Application of Grade Algorithm Based Approach along with PV Analysis for Enhancement of Power System Performance

Size: px
Start display at page:

Download "Application of Grade Algorithm Based Approach along with PV Analysis for Enhancement of Power System Performance"

Transcription

1 Circuits and Systems, 2016, 7, Published Online August 2016 in SciRes. Application of Grade Algorithm Based Approach along with PV Analysis for Enhancement of Power System Performance G. Kannan 1, D. Padma Subramaniam 2, Solai Manokar 3 1 Department of Electrical and Electronics Engineering, Amet University, Chennai, India 2 Sri Muthukumaran Institute of Technology, Chennai, India 3 Department of Electrical and Electronics Engineering, Anand Institute of Higher Technology, Chennai, India Received 12 May 2016; accepted 20 May 2016; published 29 August 2016 Copyright 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). Abstract This paper presents an application of GRADE Algorithm based approach along with PV analysis to solve multi objective optimization problem of minimizing real power losses, improving the voltage profile and hence enhancing the performance of power system. GRADE Algorithm is a hybrid technique combining genetic and differential evolution algorithms. Control variables considered are Generator bus voltages, MVAR at capacitor banks, transformer tap settings and reactive power generation at generator buses. The optimal values of the control variables are obtained by solving the multi objective optimization problem using GRADE Algorithm programmed using M coding in MATLAB platform. With the optimal setting for the control variables, Newton Raphson based power flow is performed for two test systems, viz, IEEE 30 bus system and IEEE 57 bus system for three loading conditions. Minimization of Real power loss and improvement of voltage profile obtained are compared with the results obtained using firefly and particle swarm optimization (PSO) techniques. Improvement of Loadability margin is established through PV curve plotted using continuation power flow with the real power load at the most affected bus as the bifurcation parameter. The simulated output shows improved results when compared to that of firefly and PSO techniques, in term of convergence time, reduction of real power loss, improvement of voltage profile and enhancement of loadability margin. Keywords Multi Objective Optimization, GRADE Algorithm, Loadability Margin, PV Curve, Real Power Loss Minimization, Voltage Profile Improvement How to cite this paper: Kannan, G., Subramaniam, D.P. and Manokar, S. (2016) Application of Grade Algorithm Based Approach along with PV Analysis for Enhancement of Power System Performance. Circuits and Systems, 7,

2 1. Introduction In Power systems planning and operation, voltage stability poses a major concern. Voltage instability or voltage collapse may come as a consequence of inadequate reactive power support from generators and transactions in transmission lines. Hence, understanding the concept of voltage stability and designing the prevention methodologies to mitigate the voltage instability is of great value to the utilities. Real Power versus Voltage (PV) analysis is useful for conceptual analysis of voltage stability and can be useful in specifying the active power margin. Optimization of reactive power is proved to improve the voltage stability limits and to minimize system active power losses. Generator bus voltages, Transformer tap positions, the MVAR at the capacitor Banks and reactive power generation at generator buses are considered as the control variables. Many conventional methods used in VAR optimization are based on linear programming, nonlinear programming and quadratic programming method. The optimization of reactive power support to mitigate voltage collapse problem in power market systems was described using a sequential quadratic programming method [1] in 2003 by X. Lin et al. The major drawbacks of the Conventional methods were that they were time consuming and they were not capable to solve complex problem with discrete variables. To overcome the disadvantages experienced in conventional methods, nature-inspired metaheuristic algorithms such as Genetic algorithm, colonial search algorithms and swarm intelligence techniques were proposed. Comprehensive learning particle swarm optimization for reactive power dispatch [2] [3] were reported in 2007 & Modified Swarm optimization method with admissible step and with minimization of constraint violation were reported in the same literature. A new Hybrid evolutionary strategy for reactive power dispatch [4] for controlling the reactive power generation in dispatching centers was reported in 2003 by D. Bhagwan Das and C. Patvardhan. This new method for solving optimization problem based on evolutionary strategy to improve the convergence and to find the better solution. Optimal reactive power dispatch based on different optimization techniques [5]-[11] were reported in various literatures. Genetic algorithm [12] [13], employed for reactive power optimization is based on the mechanics of natural genetics. P. Devaraj and J. Preetha Roselyn have employed Genetic algorithm for voltage stability enhancement based on minimization of maximum L-indices of load buses. For effective genetic processing, the crossover and mutation operators which can immediately trade with the floating point numbers and integers were used. Colonial search algorithms such as Ant colony and Binary Ant colony based optimization were also reported in reactive power optimization [14] [15]. It was established that the ants take tour based on aromatic substance called pheromone laid by them. The amount of pheromone will be high if the artificial ants finish their tour with a wide track and vice versa. The pheromone of the routes progressively decreases by evaporation in order to avoid the artificial ants getting stuck in the local optimum solution. Differential Evolution (DE) algorithm was reported in various literatures [16]-[20] for reactive power optimization. DE combines the simple arithmetical operators with operators like recombination, mutation and selection thus evolving from a random population to the final population. Quasi-opposition teaching-learning based optimization (QOBL) [21] was employed for reactive power dispatch in IEEE 30 bus arrangement and was reported by Barun Mandal and Provas Kumar Roy. It was based on two basic operations, namely teaching (for global search) and learning (for local search) stage. Comparative Study of Firefly algorithm and Particle Swarm Optimization for Noisy Non-Linear Optimization Problems was reported in 2012 by Saibal K. Pal et al. [22]. There are various noisy non-linear mathematical optimization problems that can be effectively solved by Metaheuristic Algorithms. These are iterative search processes that efficiently perform the exploration and exploitation in the solution space, efficiently find near optimal solutions. Firefly Algorithm is one of the recent evolutionary computing models which is inspired by fireflies behavior in nature. PSO is population based optimization technique inspired by social behavior of bird flocking or fish schooling. Preventive reactive power management for improving voltage stability margin [23]-[25] was reported by O. Alizadeh Mousavi et al. Adequate voltage stability margin needs to be obtained through the appropriate scheduling of the reactive power sources and also preventive counter measure to improve voltage stability margin through the management of the reactive power and its reserve. In this paper, an algorithm namely GRADE algorithm is applied for solving multi objective optimization. The GRADE algorithm is based on a combination of genetic algorithm and differential evolution technique. The rest of this paper is organized as follows. In Section 2, a brief description of the formulation of the multi objective 3355

3 optimization problem along with equality and inequality constraints is presented. In Section 3, GRADE algorithm is presented in brief and the steps involved to solve multi objective optimisation problem is presented alongside a flowchart representing the same. In Section 4, the numerical results obtained during simulation for different loading conditions are explained in detail and analysis from the results is also presented. The conclusions are given in Section Mathematical Problem Formulation The main objective of multi objective optimization is to minimize the active power loss in the transmission network, which is defined as follows: f = min nl P (1) 1 loss n= 1 Another objective of this problem is to improve the voltage profile which is formulated mathematically as follows, n f = V v (2) 2 max,spec i= 1 The overall objective function of the problem is thus formulated as follows, ( ) β( ) f = α f + f (3) 1 2 where, P loss = active power loss in the transmission network, V max,spec = is the maximum voltage specified for all the buses, α and β are the penalty factors. Constraints Equality Constraints. The equality constraints include the real and reactive power constraints which are given as follows: 1) Real Power Constraint where, n = numbers of buses, except swing bus. G ij = mutual conductance between bus i and j. B ij = mutual susceptance between bus i and j. θ ij = Load angle between bus i and j. P i = Real power injected into network at bus i. V i, V j = Voltage magnitude at bus i, j. 2) Reactive Power Constraint n (, θ) = ( cosθ + sinθ ) P V VV G B (4) i i j ij ij ij ij j= 1 n (, θ) = ( sinθ + cosθ ) Q V VV G B (5) i i j ij ij ij ij j= 1 where, n = number of buses, except swing bus. Q i = Reactive power injected into network at bus i. Inequality Constraints. The inequality constraints include the following, 1) Bus Voltage Magnitude Constraint V V V ; i NB : Total number of buses (6) i,min i i,max where, V i = Voltage magnitude at bus i. N B = Total number of buses. 2) Generator Bus Reactive Power Constraint Q Q Q i N (7), Gi,min Gi Gi,max g 3356

