Adaptive matched filter spatial detection performance

Size: px
Start display at page:

Download "Adaptive matched filter spatial detection performance"

Transcription

1 Adaptive matched filter spatial detection performance on standard imagery from a wideband VHF/UHF SAR Mark R. Allen Seth A. Phillips Dm0 J. Sofianos Science Applications International Corporation Campus Point Drive, San Diego, CA ABSTRACT The adaptive matched filter was Implemented as a spataj detector for amplitude-only or complex images, and applied to an image formed by standard narrowband means from a wide angle, wideband radar. Direct performance comparisons were made between different implementations and various matched and mismatched cases by using a novel approach to generate ROC curves parametrically. For perfectly matched cases, performance using imaged targets was found to be significantly lower than potential performance of artificial targets whose features differed from the background. Incremental gain due to whitening the background was also found to be small, indicating little background spatial correlation. It is conjectured that the relatively featureless behavior in both targets and background is due to the image formation process, since this technique averages together all wide angle, wideband information. For mismatched cases where the signature was unknown, the amplitude detector losses were approximately equal to whatever gain over noncoherent integration that matching provided. However, the complex detector was generally very sensitive to unknown information, especially phase, and produced much larger losses. Whitening under these mismatched conditions produced further losses. Detector choice thus depends primarily on how reproducible target signatures are, especially if phase is used, and the subsequent number of stored signatures necessary to account for various imaging aspect angles. 1. INTRODUCTION A CFAR adaptive matched filter (AMF) detector was previously introduced [1] for an array antenna radar, under the assumption of zero-mean complex Gaussian interference with estimated covariance. This detector was shown to be CFAR and, when the signal is matched, to have theoretical detection performance similar to that of a generalized likelihood-ratio test (GLRT). The AMF detector has the computational advantage of a simplified test statistic that is the limiting case of the GLRT detector when a large number of reference samples is used to estimate the background covariance matrix. In addition, the AMF detector was shown to be less sensitive to mismatch between the true and hypothesized signal vectors. In this paper, the AMF detector is applied as a spatial matched filter, on imagery obtained from a wideband VHF/UHF SAR. The radar uses a wideband impulse waveform and a wide angle linear dipole array with horizontal polarization [2]. Data under study were collected during a foliage penetration (FOPEN) 188 ISPIE Vol /94/$6.OO

2 experiment in August 1992 at Portage, Maine. Returns from the MHz receiver were digitized by two eight-bit AID converters operating at 500 MHz to form I/O samples - apparently without saturation. Image formation consisted of a standard narrowband integration operating over about 40 azimuth angles [3]. The AMF spatial detector is implemented in two ways, one for amplitude images and one for complex images, as described in Section Il. Detection results for certain important matched and mismatched cases are presented in sections Ill and IV for amplitude and complex implementations, respectively. Section V summarizes tentative conclusions and recommendations. The objective is to quantify bounds on AMF detection performance and robustness for targets obscured by trees, using this SAR experimental data and standard image formation. This serves for comparison with other radars and other detection or image formation algorithms, as part of the War Breaker program FOPEN detection study sponsored by the Advanced Research Projects Agency (AR PA). 2. AMF DETECTOR IMPLEMENTATION Using lexicographic ordering, an MxN rectangular image patch can be written as a vector of length MN. Following the notation in [1], the target signal is modeled as vector bs, where S is a hypothesized signature vector and b is an unknown complex scalar (amplitude and initial phase). The measurements consist of a primary measurement vector z, and a set of secondary reference vectors, z(k), k=1,..,k from which the covariance matrix M is estimated using the maximum likelihood formula (superscript "+" denotes conjugate transposition), = z(k) z(k) (1) The adaptive matched filter (AMF) test form is then, Hi S+ f1_1 z2 >a (2 S+11S < H0 where the product s forms an estimated weight vector *. Although neither the AMF detector above nor the GLRT detector mentioned previously is optimum in the Neyman-Pearson sense of maximizing d for fixed Pf, both detectors approach optimum detector performance (i.e., covariance matrix M is known) if the background is stationary Gaussian and the number of reference vectors z(k) is large. The SAR data under study does not satisfy this stationary Gaussian hypothesis. Using estimates of its first four moments, the image background intensity (squared magnitude) pdf appears to closely follow a gamma pdf where number of duo-degrees of freedom is less than the unity result obtained for Gaussian data. This however is consistent with the well known K-density compound clutter model [4] for the case where narrowband speckle contribution is small. SPIE Vol. 2217/ 189

