More information

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p.

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p. Preface p. xv Acknowledgements p. xix Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p. 6 Power Quality Monitoring p. 7 Power

More information

A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources

A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources P.Umapathi Reddy 1, S.Sivanaga Raju 2 Professor, Dept. of EEE, Sree Vidyanikethan Engineering College, Tirupati, A.P.

More information

Minimization Of Total Harmonic Distortion Using Pulse Width Modulation Technique

Minimization Of Total Harmonic Distortion Using Pulse Width Modulation Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 3 Ver. IV (May Jun. 2015), PP 01-12 www.iosrjournals.org Minimization Of Total Harmonic

More information

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality P.Padmavathi, M.L.Dwarakanath, N.Sharief, K.Jyothi Abstract This paper presents an investigation

More information

MATLAB Implementation of a Various Topologies of Multilevel Inverter with Improved THD

MATLAB Implementation of a Various Topologies of Multilevel Inverter with Improved THD 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology MATLAB Implementation of a Various Topologies of Multilevel Inverter with Improved

More information

Speed Control Of DC Motor Using Cascaded H-Bridge Multilevel Inverter

Speed Control Of DC Motor Using Cascaded H-Bridge Multilevel Inverter ISSN: 2278 0211 (Online) Speed Control Of DC Motor Using Cascaded H-Bridge Multilevel Inverter R.K Arvind Shriram Assistant Professor,Department of Electrical and Electronics, Meenakshi Sundararajan Engineering

More information

Design and Simulation of Passive Filter

Design and Simulation of Passive Filter Chapter 3 Design and Simulation of Passive Filter 3.1 Introduction Passive LC filters are conventionally used to suppress the harmonic distortion in power system. In general they consist of various shunt

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL Saravanan.R 1, Hariharan.M 2 1 PG Scholar, Department OF ECE, 2 PG Scholar, Department of ECE 1, 2 Sri Krishna College

More information

INVESTIGATION OF HARMONIC DETECTION TECHNIQUES FOR SHUNT ACTIVE POWER FILTER

INVESTIGATION OF HARMONIC DETECTION TECHNIQUES FOR SHUNT ACTIVE POWER FILTER IOSR Journal of Electronics & Communication Engineering (IOSR-JECE) ISSN(e) : 2278-1684 ISSN(p) : 2320-334X, PP 68-73 www.iosrjournals.org INVESTIGATION OF HARMONIC DETECTION TECHNIQUES FOR SHUNT ACTIVE

More information

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT Ramesh Kumar V 1, Dr. Dalvinder Kaur Mangal 2 1 Research Scholar, Department of Electrical Engineering, Sunrise University, Alwar 2 Asso. Prof., BMIET,

More information

CHAPTER -4 STUDY OF COMMON MODE VOLTAGE IN 3-LEVEL INVERTER FED INDUCTION MOTOR DRIVE USING SPACE VECTOR MODULATION

CHAPTER -4 STUDY OF COMMON MODE VOLTAGE IN 3-LEVEL INVERTER FED INDUCTION MOTOR DRIVE USING SPACE VECTOR MODULATION 73 CHAPTER -4 STUDY OF COMMON MODE VOLTAGE IN 3-LEVEL INVERTER FED INDUCTION MOTOR DRIVE USING SPACE VECTOR MODULATION 4.1. INTRODUCTION Multilevel inverters [51] have attracted much interest from the

More information

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor Divya Subramanian 1, Rebiya Rasheed 2 M.Tech Student, Federal Institute of Science And Technology, Ernakulam, Kerala, India

More information

Comparison of Hybrid Asymmetric and Conventional Multilevel Inverters for Medium Voltage Drive Applications

Comparison of Hybrid Asymmetric and Conventional Multilevel Inverters for Medium Voltage Drive Applications Comparison of Hybrid Asymmetric and Conventional Multilevel Inverters for Medium Voltage Drive Applications Master of Science Thesis in the Master s programme Electric Power Engineering AMIR SAJJAD BAHMAN

More information

New model multilevel inverter using Nearest Level Control Technique

New model multilevel inverter using Nearest Level Control Technique New model multilevel inverter using Nearest Level Control Technique P. Thirumurugan 1, D. Vinothin 2 and S.Arockia Edwin Xavier 3 1,2 Department of Electronics and Instrumentation Engineering,J.J. College

More information

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS 6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the z-source inverter based conversion set up in line with control system designed, simulated and discussed

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

POWER QUALITY IMPROVEMENT BY USING ACTIVE POWER FILTERS

POWER QUALITY IMPROVEMENT BY USING ACTIVE POWER FILTERS POWER QUALITY IMPROVEMENT BY USING ACTIVE POWER FILTERS Ramesh Kumar V 1, Dr. Dalvinder Kaur Mangal 2 1 Research Scholar, Department of Electrical Engineering, Sunrise University, Alwar 2 Asso. Prof.,

More information

Nine Level Inverter Using Modified H Bridge Configuration

Nine Level Inverter Using Modified H Bridge Configuration Nine Level Inverter Using Modified H Bridge Configuration [1] N Parvathy [2] P.R Sowmiya [3] S Monisha [1][2][3] Final year EEE, Saranathan College of Engineering, Trichy12 [1] parvathynataraj1010@gmail.com

More information

Thyristors. In this lecture you will learn the following. Module 4 : Voltage and Power Flow Control. Lecture 18a : HVDC converters.

Thyristors. In this lecture you will learn the following. Module 4 : Voltage and Power Flow Control. Lecture 18a : HVDC converters. Module 4 : Voltage and Power Flow Control Lecture 18a : HVDC converters Objectives In this lecture you will learn the following AC-DC Converters used for HVDC applications. Introduction to Voltage Source

More information