4 where, Q Gi = Reactive power generation at bus i. N g = Number of generator buses. 3) Reactive Power Source Capacity Constraints Q Q Q i N (8) ; Ci,min Ci Ci,max C where, Q Ci = Reactive power generated by i th capacitor bank. N C = No. of capacitor banks. 4) Transformer Tap Position Constraints: where, T k = Tap setting of transformer at branch k. N T = No. of tap-setting transformer branches. 3. GRADE Optimization Algorithm T T T i N (9) ; k,min k k,max T The GRADE algorithm is a combination of genetic algorithm and differential evolution technique. The algorithmic scheme of GRADE algorithm is really alike to that of the genetic algorithm except that it uses the simplified differential operator like the differential evolution technique. The parameters used in GRADE Algorithm are given in Table 1. GRADE algorithm uses 3 genetic operators which include mutation, crossing and selection. Mutation operator Mutation operator is applied to the parental population, thus producing a new population of offsprings. From the unit interval, a random number p is generated for each parent P. One offspring O is created by mutation for a parent P if p is smaller than radioactivity. In such a case, the new random point RP is generated inside a given domain and new offspring O is created on a random position on the line connecting the parent P and the random point RP. This operator creates each time different number of offsprings, but in average this number should converge to population_size * radioactivity. Radioactivity is a control parameter of GRADE algorithm defining the part of offsprings created by mutation. Crossover Operator Crossover operator is designated to create such a number of new offsprings, that the total number of offsprings n_offsprings will be the same as parents n_parents (population will be doubled). To create an offspring, two members P1 and P2 of parental population are randomly chosen. Then the vector of their difference is computed, multiplied by cross_rate and added to the better one between P1 and P2. Cross_rate is a number each time randomly generated from the interval (0; cross_limit). cross_limit is another control parameter of GRADE algorithm. Selection Operator Operator selection should select new population from parents and offsprings or more precisely, it eliminates chosen offsprings and parents, until the complete population has its initial size. Each time when one member is rejected, best members are selected for next generation and the worse of them is discarded. This selection process has two advantages: It ensures that the best member will survive to the next generation, even very bad member has a possibility to survive and certain diversity of population remains. The GRADE algorithm suffers from serious disadvantage that it tends to form clusters. In order to overcome this disadvantage a niching strategy called CERAF strategy is employed. It produces areas of higher level of radioactivity in the neighborhood of all previously found local extremes by increasing the mutation probability (i.e. ceraf radioacitivity) in these areas many times. Parameters used to implement CERAF strategy and the corresponding values employed are given in Table 2. Table 1. Parameters in GRADE algorithm. Parameter Description Used Value pop_rate Control the size of population 10 Radioactivity Control the number of offsprings created by mutation 0.2 cross_limit Control the distance of offsprings from its better parent created by crossing

5 Table 2. Parameters in CERAF strategy. Parameter Description Used Value RAD Control the radius of the radioactivity area 0.25 RAD deact_rate Control the decreasing in size of radioactive area deact_rate Quiet Control number of generations before new local extreme is marked 100 Quiet 4. Algorithm and Flowchart The GRADE algorithm used for searching an optimal solution for multi objective optimisation is given in Figure 1. Step 1: Read the power flow data, set the minimum and maximum value of control variable and initiate transformer tap positions. Step 2: Generate the initial population in random manner and assign the objective function value to all chromosomes in the population. The size of the population is then defined as the number of variables of objective function multiplied by parameter pop rate. Step 3: Several new chromosomes are created using the mutation operators the mutation and the local mutation (their total number depends on the value of a parameter called radioactivity it gives the mutation probability). Step 4: Create another set of new chromosomes using the simplified differential operator; thus doubling the population. Step 5: Assign objective function values to all newly created chromosomes. Step 6: Apply CERAF strategy. Step 7: Apply selection operator to the double-sized population, thus decreasing the amount of individuals to its original value. Step 8: Perform load flow analysis. Step 9: Steps 3-7 are repeated until the variables are within their limits. Step 10: Stopping criteria are checked, if satisfied the search process stops and displays the result, else proceed to the next iteration. 5. Results and Discussion The effectiveness of GRADE algorithm based optimization technique is tested in IEEE 30-bus and 57-bus test systems and the results are compared with the results obtained using firefly and Particle Swarm Optimization algorithms. The proposed algorithm is developed in MATLAB 7 and run on a PC with INTEL i5 processor of 4GB RAM. For implementing GRADE technique, 30 trials each for different loading conditions are performed in the above mentioned test systems 5.1. Results in IEEE-30 Bus System The standard IEEE 30-bus test system [10] is used to test the effectiveness of the proposed method. The test system consists of 6 generators, 4 transformers, and 41 branches. The transformers are at the branches 6-9, 6-10, 4-12 and The reactive power support is provided at the buses 10 and 24.Line data and bus data of the test systems is available in [10] (Figure 2). The reactive power generation limits for the IEEE 30-bus system are listed in Table 3. The voltage and tap settings limit are provided in Table 4. The initial power loss for the IEEE 30-bus system is obtained as p.u by performing load flow analysis. Different loading conditions are considered for multi objective optimization. The normal loaded condition has a load of p.u and two other loading conditions of which one is light loaded and the other heavy loaded when compared to that of the normal loaded condition are considered. In light loaded condition, the load is reduced by 50% of the normal load in all load buses and in heavy loaded condition, the load is increased by 50% of the normal load in all load buses. 3358

6 Start Read Power flow and Initiate Control Variable Generate initial population of chromosome and assign them to the objective function Create new chromosome using mutation operator and simplified differential operator individually Apply CERAF Strategy Assign the objective function to the newly developed chromosomes Apply Selection process Perform Load Flow Variable within their limits? Increment count Print Result Stop Figure 1. Flowchart of GRADE algorithm for multi objective optimisation. 3359

7 Figure 2. Single line diagram of IEEE 30 bus system. Table 3. Limits for reactive power generation for IEEE30 bus system. Bus No Qg min ( MVAR ) Qg max ( MVAR ) Table 4. Limits for voltage and tap setting (in p.u.) for IEEE30 bus system. max V G min V G max V load min V load max T k min T k

8 Under light loaded condition the load is reduced to p.u and the base case loss is obtained as p.u. Under normal loaded condition the load is p.u and the base case loss is obtained as p.u. Under heavily loaded condition the load is p.u and the base case loss is obtained as p.u. A comparison of fitness value for various loading condition is provided in Table 5 and a comparison of the real power loss obtained using PSO, Firefly and GRADE algorithm under three loading condition is shown in the Table 6. From Table 6, it can be seen that, real power loss reduction is more when GRADE algorithm is used compared to conventional techniques such as firefly and particle swarm optimization technique. After 30 trials the real power losses obtained by reactive power optimization using GRADE algorithm is presented in Table 6 along with worst and best results, mean and standard deviation in Table 7. The optimal values of the control variables after optimization for three loading conditions are shown in Table 8. Table 5. Comparison of fitness value for the three loading conditions. Parameter Lightly loaded condition Normal loaded condition Heavily loaded condition Optimization Technique Firefly PSO GRADE Firefly PSO GRADE Firefly PSO GRADE Fitness Value Table 6. Comparison of real power loss for IEEE30 bus system. Loading Condition Lightly loaded condition Normal loaded condition Heavily loaded condition Optimization Technique Firefly PSO GRADE Firefly PSO GRADE Firefly PSO GRADE P loss(p.u) Table 7. Comparison of best and worst case real power loss for IEEE30 bus system using Grade Algorithm. Loading Condition Lightly loaded condition Normal loaded condition Heavily loaded condition Optimization Technique Worst Best Mean Std. Deviation Worst Best Mean Std. Deviation Worst Best Mean Std. Deviation P loss(p.u) Table 8. Optimal values of the control variables in p.u. obtained using grade algorithm for IEEE30 bus system. Control variables Lightly loaded condition Normal loaded condition Heavily loaded condition V V V V V V Q C Q C T T T T Q Q Q Q Q Q

9 From Table 8, it can be observed that, all control variables are set as per the optimum values obtained using GRADE Algorithm and the values are within the given specified limits. A comparison of voltage levels before and after optimization for lightly loaded condition, normal loaded condition and heavy loaded condition is also presented in Figures 3-5 respectively. The 30 th bus of the IEEE 30 bus system is found to be the weakest bus from power flow results and hence voltage at 30 th bus is compared to establish the effectiveness of GRADE Algorithm is improving the voltage profile. It is noted that, from Figures 3-5 in all the loading conditions voltage profile improvement is optimum when controllers are tuned using GRADE Algorithm. The result of continuation power flow analysis before and after optimization for different loading conditions Figure 3. Comparison of voltage levels before and after optimization under light loaded condition for IEEE30 bus test system. Figure 4. Comparison of voltage levels before and after optimization under normal loaded condition for IEEE30 bus test system. Figure 5. Comparison of voltage levels before and after optimization under heavy loaded condition for IEEE30 bus system. 3362