3 The SAR image signature vector S may not be fully known or even stable enough to fully quantify, especially its phase information. Thus the test is implemented either for fully complex or for amplitude-only image data. The only difference is that, since the amplitude data has nonzero mean, the mean is estimated and subtracted from each pixel before processing. The signature vector S is matched when, under target-present conditions, the measurement vector consists of the sum z=s+n, where n is the mean-zero noise vector; any other signature vector is mismatched. It is assumed for simplicity that the target signal is contained in a rectangular patch whose size is known; signatures of other shapes can be accounted for by zero padding. Since the image data contains only a few targets, direct construction of a receiver operating characteristic (ROC) curve has limited meaning. Morevover, some target vehicles in the image are different, exacerbating the situation. Thus instead of the common approach, we have used the following novel method to obtain ROC curves. Start with the largest single rectangular cut from the image that, from ground surveys, is known to contain only background interference from trees (1024x256 pixels). Since this image background cut is a fairly homogeneous sample of dense forest returns, the covariance matrix M is estimated once using the entire cut. As the detector scans the background cut, a signal patch is scaled according to desired SIR and added to the background patch being operated on by the detector to obtain the detector measurement vector z. In this way, many independent opportunities are created for detecting the same target signature, and furthermore the SIR is under control by scaling. A ROC curve is generated by first forming a histogram of the detector output when signal is absent and integrating this histogram to obtain false alarm probability Pf versus threshold. Using the same histogram bin values, the detector output when signal is present (at specified SIR) is then placed into a second histogram and integrated to obtain detection probability d versus threshold. The resulting two functions are plotted against each other and numerically smoothed to obtain a single-valued d versus Pf ROC curve. A family of curves can be generated by repeating this procedure for several SIR values. By specifying an operating point (fixed Pd and Pf values) the family of ROC curves can be used to find required single pixel SIR values which, when compared for various cases, yield direct estimates of detector gains or losses. The signature vector s can be chosen to either match or mismatch the vector used for the measurement z. In addition, the detector can be simplified to a nonwhitening form by forcing the covariance matrix M to be the identity matrix, in order to find the incremental gain due to whitening the background. Results for certain important matched and mismatched cases, using both whitening and nonwhitening detector forms, are summarized below. 3. AMPLITUDE-AMF DETECTOR RESULTS Three signal patches were used; two were cuts from known concealed targets in the image, designated as "target a" and "target b", and the third was a "uniform" (constant amplitude) patch of the same size. The two targets were chosen among a group of eight because they had a relatively bright and well defined signature of similar size, and their orientation in the 190/SPIE Vol. 2217

4 image was vertical, making them easy to cut using a rectangular patch (8 range by 16 cross-range pixels). Note that 500 MHz digitization yielded approximately two and one half times oversampling in range whereas the combination of PRF and aircraft velocity resulted in approximately two times oversampling in cross-range. Thus the number of pixels used in the detection patch (128) is about five times the number of nearly independent pixels. Each independent pixel represents about one meter by one meter on the ground. Five cases were computed for both whitening and nonwhitening detector forms; the first three are the matched cases for the three signal patches. For each matched case the signature vector S is scaled and added to the background to form the measurement vector z. The last two cases are mismatched cases that use the uniform signature S to detect one of the two targets in the measurement vector z. From the family of ROC curves computed for each case, the required single pixel db SIR was extracted for an operating point of interest. For the amount of background data at hand, this operating point was chosen to be d=o9, Pf=1 and results are given in Table 1. Signal Model Detector Form Signature (s) Measurement (z) Whitening Nonwhitening Target a Target a Targetb Targetb Uniform Uniform Uniform Target a Uniform Targetb Table 1. Required Single Pixel db-sir for Pd=0.9, Pf=1 0 Amplitude-AMF Detector in Dense Tree Background (8x16 Pixels). To interpret these results, note that a square-law noncoherent integrator (simple energy detector) was also used for both targets in this data, and the resulting required single pixel db-sir was the same, as it should be, at db. With this in mind, the first two cases show that, for realistic targets cut from the image, if the signature is known exactly but the background covariance is not estimated (nonwhitening), the detector gain is only about 2-3 db over energy detection. For these perfectly matched cases the whitening gain due to background covariance estimation is an additional 1-4 db. Thus the total gain possible for realistic targets is about 3-7 db, compared with energy detection. The third case was also perfectly matched, but used a uniform signature. Interestingly, both the nonwhitening and whitening detector gains are consistent with those obtained for the two targets. The uniform signature can be thought of as a perfectly correlated "blob" whose only feature is that its overall response does not decay in space in exactly the same way as the system impulse response; apparently, the targets are about as featureless. SPIE Vol. 2217/ 191