10 G. Kannan et al. is presented. As the 30th bus of the IEEE-30 bus system is found to be the weakest bus, real power at bus number 30 is considered as load parameter in continuation power flow. Under various loading conditions the PV curve is obtained and the comparison of the PV curve before and after optimization is done. Under Light loaded condition the curve is as shown in Figure 6 and the load ability margin has increased from a value of (p.u) to (p.u). Under normal loaded condition the curves are Superimposed for cases before and after optimization and are as shown in Figure 7. The loadability margin has increased from a value of (p.u) to (p.u). Under heavy loaded condition the curves are as shown in Figure 8. The load ability margin has increased from a value of (p.u) to (p.u). A comparasion of loadability margin for three loading conditions before and after optimization using GRADE algorithm is furnished in Table 9. Figure 6. Comparison of PV curve before and after optimization during light loaded condition for IEEE30 bus system. Figure 7. Comparison of PV curve before and after optimization during normal loaded condition for IEEE30 bus system. Figure 8. Comparison of PV curve before and after optimization during heavily loaded condition for IEEE30 bus system. 3363

11 Table 9. Comparison of loadability margin under three loading conditions for IEEE30 bus system. Sl. No. Loading conditions Before optimisation Loadability margin(p.u) After optimisation 1 Light loaded Normal loaded Heavy loaded From Table 9, it can be observed that Loadability Margin has increased considerably when controllers are set as per the values obtained using GRADE algorithm IEEE-57 Bus System The effectiveness of GRADE algorithm is minimizing the real power losses, improving the voltage profile and enhancing the loadability limit is tested using second test system, viz, IEEE-57 Bus system. The IEEE 57-bus systems [26] consists of 7 generators, 4 transformers, and 80 branches. The reactive power support is provided at the buses 18, 25 and 53 using capacitor bank. The line diagram of IEEE-57 bus test system is shown in Figure 9. The line data and bus data are available in [26]. The reactive power generation limits for the IEEE 57-bus system are listed in Table 10 and The voltage and tap settings limit is shown in Table 11. Different loading conditions are considered for multi objective optimization. The normal loaded condition has a load of p.u and two other loading conditions of which one is light loaded and the other heavy loaded when compared to that of the normal loaded condition is considered. In light loaded condition the total load is reduced by 50% of the normal load and in heavy loaded condition the total load is increased by 50% of the base case as in test system1. The GRADE algorithm was tested for the multi objective optimization problem using MATLAB 7 programming and is run for 30 trials each for different loading conditions in INTEL i5 processor. Under light loaded condition the load is p.u and the base case loss is obtained as p.u. Under normal loaded condition the load is p.u and the base case loss is obtained as p.u. Under heavy loaded condition the load is p.u and the base case loss is obtained as p.u. To establish the effectiveness of GRADE algorithm, multi objective optimization for the test system is performed using firefly and particle swarm optimization techniques. Fitness value and real power loss obtained using the above three techniques are compared and tabulated in Table 12 and Table 13 respectively. From Table 12 and Table 13, it can be observed that GRADE technique is yielding better results compared to result obtained using firefly and particle swarm optimization techniques. The optimal values of the control variables such as generator voltage magnitudes, reactive power rating of capacitor banks and transformer tap settings for the three loading conditions obtained using GRADE algorithm technique is presented in Table 14. Control Variable are set as per the values obtained by solving multi objective optimization problem using GRADE algorithm and from Table 14, it can be observed that all controllers are set within the given specified limits. The 31 st bus of IEEE-57 bus system is found to be the weakest bus. Hence voltage at 31 st bus is observed before and after optimization under the three loading conditions to check the effectiveness of GRADE Algorithm. The results are presented in Figures respectively. From Figures it is understood that voltage profile at bus no 31 improved considerably when controllers are turned as per the values obtained using GRADE Algorithm. The result of continuation power flow analysis before and after optimization for different loading conditions is presented. Real power at bus number 31 st is considered as the bifurcation parameter for continuation power flow. PV curve is plotted for the three loading conditions, as in the previous test case. Under Light loaded condition, the super imposed PV curves before and after optimization are shown in Figure 13. The loadability margin has increased from a value of (p.u) to p.u. Under normal loaded condition the PV curves are obtained before and after optimization and it is presented in Figure 14. It can be seen from Figure 14 that the load ability margin has increased from a value of (p.u) to (p.u). 3364

12 Table 10. Limits for reactive power generation for IEEE 57 Bus system. Bus No Qg min ( MVAR ) Qg max ( MVAR ) Table 11. Limits for voltage and tap setting (in p.u.) for IEEE 57 Bus system. max V G min V G max V load min V load max T k min T k Table 12. Comparison of fitness value for IEEE-57 bus system. Parameter Lightly loaded condition Normal loaded condition Heavily loaded condition Optimization Technique Firefly PSO GRADE Firefly PSO GRADE Firefly PSO GRADE Fitness Value Table 13. Comparison of real power loss for IEEE-57 bus system. Loading Condition Lightly loaded condition Normal loaded condition Heavily loaded condition Optimization Technique Firefly PSO GRADE Firefly PSO GRADE Firefly PSO GRADE P loss(p.u) Table 14. Optimal values of the control variables in p.u. obtained using GRADE algorithm for IEEE-57 bus system. Control variables Lightly loaded condition Normal loaded condition Heavily loaded condition Control variables Lightly loaded condition Normal loaded condition Heavily loaded condition V T V T V T V T V T V T V T Q C T Q C T Qc Qg T Qg T Qg T Qg T Qg T Qg T Qg

13 Figure 9. Single line diagram of IEEE 57 bus system. Figure 10. Comparison of voltage levels before and after optimization for light loaded condition for IEEE-57 bus system. 3366

14 G. Kannan et al. Figure 11. comparison of voltage levels before and after optimization under normal loaded condition for IEEE-57 bus system. Figure 12. Comparison of voltage levels before and after optimization under heavily loaded condition for IEEE-57 bus system. Figure 13. Comparison of PV curve before and after optimization during light loaded condition for IEEE-57 bus system. 3367

15 Under heavy loaded condition the total load is increased by 50% of normal load in all load buses. The PV curves are obtained before and after optimization and presented in Figure 15. The loadability margin has increased from a value of (p.u) to (p.u). A comparasion of loadability margin under three loading conditions before and after optimization obtained using GRADE algorithm is furnished in Table 15 for the second test system. From Table 15, it is corroborated, once again that load ability margin gets enhanced when controller variables are set using the optimized solution from GRADE algorithm based approach. A Comparison of convergence time incurred for the two test systems under three loading conditions using three techniques, viz, firefly, Particle swarm optimization and GRADE is furnished in Table 16. From Table 16, it can be observed that GRADE Algorithm converges quickly compared to firefly and Particle swarm optimization Techniques in all the three loading conditions. Figure 14. Comparison of PV curve before and after optimization during normal loaded condition for IEEE-57 bus system. Figure 15. Comparison of PV curve before and after optimization during Heavily loaded condition for IEEE-57 bus system. Table 15. Comparison of loadability margin under three loading conditions for IEEE-57 bus system. Sl. No. Loading conditions Before optimisation Loadability margin(p.u) After optimisation 1 Light loaded Normal loaded Heavy loaded

16 Table 16. Comparison of Convergence time for the two test systems under three loading condition for 30 trial. IEEE 30 Bus system IEEE 57 Bus system Firefly PSO GRADE Firefly PSO GRADE L N H L N H L N H L N H L N H L N H L Light loaded condition; N Normal loaded Condition; H Heavy loaded condition. 6. Conclusion A GRADE algorithm based approach is presented along with PV analysis to solve multi objective optimization problem of minimizing real power losses and improving the voltage profile and hence enchancing the Performance of power systems. Real and Reactive power losses are considered as equality constraints. Inequality constraints comprised of generator bus voltages, transformer tap settings, reactive power ratings at the capacitor banks and reactive power generation at generator buses. The GRADE Algorithm based optimization approach is developed using M coding in MATLAB plat form. To illustrate the effectiveness of the GRADE Algorithm based approach, studies are performed in two test systems, viz, IEEE 30 bus system and IEEE 57-bus system for three loading conditions. Results obtained using GRADE Algorithm are compared with the results obtained using firefly algorithm and particle swarm optimization technique. In all the three loading conditions tested, GRADE Algorithm based optimization approach yielded reduced real power loss and improved voltage profile. It is also observed through PV curve using continuation power flow that loadability margin increased considerably when control variable values are tuned using GRADE Algorithm based approach. Hence it is concluded that, the GRADE algorithm performs better than the firefly and particle swarm optimization techniques, in terms of convergence time, reduction in real power losses, improving voltage profile and enchancing the load ability margin of power systems. References [1] Abou El Ela, A.A., Abido, M.A. and Spea, S.R. (2011) Differential Evolution Algorithm for Optimal Reactive Power Dispatch. Electric Power Systems Research, 81, [2] Khazali, A.H. and Kalantar, M. (2011) Optimal Reactive Power Dispatch Based on Harmony Search Algorithm. International Journal of Electrical Power & Energy Systems, 33, [3] Saraswat, A. and Saini, A. (2013) Multi-Objective Optimal Reactive Power Dispatch Considering Voltage Stability in Power Systems Using HFMOEA. Engineering Applications of Artificial Intelligence, 26, [4] Bhattacharya, A. and Chattopadhyay, P.K. (2010) Solution of Optimal Reactive Power Flow Using Biogeography-Based Optimization. International Journal of Electrical & Electronics Engineering, 4, 8. [5] Shunmugalatha, A. and Slochanal, S.M.R. (2008) Application of Hybrid Multiagent-Based Particle Swarm Optimization to Optimal Reactive Power Dispatch. Electric Power Components and Systems, 36, [6] Mandal, B. and Roy, P.K. (2013) Optimal Reactive Power Dispatch Using Quasi-Oppositional Teaching Learning Based Optimization. International Journal of Electrical Power & Energy Systems, 53, [7] Bhattacharya, B. and Goswami, S.K. (2007) Reactive Power Optimization through Evolutionary Techniques. A Comparative Study of the GA, DE and PSO Algorithms. Intelligent Automation and Soft Computing, 13, [8] Bhagwan Das, D. and Patvardhan, C. (2002) Reactive Power Dispatch with a Hybrid Stochastic Search Technique. International Journal of Electrical Power & Energy Systems, 24, [9] Devaraj, D. and Roselyn. J.P. (2010) Genetic Algorithm Based Reactive Power Dispatch for Voltage Stability Improvement. International Journal of Electrical Power & Energy Systems, 32, [10] Saadat, H. (2004) Power System Analysis. McGraw-Hill Publications. [11] Ramirez, J.M., Gonzalez, J.M. and Ruben, T.O. (2011) An Investigation about the Impact of the Optimal Reactive Power Dispatch Solved by DE. International Journal of Electrical Power & Energy Systems, 33, [12] Devaraj, D. (2007) Improved Genetic Algorithm for Multi Objective Reactive Power Dispatch Problem. European Transaction on Electrical Power, 17, [13] Lenin, K. and Mohan, M.R. (2006) Ant Colony Search Algorithm for Optimal reactive Power Optimization. Serbian Journal of Electrical Engineering, 3,

17 [14] Das, D.B. and Patvardhan, C. (2003) A New Hybrid Evolutionary Strategy for Reactive Power Dispatch. Electrical Power System Research, 65, [15] Varadarajan, M. and Swarup, K.S. (2008) Differential Evolution Approach for Optimal Reactive Power Dispatch. Applied Soft Computing, 8, [16] Mahadevan, K. and Kannan, P.S. (2010) Comprehensive Learning Particle Swarm Optimization for Reactive Power Dispatch. Applied Soft Computing, 10, [17] Azimi, R. and Esmaeili, S. (2013) Multi-Objective Daily Volt/VAr Control in Distribution Systems with Distributed Generation Using Binary Ant Colony Optimization. Turkish Journal of Electrical Engineering and Computer Sciences, 21, [18] Jeyadevi, S., Baskar, S., Babulal, C.K. and Iruthayarajan, M.W. (2011) Solving Mutiobjective Optimal Reactive Power Dispatch Using Modified NSGA-II. International Journal of Electrical Power & Energy Systems, 33, [19] Ramesh, S., Kannan, S. and Baskar, S. (2012) An Improved Generalized Differential Evolution Algorithm for Multi- Objective Reactive Power Dispatch. Engineering Optimization, 44, [20] Lin, X., David, A.K. and Yu, C.W. (2003) Reactive Power Optimization with Voltage Stability Consideration in Power Market Systems. IEE Proceedings Generation, Transmission and Distribution, 150, [21] Yang, X.-S. (2010) Nature Inspired Meta-Heuristic Algorithms. Luniver Press, China. [22] Zhang, X.R., Chen, W.R., Dai, C.H. and Cai, W.Z. (2010) Dynamic Multi-Group Self-Adaptive Differential Evolution Algorithm for Reactive Power Optimization. International Journal of Electrical Power & Energy Systems, 32, [23] Pal, S.K., Rai, C.S. and Singh, A.P. (2012) Comparative Study of Firefly Algorithm and Particle Swarm Optimization for Noisy Non-Linear Optimization Problems. International Journal of Intelligent Systems and Applications, 10, [24] Li, H.X., Li, Y.H. and Chen, J.F. (2014) Adaptive Multiple Evolutionary Algorithms Search for Multi-Objective Optimal Reactive Power Dispatch. International Transactions on Electrical Energy Systems, 24, [25] Mousavi, O.A., Bozorg, M. and Cherkaoui, R. (2013) Preventive Reactive Power Management for Improving Voltage Stability Margin. Electric Power Systems Research, 96, [26] Power System Test Case Archive. Submit or recommend next manuscript to SCIRP and we will provide best service for you: Accepting pre-submission inquiries through , Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work Submit your manuscript at:

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER CHAPTER FOUR TOTAL TRANSFER CAPABILITY R structuring of power system aims at involving the private power producers in the system to supply power. The restructured electric power industry is characterized

More information

Effect of Parameter Tuning on Performance of Cuckoo Search Algorithm for Optimal Reactive Power Dispatch

Effect of Parameter Tuning on Performance of Cuckoo Search Algorithm for Optimal Reactive Power Dispatch RESEARCH ARTICLE OPEN ACCESS Effect of Parameter Tuning on Performance of Cuckoo Search Algorithm for Optimal Reactive Power Dispatch Tejaswini Sharma Laxmi Srivastava Department of Electrical Engineering

More information

Optimal Allocation of TCSC Devices Using Genetic Algorithms

Optimal Allocation of TCSC Devices Using Genetic Algorithms Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 195. Optimal Allocation of TCSC Devices Using Genetic Algorithms

More information

Enhancement of Voltage Stability by SVC and TCSC Using Genetic Algorithm

Enhancement of Voltage Stability by SVC and TCSC Using Genetic Algorithm ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Available online at ScienceDirect. Procedia Computer Science 92 (2016 ) 36 41

Available online at   ScienceDirect. Procedia Computer Science 92 (2016 ) 36 41 Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 92 (2016 ) 36 41 2nd International Conference on Intelligent Computing, Communication & Convergence (ICCC-2016) Srikanta

More information

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System Evolutionary Programg Optimization Technique for Solving Reactive Power Planning in Power System ISMAIL MUSIRIN, TITIK KHAWA ABDUL RAHMAN Faculty of Electrical Engineering MARA University of Technology

More information

DISTRIBUTION NETWORK RECONFIGURATION FOR LOSS MINIMISATION USING DIFFERENTIAL EVOLUTION ALGORITHM

DISTRIBUTION NETWORK RECONFIGURATION FOR LOSS MINIMISATION USING DIFFERENTIAL EVOLUTION ALGORITHM DISTRIBUTION NETWORK RECONFIGURATION FOR LOSS MINIMISATION USING DIFFERENTIAL EVOLUTION ALGORITHM K. Sureshkumar 1 and P. Vijayakumar 2 1 Department of Electrical and Electronics Engineering, Velammal

More information

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Vivek Kumar Bhatt 1, Dr. Sandeep Bhongade 2 1,2 Department of Electrical Engineering, S. G. S. Institute of Technology

More information

Optimal Power Flow Using Differential Evolution Algorithm With Conventional Weighted Sum Method

Optimal Power Flow Using Differential Evolution Algorithm With Conventional Weighted Sum Method Optimal Power Flow Using Differential Evolution Algorithm With Conventional Weighted Sum Method Rohit Kumar Verma 1, Himmat Singh 2 and Laxmi Srivastava 3 1,, 2, 3 Department Of Electrical Engineering,