5 The last two cases are mismatched to represent when the target signature is completely unknown and hence a uniform model is assumed. For the nonwhitening detector, the loss for this mismatch (compared with itself) is only about a db or less, whereas for the whitening detector the loss was so large that the resulting performance was about the same as or worse than energy detection. Thus although the whitening detector gave some additional gain in matched cases, it is not as robust to signature modelling errors as the nonwhitening detector. 4. COMPLEX-AMF DETECTOR RESULTS For the complex implementation, the same two targets were used in both matched and mismatched cases. In addition, two artificial signatures were used to illustrate potential gains if more features were present. A total of eight cases were computed, with the first four matched and the last four mismatched. Results in the form of required single pixel db-sir for the same operating point are summarized in Table 2. Signal Model Detector Form Signature (s) Measurement (z) Whitening Nonwhitening Targeta Targeta Targetb Targetb Uniform (A and ) Uniform (A and i) A=Unif, =lndex A=Unif, =Index A=Unif, =Target a Target a A=Target a, =Unif Target a A=Unif,=Targetb Targetb A=Targetb,=Unif Targetb Table 2. Required Single Pixel db-sir for d=o.9, Pf=104. Complex-AMF Detector in Dense Tree Background (8x16 Pixels). The first two cases in Table 2 are matched using the same target cuts from the image as before. Since the phase information provides another degree of freedom, performance is better than the corresponding result for the amplitude detector. However, considering the number of independent pixels involved in the detection patch, about one-fifth of the number of pixels present, gains over amplitude detection should be much larger than the 3-5 db exhibited. The third and fourth cases in Table 2 show this to be true. For the third case a signature with uniform amplitude and phase is used. Since the image contains an average phase progression in range due to range delay, this signature has a phase progression very different from the average background in the range dimension. The gain due to this is large; about 20 db over the two realistic target cases. The fourth case showns that an additional 20 db or so is gained if the signature phase is very different from the average background in both dimensions. Thus although potentially the complex AMF detector can 192/SPIEVoI. 2217

6 gain 50 db in sensitivity over noncoherent integration (for the patch size used), gains for targets in the image were only about 9-10 db. The last four cases are mismatched to represent when either the target signature amplitude or its phase is unknown and therefore assumed to be uniform. For the whitening detector all such cases are disastrous, whereas for the nonwhitening detector, if only the amplitude is unknown, little loss is incurred. However, even the nonwhitening detector is very sensitive to phase information, exhibiting losses of more than 10 db over simple energy detection. 5. CONCLUSIONS For both the amplitude and complex AMF detector implementations, upper bounds on performance for targets cut from the image were significantly below potential bounds. The incremental effect of whitening for perfectly matched cases was small, indicating that the image background contained little spatial correlation. We believe that the relatively featureless properties of both target and background exhibited are mainly due to the standard narrowband technique used to form the images, since this technique averages together all the wide angle, wideband information present, washing it out. Since the various implementations exhibit differing degrees of sensitivity to signature, detector choice depends primarily on how reproducible the target signatures are and the subsequent number of stored signatures necessary to account for various imaging aspect angles. Detector performance is particularly sensitive to phase information, whose reproducibility is highly questionable for images formed synthetically from wideband sensors. 6. ACKNOWLEDGEMENTS The authors greatly thank Dr. Lawrence F. Hoff of NCCOSC and Dr. Larry B. Stotts of ARPA for their productive discussions and support. 7. REFERENCES [1] Robey, F.C., et al., "A OFAR adaptive matched filter detector", IEEE Trans. on Aerospace and Electronic Systems, vol. AES-28, pp , January [2] Vickers, R.S., et al., "Results from a VHF impulse synthetic aperture radar", SPIE vol (Conference:Ultrawideband Radar), pp , January [3] Toups, M.F., and Gosselin, D.R., "The Maine 1992 foliage penetration experiment - part 1: experiment and FOPEN phenomenology", 39th Tn-Service Radar Symposium, Monterey, CA, June [4] Jao, J.K., et al., "K-distribution and polarimetric radar clutter", Journal of Electromagnetic Waves and Applications, vol. 3, pp , August SPIE Vol. 2217/ 193