More information

Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm

Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm Ravi 1, Himanshu Sangwan 2 Assistant Professor, Department of Electrical Engineering, D C R University of Science & Technology,

More information

GENETIC ALGORITHM BASED CONGESTION MANAGEMENT BY USING OPTIMUM POWER FLOW TECHNIQUE TO INCORPORATE FACTS DEVICES IN DEREGULATED ENVIRONMENT

GENETIC ALGORITHM BASED CONGESTION MANAGEMENT BY USING OPTIMUM POWER FLOW TECHNIQUE TO INCORPORATE FACTS DEVICES IN DEREGULATED ENVIRONMENT GENETIC ALGORITHM BASED CONGESTION MANAGEMENT BY USING OPTIMUM POWER FLOW TECHNIQUE TO INCORPORATE FACTS DEVICES IN DEREGULATED ENVIRONMENT S.Vinod Kumar 1, J.Sreenivasulu 2, K.Vimala Kumar 3 PG Student,

More information

Optimal Allocation of TCSC Using Heuristic Optimization Technique

Optimal Allocation of TCSC Using Heuristic Optimization Technique Original Article Print ISSN: 2321-6379 Online ISSN: 2321-595X DOI: 10.17354/ijssI/2017/132 Optimal Allocation of TCSC Using Heuristic Optimization Technique M Nafar, A Ramezanpour Department of Electrical

More information

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller Volume 1, Issue 2, October-December, 2013, pp. 25-33, IASTER 2013 www.iaster.com, Online: 2347-5439, Print: 2348-0025 Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

More information

Total Harmonic Distortion Minimization of Multilevel Converters Using Genetic Algorithms

Total Harmonic Distortion Minimization of Multilevel Converters Using Genetic Algorithms Applied Mathematics, 013, 4, 103-107 http://dx.doi.org/10.436/am.013.47139 Published Online July 013 (http://www.scirp.org/journal/am) Total Harmonic Distortion Minimization of Multilevel Converters Using

More information

Available online at ScienceDirect. Procedia Computer Science 92 (2016 ) 30 35

Available online at   ScienceDirect. Procedia Computer Science 92 (2016 ) 30 35 Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 92 (2016 ) 30 35 2nd International Conference on Intelligent Computing, Communication & Convergence (ICCC-2016) Srikanta

More information

OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD

OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD M. Laxmidevi Ramanaiah and M. Damodar Reddy Department of E.E.E., S.V. University,

More information

REAL POWER LOSS MINIMIZATION USING FIREFLY ALGORITHM

REAL POWER LOSS MINIMIZATION USING FIREFLY ALGORITHM REAL POWER LOSS MINIMIZATION USING FIREFLY ALGORITHM Mr. H. Deenadhayalan Assistant Professor, Electrical and Electronic Engineering, Annai Teresa College of Engineering, Villupuram, Tamilnadu, India Abstract

More information

Minimization of Power Loss and Improvement of Voltage Profile in a Distribution System Using Harmony Search Algorithm

Minimization of Power Loss and Improvement of Voltage Profile in a Distribution System Using Harmony Search Algorithm Minimization of Power Loss and Improvement of Voltage Profile in a Distribution System Using Harmony Search Algorithm M. Madhavi 1, Sh. A. S. R Sekhar 2 1 PG Scholar, Department of Electrical and Electronics

More information

PID Controller Tuning using Soft Computing Methodologies for Industrial Process- A Comparative Approach

PID Controller Tuning using Soft Computing Methodologies for Industrial Process- A Comparative Approach Indian Journal of Science and Technology, Vol 7(S7), 140 145, November 2014 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 PID Controller Tuning using Soft Computing Methodologies for Industrial Process-

More information

A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis

A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis A Novel Approach for Reducing Proximity to Voltage Instability of Multibus Power System with Line Outage Using Shunt Compensation and Modal Analysis S.D.Naik Department of Electrical Engineering Shri Ramdeobaba

More information

Shuffled Complex Evolution

Shuffled Complex Evolution Shuffled Complex Evolution Shuffled Complex Evolution An Evolutionary algorithm That performs local and global search A solution evolves locally through a memetic evolution (Local search) This local search

More information

Whale Optimization Algorithm Based Technique for Distributed Generation Installation in Distribution System

Whale Optimization Algorithm Based Technique for Distributed Generation Installation in Distribution System Bulletin of Electrical Engineering and Informatics Vol. 7, No. 3, September 2018, pp. 442~449 ISSN: 2302-9285, DOI: 10.11591/eei.v7i3.1276 442 Whale Optimization Algorithm Based Technique for Distributed

More information

Voltage Controller for Radial Distribution Networks with Distributed Generation

Voltage Controller for Radial Distribution Networks with Distributed Generation International Journal of Scientific and Research Publications, Volume 4, Issue 3, March 2014 1 Voltage Controller for Radial Distribution Networks with Distributed Generation Christopher Kigen *, Dr. Nicodemus

More information

OPTIMAL PLACEMENT AND SIZING OF UNIFIED POWER FLOW CONTROLLER USING HEURISTIC TECHNIQUES FOR ELECTRICAL TRANSMISSION SYSTEM

OPTIMAL PLACEMENT AND SIZING OF UNIFIED POWER FLOW CONTROLLER USING HEURISTIC TECHNIQUES FOR ELECTRICAL TRANSMISSION SYSTEM OPTIMAL PLACEMENT AND SIZING OF UNIFIED POWER FLOW CONTROLLER USING HEURISTIC TECHNIQUES FOR ELECTRICAL TRANSMISSION SYSTEM R. Siva Subramanyam Reddy 1, T. Gowri Manohar 2 and Moupuri Satish Kumar Reddy

More information

Optimal Power flow with FACTS devices using Genetic Algorithm

Optimal Power flow with FACTS devices using Genetic Algorithm International Journal of Scientific & Engineering Research, Volume, Issue 8, August 2013 Optimal Power flow with FACTS devices using Genetic Algorithm Serene C Kurian, Jo Joy Abstract Increasing demands

More information

Optimal sizing and placement of Static and Dynamic VAR devices through Imperialist Competitive Algorithm for minimization of Transmission Power Loss

Optimal sizing and placement of Static and Dynamic VAR devices through Imperialist Competitive Algorithm for minimization of Transmission Power Loss Optimal sizing and placement of Static and Dynamic VAR devices through Imperialist Competitive Algorithm for minimization of Transmission Power Loss Pramod Kumar Gouda #1, P K Hota *2, K. Chandrasekar

More information

Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System

Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System Nishtha Bhagat 1, Praniti Durgapal 2, Prerna Gaur 3 Instrumentation and Control Engineering, Netaji Subhas Institute

More information

Smart Grid Reconfiguration Using Genetic Algorithm and NSGA-II

Smart Grid Reconfiguration Using Genetic Algorithm and NSGA-II Smart Grid Reconfiguration Using Genetic Algorithm and NSGA-II 1 * Sangeeta Jagdish Gurjar, 2 Urvish Mewada, 3 * Parita Vinodbhai Desai 1 Department of Electrical Engineering, AIT, Gujarat Technical University,

More information

A Novel Multilevel Inverter Employing Additive and Subtractive Topology

A Novel Multilevel Inverter Employing Additive and Subtractive Topology Circuits and Systems, 2016, 7, 2425-2436 Published Online July 2016 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2016.79209 A Novel Multilevel Inverter Employing Additive and

More information

IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: Volume 1, Issue 5 (July-Aug. 2012), PP

IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: Volume 1, Issue 5 (July-Aug. 2012), PP IOSR Journal of Electrical Electronics Engineering (IOSRJEEE) ISSN: 2278-1676 Volume 1, Issue 5 (July-Aug. 2012), PP 16-25 Real Power Loss Voltage Stability Limit Optimization Incorporating through DE

More information

Optimal Allocation of SVC for Minimization of Power Loss and Voltage Deviation using NSGA-II

Optimal Allocation of SVC for Minimization of Power Loss and Voltage Deviation using NSGA-II , pp.67-80 http://dx.doi.org/10.14257/ijast.2014.71.07 Optimal Allocation of SVC for Minimization of Power Loss and Voltage Deviation using NSGA-II Shishir Dixit 1*, Laxmi Srivastava 1 and Ganga Agnihotri

More information

Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian

Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian Talha Iqbal, Ali Dehghan Banadaki, Ali Feliachi Lane Department of Computer Science and Electrical Engineering