Challenges in Advanced Moving-Target Processing in Wide-Band Radar

Challenges in Advanced Moving-Target Processing in Wide-Band Radar Challenges in Advanced Moving-Target Processing in Wide-Band Radar July 9, 2012 Douglas Page, Gregory Owirka, Howard Nichols 1 1 BAE Systems 6 New England Executive Park Burlington, MA 01803 Steven Scarborough,

More information

Wideband, Long-CPI GMTI

Wideband, Long-CPI GMTI Wideband, Long-CPI GMTI Ali F. Yegulalp th Annual ASAP Workshop 6 March 004 This work was sponsored by the Defense Advanced Research Projects Agency and the Air Force under Air Force Contract F968-00-C-000.

More information

SAR Imaging from Partial-Aperture Data with Frequency-Band Omissions

SAR Imaging from Partial-Aperture Data with Frequency-Band Omissions SAR Imaging from Partial-Aperture Data with Frequency-Band Omissions Müjdat Çetin a and Randolph L. Moses b a Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 77

More information

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a BAE Systems Technology Solutions, 6 New England Executive Park, Burlington, MA 01803 b AFRL/RYA, 2241 Avionics Circle,

More information

SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR

SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR Moein Ahmadi*, Kamal Mohamed-pour K.N. Toosi University of Technology, Iran.*moein@ee.kntu.ac.ir, kmpour@kntu.ac.ir Keywords: Multiple-input

More information

Adaptive CFAR Performance Prediction in an Uncertain Environment

Adaptive CFAR Performance Prediction in an Uncertain Environment Adaptive CFAR Performance Prediction in an Uncertain Environment Jeffrey Krolik Department of Electrical and Computer Engineering Duke University Durham, NC 27708 phone: (99) 660-5274 fax: (99) 660-5293

More information

DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam

DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam In the following set of questions, there are, possibly, multiple correct answers (1, 2, 3 or 4). Mark the answers you consider correct.

More information

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods Tools and Applications Chapter Intended Learning Outcomes: (i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

Improved Detection by Peak Shape Recognition Using Artificial Neural Networks

Improved Detection by Peak Shape Recognition Using Artificial Neural Networks Improved Detection by Peak Shape Recognition Using Artificial Neural Networks Stefan Wunsch, Johannes Fink, Friedrich K. Jondral Communications Engineering Lab, Karlsruhe Institute of Technology Stefan.Wunsch@student.kit.edu,

More information

Performance of Multistatic Space-Time Adaptive Processing

Performance of Multistatic Space-Time Adaptive Processing Performance of Multistatic Space-Time Adaptive Processing Donald Bruyère Department of Electrical and Computer Engineering, The University of Arizona 3 E. Speedway Blvd., Tucson, AZ 857 Phone: 5-349-399,

More information

System Identification and CDMA Communication

System Identification and CDMA Communication System Identification and CDMA Communication A (partial) sample report by Nathan A. Goodman Abstract This (sample) report describes theory and simulations associated with a class project on system identification

More information

Do It Yourself 3. Speckle filtering

Do It Yourself 3. Speckle filtering Do It Yourself 3 Speckle filtering The objectives of this third Do It Yourself concern the filtering of speckle in POLSAR images and its impact on data statistics. 1. SINGLE LOOK DATA STATISTICS 1.1 Data

More information

SCATTERING POLARIMETRY PART 1. Dr. A. Bhattacharya (Slide courtesy Prof. E. Pottier and Prof. L. Ferro-Famil)

SCATTERING POLARIMETRY PART 1. Dr. A. Bhattacharya (Slide courtesy Prof. E. Pottier and Prof. L. Ferro-Famil) SCATTERING POLARIMETRY PART 1 Dr. A. Bhattacharya (Slide courtesy Prof. E. Pottier and Prof. L. Ferro-Famil) 2 That s how it looks! Wave Polarisation An electromagnetic (EM) plane wave has time-varying

More information

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. Preface p. xv Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds

More information

MIMO Receiver Design in Impulsive Noise

MIMO Receiver Design in Impulsive Noise COPYRIGHT c 007. ALL RIGHTS RESERVED. 1 MIMO Receiver Design in Impulsive Noise Aditya Chopra and Kapil Gulati Final Project Report Advanced Space Time Communications Prof. Robert Heath December 7 th,