More information

OPTIMAL UTILIZATION OF GENERATORS USING HARMONY SEARCH ALGORITHM FOR THE MANAGEMENT OF CONTINGENCY

OPTIMAL UTILIZATION OF GENERATORS USING HARMONY SEARCH ALGORITHM FOR THE MANAGEMENT OF CONTINGENCY International Journal of Innovative Computing, Information and Control ICIC International c 2018 ISSN 1349-4198 Volume 14, Number 3, June 2018 pp. 1159 1168 OPTIMAL UTILIZATION OF GENERATORS USING HARMONY

More information

Genetic Algorithms as a Reactive Power Source Dispatching Aid for Voltage Security Enhancement

Genetic Algorithms as a Reactive Power Source Dispatching Aid for Voltage Security Enhancement Proc. Natl. Sci. Counc. ROC(A) Vol. 25, No. 1, 2001. pp. 53-62 Genetic Algorithms as a Reactive Power Source Dispatching Aid for Voltage Security Enhancement CHIH-WEN LIU *, CHEN-SUNG CHANG *, AND JOE-AIR

More information

TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION

TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION 1 K.LAKSHMI SOWJANYA, 2 L.RAVI SRINIVAS M.Tech Student, Department of Electrical & Electronics Engineering, Gudlavalleru Engineering College,

More information

Optimum Coordination of Overcurrent Relays: GA Approach

Optimum Coordination of Overcurrent Relays: GA Approach Optimum Coordination of Overcurrent Relays: GA Approach 1 Aesha K. Joshi, 2 Mr. Vishal Thakkar 1 M.Tech Student, 2 Asst.Proff. Electrical Department,Kalol Institute of Technology and Research Institute,

More information

Comparison and Performance Analysis of FACTs Controller in System Stability

Comparison and Performance Analysis of FACTs Controller in System Stability Circuits and Systems, 2016, 7, 2948-2958 Published Online August 2016 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2016.710253 Comparison and Performance Analysis of FACTs Controller

More information

Optimal Solar Photovoltaic Placement as a Distributed Generation in Radial Distribution Networks using Particle Swarm Optimization

Optimal Solar Photovoltaic Placement as a Distributed Generation in Radial Distribution Networks using Particle Swarm Optimization Nigerian Journal of Solar Energy, Vol. 26, 2015. Solar Energy Society of Nigeria (SESN) 2015. All rights reserved. Optimal Solar Photovoltaic as a Distributed Generation in Radial Distribution Networks

More information

Optimal PMU Placement in Power System Considering the Measurement Redundancy

Optimal PMU Placement in Power System Considering the Measurement Redundancy Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 6 (2014), pp. 593-598 Research India Publications http://www.ripublication.com/aeee.htm Optimal PMU Placement in Power System

More information

Application of DE & PSO Algorithm For The Placement of FACTS Devices For Economic Operation of a Power System

Application of DE & PSO Algorithm For The Placement of FACTS Devices For Economic Operation of a Power System Application DE & PSO Algorithm For The Placement Devices For Economic Operation a Power System B. BHATTACHARYYA, VIKASH KUMAR GUPTA 2 Department Electrical Engineering, Indian School Mines, Dhanbad, Jharkhanbd

More information

Improvement of Robot Path Planning Using Particle. Swarm Optimization in Dynamic Environments. with Mobile Obstacles and Target

Improvement of Robot Path Planning Using Particle. Swarm Optimization in Dynamic Environments. with Mobile Obstacles and Target Advanced Studies in Biology, Vol. 3, 2011, no. 1, 43-53 Improvement of Robot Path Planning Using Particle Swarm Optimization in Dynamic Environments with Mobile Obstacles and Target Maryam Yarmohamadi

More information

An Optimized Performance Amplifier

An Optimized Performance Amplifier Electrical and Electronic Engineering 217, 7(3): 85-89 DOI: 1.5923/j.eee.21773.3 An Optimized Performance Amplifier Amir Ashtari Gargari *, Neginsadat Tabatabaei, Ghazal Mirzaei School of Electrical and

More information

Simulation Based Design Analysis of an Adjustable Window Function

Simulation Based Design Analysis of an Adjustable Window Function Journal of Signal and Information Processing, 216, 7, 214-226 http://www.scirp.org/journal/jsip ISSN Online: 2159-4481 ISSN Print: 2159-4465 Simulation Based Design Analysis of an Adjustable Window Function

More information

ATC ENHANCEMENT THROUGH OPTIMAL PLACEMENT OF TCSC USING WIPSO TECHNIQUE

ATC ENHANCEMENT THROUGH OPTIMAL PLACEMENT OF TCSC USING WIPSO TECHNIQUE ATC ENHANCEMENT THROUGH OPTIMAL PLACEMENT OF TCSC USING WIPSO TECHNIQUE R. Sripriya and R. Neela Department of Electrical Enneering, Annamalai University, India E-Mail: sripriyavineeth@gmail.com ABSTRACT

More information

Harmony Search and Nonlinear Programming Based Hybrid Approach to Enhance Power System Performance with Wind Penetration

Harmony Search and Nonlinear Programming Based Hybrid Approach to Enhance Power System Performance with Wind Penetration Abstract Wind generation existence in power system greatly affects power system transient stability and it also greatly affects steady state conditions. FACTS devices are proposed as a solution to this

More information

Real-Coded Genetic Algorithm for Robust Design of UPFC Supplementary Damping Controller

Real-Coded Genetic Algorithm for Robust Design of UPFC Supplementary Damping Controller Real-Coded Genetic Algorithm for Robust Design of UPFC Supplementary Damping Controller S. C. Swain, S. Mohapatra, S. Panda & S. R. Nayak Abstract - In this paper is used in Designing UPFC based supplementary

More information

Optimal Under-voltage Load Shedding using Cuckoo Search with Levy Flight Algorithm for Voltage Stability Improvement

Optimal Under-voltage Load Shedding using Cuckoo Search with Levy Flight Algorithm for Voltage Stability Improvement International Journal of Engineering Science Invention ISSN (Online): 239 6734, ISSN (Print): 239 6726 Volume 4 Issue 7 July 205 PP.34-4 Optimal Under-voltage Load Shedding using Cuckoo Search with Levy

More information

Voltage Stability Analysis with Equal Load and Proportional Load Increment in a Multibus Power System

Voltage Stability Analysis with Equal Load and Proportional Load Increment in a Multibus Power System 2012 2nd International Conference on Power and Energy Systems (ICPES 2012) IPCSIT vol. 56 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V56.9 Voltage Stability Analysis with Equal Load

More information

2. Simulated Based Evolutionary Heuristic Methodology

2. Simulated Based Evolutionary Heuristic Methodology XXVII SIM - South Symposium on Microelectronics 1 Simulation-Based Evolutionary Heuristic to Sizing Analog Integrated Circuits Lucas Compassi Severo, Alessandro Girardi {lucassevero, alessandro.girardi}@unipampa.edu.br

More information

CHAPTER 5 PSO AND ACO BASED PID CONTROLLER

CHAPTER 5 PSO AND ACO BASED PID CONTROLLER 128 CHAPTER 5 PSO AND ACO BASED PID CONTROLLER 5.1 INTRODUCTION The quality and stability of the power supply are the important factors for the generating system. To optimize the performance of electrical

More information

Placement of Multiple Svc on Nigerian Grid System for Steady State Operational Enhancement

Placement of Multiple Svc on Nigerian Grid System for Steady State Operational Enhancement American Journal of Engineering Research (AJER) e-issn: 20-0847 p-issn : 20-0936 Volume-6, Issue-1, pp-78-85 www.ajer.org Research Paper Open Access Placement of Multiple Svc on Nigerian Grid System for

More information

Voltage Drop Compensation and Congestion Management by Optimal Placement of UPFC

Voltage Drop Compensation and Congestion Management by Optimal Placement of UPFC P P Assistant P International Journal of Automation and Power Engineering, 2012, 1: 29-36 - 29 - Published Online May 2012 www.ijape.org Voltage Drop Compensation and Congestion Management by Optimal Placement

More information

Comparison of Conventional and Meta-Heuristic Methods for Security-Constrained OPF Analysis

Comparison of Conventional and Meta-Heuristic Methods for Security-Constrained OPF Analysis Comparison of Conventional and Meta-Heuristic Methods for Security-Constrained OPF Analysis Jagadeesh Gunda, Sasa Djokic School of Engineering The University of Edinburgh Edinburgh, Scotland, UK J.Gunda@sms.ed.ac.uk