More information

Target Echo Information Extraction

Target Echo Information Extraction Lecture 13 Target Echo Information Extraction 1 The relationships developed earlier between SNR, P d and P fa apply to a single pulse only. As a search radar scans past a target, it will remain in the

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

UHF/VHF Synthetic Aperture Radar (SAR) systems have

UHF/VHF Synthetic Aperture Radar (SAR) systems have 1148 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 8, AUGUST 1997 Moving Target Detection in Foliage Using Along Track Monopulse Synthetic Aperture Radar Imaging Mehrdad Soumekh, Member, IEEE Abstract

More information

Research Article Detection of Ground Moving Targets for Two-Channel Spaceborne SAR-ATI

Research Article Detection of Ground Moving Targets for Two-Channel Spaceborne SAR-ATI Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume, Article ID 78, 9 pages doi:.//78 Research Article Detection of Ground Moving Targets for Two-Channel Spaceborne SAR-ATI

More information

Performance Evaluation of Two Multistatic Radar Detectors on Real and Simulated Sea-Clutter Data

Performance Evaluation of Two Multistatic Radar Detectors on Real and Simulated Sea-Clutter Data Performance Evaluation of Two Multistatic Radar Detectors on Real and Simulated Sea-Clutter Data Riccardo Palamà 1, Luke Rosenberg 2 and Hugh Griffiths 1 1 University College London, UK 2 Defence Science

More information

Performance Analysis of. Detector with Noncoherent Integration. I. Introduction. cell-averaging (CA) CFAR detector [1],

Performance Analysis of. Detector with Noncoherent Integration. I. Introduction. cell-averaging (CA) CFAR detector [1], Performance Analysis of the Clutter Map CFAR Detector with Noncoherent Integration by Chang-Joo Kim Hyuck-lae Lee Nitzberg has analyzed the detection performance of the clutter map constant false alarm

More information

CycloStationary Detection for Cognitive Radio with Multiple Receivers

CycloStationary Detection for Cognitive Radio with Multiple Receivers CycloStationary Detection for Cognitive Radio with Multiple Receivers Rajarshi Mahapatra, Krusheel M. Satyam Computer Services Ltd. Bangalore, India rajarshim@gmail.com munnangi_krusheel@satyam.com Abstract

More information

Stochastic Resonance and Suboptimal Radar Target Classification

Stochastic Resonance and Suboptimal Radar Target Classification Stochastic Resonance and Suboptimal Radar Target Classification Ismail Jouny ECE Dept., Lafayette College, Easton, PA, 1842 ABSTRACT Stochastic resonance has received significant attention recently in

More information

Narrow-Band Interference Rejection in DS/CDMA Systems Using Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators

Narrow-Band Interference Rejection in DS/CDMA Systems Using Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators 374 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 2, MARCH 2003 Narrow-Band Interference Rejection in DS/CDMA Systems Using Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators Jenq-Tay Yuan

More information

Some Advances in UWB GPR

Some Advances in UWB GPR Some Advances in UWB GPR Gennadiy Pochanin Abstract A principle of operation and arrangement of UWB antenna systems with frequency independent electromagnetic decoupling is discussed. The peculiar design

More information

Rec. ITU-R F RECOMMENDATION ITU-R F *

Rec. ITU-R F RECOMMENDATION ITU-R F * Rec. ITU-R F.162-3 1 RECOMMENDATION ITU-R F.162-3 * Rec. ITU-R F.162-3 USE OF DIRECTIONAL TRANSMITTING ANTENNAS IN THE FIXED SERVICE OPERATING IN BANDS BELOW ABOUT 30 MHz (Question 150/9) (1953-1956-1966-1970-1992)

More information

Dynamically Configured Waveform-Agile Sensor Systems

Dynamically Configured Waveform-Agile Sensor Systems Dynamically Configured Waveform-Agile Sensor Systems Antonia Papandreou-Suppappola in collaboration with D. Morrell, D. Cochran, S. Sira, A. Chhetri Arizona State University June 27, 2006 Supported by

More information

Adaptive MIMO Radar for Target Detection, Estimation, and Tracking

Adaptive MIMO Radar for Target Detection, Estimation, and Tracking Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 5-24-2012 Adaptive MIMO Radar for Target Detection, Estimation, and Tracking Sandeep Gogineni