More information

Stock Price Prediction Using Multilayer Perceptron Neural Network by Monitoring Frog Leaping Algorithm

Stock Price Prediction Using Multilayer Perceptron Neural Network by Monitoring Frog Leaping Algorithm Stock Price Prediction Using Multilayer Perceptron Neural Network by Monitoring Frog Leaping Algorithm Ahdieh Rahimi Garakani Department of Computer South Tehran Branch Islamic Azad University Tehran,

More information

Performance Metric of Z Source CHB Multilevel Inverter FED IM for Selective Harmonic Elimination and THD Reduction

Performance Metric of Z Source CHB Multilevel Inverter FED IM for Selective Harmonic Elimination and THD Reduction Circuits and Systems, 2016, 7, 3794-3806 http://www.scirp.org/journal/cs ISSN Online: 2153-1293 ISSN Print: 2153-1285 Performance Metric of Z Source CHB Multilevel Inverter FED IM for Selective Harmonic

More information

Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods

Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods Nitin Singh 1, Smarajit Ghosh 2, Krishna Murari 3 EIED, Thapar university, Patiala-147004, India Email-

More information

Fault Location Using Sparse Wide Area Measurements

Fault Location Using Sparse Wide Area Measurements 319 Study Committee B5 Colloquium October 19-24, 2009 Jeju Island, Korea Fault Location Using Sparse Wide Area Measurements KEZUNOVIC, M., DUTTA, P. (Texas A & M University, USA) Summary Transmission line

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations 6 (2015) 43 58 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/ijiec

More information

Power Analysis of Sensor Node Using Simulation Tool

Power Analysis of Sensor Node Using Simulation Tool Circuits and Systems, 2016, 7, 4236-4247 http://www.scirp.org/journal/cs ISSN Online: 2153-1293 ISSN Print: 2153-1285 Power Analysis of Sensor Node Using Simulation Tool R. Sittalatchoumy 1, R. Kanthavel

More information

Fuzzy Approach to Critical Bus Ranking under Normal and Line Outage Contingencies

Fuzzy Approach to Critical Bus Ranking under Normal and Line Outage Contingencies Fuzzy Approach to Critical Bus Ranking under Normal and Line Outage Shobha Shankar *, Dr. T. Ananthapadmanabha ** * Research Scholar and Assistant Professor, Department of Electrical and Electronics Engineering,

More information

Department of Mechanical Engineering, Khon Kaen University, THAILAND, 40002

Department of Mechanical Engineering, Khon Kaen University, THAILAND, 40002 366 KKU Res. J. 2012; 17(3) KKU Res. J. 2012; 17(3):366-374 http : //resjournal.kku.ac.th Multi Objective Evolutionary Algorithms for Pipe Network Design and Rehabilitation: Comparative Study on Large

More information

A Novel Multistage Genetic Algorithm Approach for Solving Sudoku Puzzle

A Novel Multistage Genetic Algorithm Approach for Solving Sudoku Puzzle A Novel Multistage Genetic Algorithm Approach for Solving Sudoku Puzzle Haradhan chel, Deepak Mylavarapu 2 and Deepak Sharma 2 Central Institute of Technology Kokrajhar,Kokrajhar, BTAD, Assam, India, PIN-783370

More information

Madurai, Tamilnadu, India *Corresponding author. Madurai, Tamilnadu, India ABSTRACT

Madurai, Tamilnadu, India *Corresponding author. Madurai, Tamilnadu, India ABSTRACT International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 2 (2014), pp. 211-226 International Research Publication House http://www.irphouse.com Power Quality Improvement of Distribution

More information

Research Article Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization

Research Article Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization Antennas and Propagation Volume 008, Article ID 1934, 4 pages doi:10.1155/008/1934 Research Article Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization Munish

More information

Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems

Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems Neural Network Based Loading Margin Approximation for Static Voltage Stability in Power Systems Arthit Sode-Yome, Member, IEEE, and Kwang Y. Lee, Fellow, IEEE Abstract Approximate loading margin methods

More information

Optimal Placement of UPFC for Voltage Drop Compensation

Optimal Placement of UPFC for Voltage Drop Compensation International Journal of Automation and Power Engineering, 2012, 1: 112-117 - 112 - Published Online August 2012 www.ijape.org Optimal Placement of UPFC for Voltage Drop Compensation Saber Izadpanah Tous

More information

Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems

Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems Journal of Computer Science 8 (4): 585-590, 2012 ISSN 1549-3636 2012 Science Publications Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems Subramani, C., Subhransu

More information

Position Control of Servo Systems using PID Controller Tuning with Soft Computing Optimization Techniques

Position Control of Servo Systems using PID Controller Tuning with Soft Computing Optimization Techniques Position Control of Servo Systems using PID Controller Tuning with Soft Computing Optimization Techniques P. Ravi Kumar M.Tech (control systems) Gudlavalleru engineering college Gudlavalleru,Andhra Pradesh,india

More information

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Journal of Academic and Applied Studies (JAAS) Vol. 2(1) Jan 2012, pp. 32-38 Available online @ www.academians.org ISSN1925-931X NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Sedigheh

More information

Artificial Intelligent and meta-heuristic Control Based DFIG model Considered Load Frequency Control for Multi-Area Power System

Artificial Intelligent and meta-heuristic Control Based DFIG model Considered Load Frequency Control for Multi-Area Power System International Research Journal of Engineering and Technology (IRJET) e-issn: 395-56 Volume: 4 Issue: 9 Sep -7 www.irjet.net p-issn: 395-7 Artificial Intelligent and meta-heuristic Control Based DFIG model

More information

Coordination of overcurrent relay using Hybrid GA- NLP method

Coordination of overcurrent relay using Hybrid GA- NLP method Coordination of overcurrent relay using Hybrid GA- NLP method 1 Sanjivkumar K. Shakya, 2 Prof.G.R.Patel 1 P.G. Student, 2 Assistant professor Department Of Electrical Engineering Sankalchand Patel College

More information

Review of Soft Computing Techniques used in Robotics Application

Review of Soft Computing Techniques used in Robotics Application International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 3 (2013), pp. 101-106 International Research Publications House http://www. irphouse.com /ijict.htm Review

More information

A Genetic Algorithm for Solving Beehive Hidato Puzzles

A Genetic Algorithm for Solving Beehive Hidato Puzzles A Genetic Algorithm for Solving Beehive Hidato Puzzles Matheus Müller Pereira da Silva and Camila Silva de Magalhães Universidade Federal do Rio de Janeiro - UFRJ, Campus Xerém, Duque de Caxias, RJ 25245-390,

More information

Research Article Real and Reactive Power Compensation Using UPFC by Bacterial Foraging Optimization Algorithm (BFOA)

Research Article Real and Reactive Power Compensation Using UPFC by Bacterial Foraging Optimization Algorithm (BFOA) Research Journal of Applied Sciences, Engineering and Technology 9(11): 1027-1033, 2015 DOI:10.19026/rjaset.9.2596 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted:

More information

NSGA Based Optimal Volt / Var Control in Distribution System with Dispersed Generation

NSGA Based Optimal Volt / Var Control in Distribution System with Dispersed Generation NSGA Based Optimal Volt / Var Control in Distribution System with Dispersed Generation P. N. Hrisheekesha, and Jaydev Sharma Abstract In this paper, a method based on Non-Dominated Sorting Genetic Algorithm

More information

IPSO Algorithm for Maximization of System Loadability, Voltage Stability and Loss Minimisation by Optimal DG Placement

IPSO Algorithm for Maximization of System Loadability, Voltage Stability and Loss Minimisation by Optimal DG Placement Algorithm for Maximization of System Loadability, Voltage Stability and Loss Minimisation by Optimal DG Placement N. Prema Kumar 1, K. Mercy Rosalina Associate Professor, Department of Electrical Engineering,

More information

SuperOPF and Global-OPF : Design, Development, and Applications

SuperOPF and Global-OPF : Design, Development, and Applications SuperOPF and Global-OPF : Design, Development, and Applications Dr. Hsiao-Dong Chiang Professor, School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA School of electrical

More information

ECONOMIC LOAD DISPATCH USING SIMPLE AND REFINED GENETIC ALGORITHM

ECONOMIC LOAD DISPATCH USING SIMPLE AND REFINED GENETIC ALGORITHM ECONOMIC LOAD DISPATCH USING SIMPLE AND REFINED GENETIC ALGORITHM Lily Chopra and Raghuwinder Kaur 2 Sant Baba Bhag Singh Institute of Engineering & Technology, Jalandhar, India 2 Adesh Institute of Engineering

More information

Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices

Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices RESEARCH ARTICLE Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices Fadi M. Albatsh 1 *, Shameem Ahmad

More information

Performance Analysis of Optimal Scheduling Based Firefly algorithm in MIMO system

Performance Analysis of Optimal Scheduling Based Firefly algorithm in MIMO system Performance Analysis of Optimal Scheduling Based Firefly algorithm in MIMO system Nidhi Sindhwani Department of ECE, ASET, GGSIPU, Delhi, India Abstract: In MIMO system, there are several number of users

More information

Optimal Placement of Unified Power Flow Controller for Minimization of Power Transmission Line Losses

Optimal Placement of Unified Power Flow Controller for Minimization of Power Transmission Line Losses Optimal Placement of Unified Power Flow Controller for inimization of Power Transmission Line Losses Sreerama umar R., Ibrahim. Jomoah, and Abdullah Omar Bafail Abstract This paper proposes the application

More information

FIR Digital Filter and Its Designing Methods

FIR Digital Filter and Its Designing Methods FIR Digital Filter and Its Designing Methods Dr Kuldeep Bhardwaj Professor & HOD in ECE Department, Dhruva Institute of Engineering & Technology ABSTRACT In this paper discuss about the digital filter.

More information

COMPARATIVE PERFORMANCE OF WIND ENERGY CONVERSION SYSTEM (WECS) WITH PI CONTROLLER USING HEURISTIC OPTIMIZATION ALGORITHMS

COMPARATIVE PERFORMANCE OF WIND ENERGY CONVERSION SYSTEM (WECS) WITH PI CONTROLLER USING HEURISTIC OPTIMIZATION ALGORITHMS 24 th International Conference on Electricity Distribution Glasgow, 2-5 June 27 Paper 7 COMPARATIVE PERFORMANCE OF WIND ENERGY CONVERSION SYSTEM (WECS) WITH PI CONTROLLER USING HEURISTIC OPTIMIZATION ALGORITHMS

More information

Research Article Analysis of Population Diversity of Dynamic Probabilistic Particle Swarm Optimization Algorithms

Research Article Analysis of Population Diversity of Dynamic Probabilistic Particle Swarm Optimization Algorithms Mathematical Problems in Engineering Volume 4, Article ID 765, 9 pages http://dx.doi.org/.55/4/765 Research Article Analysis of Population Diversity of Dynamic Probabilistic Particle Swarm Optimization

More information

Enhancement of Voltage Stability by optimal location of UPFC using MPSO and Power Flow Analysis using ECI Algorithm

Enhancement of Voltage Stability by optimal location of UPFC using MPSO and Power Flow Analysis using ECI Algorithm IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. I (Jan. 2014), PP 41-47 Enhancement of Voltage Stability by optimal location

More information

Control of Load Frequency of Power System by PID Controller using PSO

Control of Load Frequency of Power System by PID Controller using PSO Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 5, Issue 6, June 206) Control of Load Frequency of Power System by PID Controller using PSO Shiva Ram Krishna, Prashant Singh 2, M. S. Das 3,2,3 Dept.

More information

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Babar Noor 1, Muhammad Aamir Aman 1, Murad Ali 1, Sanaullah Ahmad 1, Fazal Wahab Karam. 2 Electrical

More information

Research Article Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm

Research Article Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm Research Journal of Applied Sciences, Engineering and Technology 7(17): 3441-3445, 14 DOI:1.196/rjaset.7.695 ISSN: 4-7459; e-issn: 4-7467 14 Maxwell Scientific Publication Corp. Submitted: May, 13 Accepted:

More information

Load Frequency and Voltage Control of Two Area Interconnected Power System using PID Controller. Kavita Goswami 1 and Lata Mishra 2

Load Frequency and Voltage Control of Two Area Interconnected Power System using PID Controller. Kavita Goswami 1 and Lata Mishra 2 e t International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 722-726(2017) (Published by Research Trend, Website: www.researchtrend.net) ISSN No. (Print) : 0975-8364 ISSN No. (Online)

More information

Optimal Undervoltage Load Shedding using Ant Lion Optimizer

Optimal Undervoltage Load Shedding using Ant Lion Optimizer Optimal Undervoltage Load Shedding using Ant Lion Optimizer Zuhaila Mat Yasin zuhailamy74@gmail.com Izni Nadhirah Sam on Hasmaini Mohamad Norfishah Ab Wahab Nur Ashida Salim Abstract This paper presents

More information

A REVIEW OF VOLTAGE/VAR CONTROL

A REVIEW OF VOLTAGE/VAR CONTROL Abstract A RVIW OF VOLTAG/VAR CONTROL M. Lin, R. K. Rayudu and S. Samarasinghe Centre for Advanced Computational Solutions Lincoln University This paper presents a survey of voltage/var control techniques.

More information

Evolutionary Programming Based Optimal Placement of UPFC Device in Deregulated Electricity Market

Evolutionary Programming Based Optimal Placement of UPFC Device in Deregulated Electricity Market Evolutionary Programming Based Optimal Placement of UPFC Device in Deregulated Electricity Market Mr. K. Balamurugan 1, Dr. R. Muralisachithanandam 2, Dr. V. Dharmalingam 3, Mr. K. V. Sethuraman 4 1 Asst

More information

Voltage Stability Assessment in Power Network Using Artificial Neural Network

Voltage Stability Assessment in Power Network Using Artificial Neural Network Voltage Stability Assessment in Power Network Using Artificial Neural Network Swetha G C 1, H.R.Sudarshana Reddy 2 PG Scholar, Dept. of E & E Engineering, University BDT College of Engineering, Davangere,

More information

Power Systems Optimal Placement And Sizing Of STATCOM in Multi-Objective Optimization Approach And Using NSGA-II Algorithm

Power Systems Optimal Placement And Sizing Of STATCOM in Multi-Objective Optimization Approach And Using NSGA-II Algorithm IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017 51 Power Systems Optimal Placement And Sizing Of STATCOM in Multi-Objective Optimization Approach And Using

More information

Comparison of Different Performance Index Factor for ABC-PID Controller

Comparison of Different Performance Index Factor for ABC-PID Controller International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 2 (2014), pp. 177-182 International Research Publication House http://www.irphouse.com Comparison of Different

More information

Antenna Array Synthesis for Suppressed Side Lobe Level Using Evolutionary Algorithms

Antenna Array Synthesis for Suppressed Side Lobe Level Using Evolutionary Algorithms Antenna Array Synthesis for Suppressed Side Lobe Level Using Evolutionary Algorithms Ch.Ramesh, P.Mallikarjuna Rao Abstract: - Antenna performance was greatly reduced by the presence of the side lobe level

More information

Optimal Placement and Sizing of FACTS Devices for Loadability Enhancement in Deregulated Power Systems

Optimal Placement and Sizing of FACTS Devices for Loadability Enhancement in Deregulated Power Systems Optimal Placement and Sizing of FACTS Devices for Enhancement in Deregulated Power Systems Mahmoud Mohammadi, Dr.Alireza Rezazadeh, Dr.Mostafa Sedighizadeh Beheshti University Beheshti University, Evin,

More information

Doctoral Dissertation Shibaura Institute of Technology. Distribution Network Loss Minimization via Artificial Immune Bee Colony

Doctoral Dissertation Shibaura Institute of Technology. Distribution Network Loss Minimization via Artificial Immune Bee Colony Doctoral Dissertation Shibaura Institute of Technology Distribution Network Loss Minimization via Artificial Immune Bee Colony 2014/SEPTEMBER MOHD NABIL BIN MUHTAZARUDDIN DISTRIBUTION NETWORK LOSS MINIMIZATION

More information

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 11 (November 2015), PP.13-18 Modelling Of Various Facts Devices for Optimal

More information

UNIVERSITY OF CALGARY. Sensitivity And Bias Based. Receding Horizon Multi Step Optimization (RHMSO) Controller. For Real Time Voltage Control

UNIVERSITY OF CALGARY. Sensitivity And Bias Based. Receding Horizon Multi Step Optimization (RHMSO) Controller. For Real Time Voltage Control UNIVERSITY OF CALGARY Sensitivity And Bias Based Receding Horizon Multi Step Optimization (RHMSO) Controller For Real Time Voltage Control by Madhumathi Kulothungan A THESIS SUBMITTED TO THE FACULTY OF

More information