More information

Intelligent Approach to Improve Standard CFAR Detection in non-gaussian Sea Clutter THESIS

Intelligent Approach to Improve Standard CFAR Detection in non-gaussian Sea Clutter THESIS Intelligent Approach to Improve Standard CFAR Detection in non-gaussian Sea Clutter THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of

More information

The Effect of Notch Filter on RFI Suppression

The Effect of Notch Filter on RFI Suppression Wireless Sensor Networ, 9, 3, 96-5 doi:.436/wsn.9.36 Published Online October 9 (http://www.scirp.org/journal/wsn/). The Effect of Notch Filter on RFI Suppression Wenge CHANG, Jianyang LI, Xiangyang LI

More information

Cooperative Sensing for Target Estimation and Target Localization

Cooperative Sensing for Target Estimation and Target Localization Preliminary Exam May 09, 2011 Cooperative Sensing for Target Estimation and Target Localization Wenshu Zhang Advisor: Dr. Liuqing Yang Department of Electrical & Computer Engineering Colorado State University

More information

Statistical Signal Processing. Project: PC-Based Acoustic Radar

Statistical Signal Processing. Project: PC-Based Acoustic Radar Statistical Signal Processing Project: PC-Based Acoustic Radar Mats Viberg Revised February, 2002 Abstract The purpose of this project is to demonstrate some fundamental issues in detection and estimation.

More information

Special Projects Office. Mr. Lee R. Moyer Special Projects Office. DARPATech September 2000

Special Projects Office. Mr. Lee R. Moyer Special Projects Office. DARPATech September 2000 Mr. Lee R. Moyer DARPATech 2000 6-8 September 2000 1 CC&D Tactics Pose A Challenge to U.S. Targeting Systems The Challenge: Camouflage, Concealment and Deception techniques include: Masking: Foliage cover,

More information

Optimum Beamforming. ECE 754 Supplemental Notes Kathleen E. Wage. March 31, Background Beampatterns for optimal processors Array gain

Optimum Beamforming. ECE 754 Supplemental Notes Kathleen E. Wage. March 31, Background Beampatterns for optimal processors Array gain Optimum Beamforming ECE 754 Supplemental Notes Kathleen E. Wage March 31, 29 ECE 754 Supplemental Notes: Optimum Beamforming 1/39 Signal and noise models Models Beamformers For this set of notes, we assume

More information

MOVING TARGET DETECTION IN AIRBORNE MIMO RADAR FOR FLUCTUATING TARGET RCS MODEL. Shabnam Ghotbi,Moein Ahmadi, Mohammad Ali Sebt

MOVING TARGET DETECTION IN AIRBORNE MIMO RADAR FOR FLUCTUATING TARGET RCS MODEL. Shabnam Ghotbi,Moein Ahmadi, Mohammad Ali Sebt MOVING TARGET DETECTION IN AIRBORNE MIMO RADAR FOR FLUCTUATING TARGET RCS MODEL Shabnam Ghotbi,Moein Ahmadi, Mohammad Ali Sebt K.N. Toosi University of Technology Tehran, Iran, Emails: shghotbi@mail.kntu.ac.ir,

More information

OFDM Transmission Corrupted by Impulsive Noise

OFDM Transmission Corrupted by Impulsive Noise OFDM Transmission Corrupted by Impulsive Noise Jiirgen Haring, Han Vinck University of Essen Institute for Experimental Mathematics Ellernstr. 29 45326 Essen, Germany,. e-mail: haering@exp-math.uni-essen.de

More information

Chapter 5. Array of Star Spirals

Chapter 5. Array of Star Spirals Chapter 5. Array of Star Spirals The star spiral was introduced in the previous chapter and it compared well with the circular Archimedean spiral. This chapter will examine the star spiral in an array

More information

Potential interference from spaceborne active sensors into radionavigation-satellite service receivers in the MHz band

Potential interference from spaceborne active sensors into radionavigation-satellite service receivers in the MHz band Rec. ITU-R RS.1347 1 RECOMMENDATION ITU-R RS.1347* Rec. ITU-R RS.1347 FEASIBILITY OF SHARING BETWEEN RADIONAVIGATION-SATELLITE SERVICE RECEIVERS AND THE EARTH EXPLORATION-SATELLITE (ACTIVE) AND SPACE RESEARCH

More information

SIGNAL DETECTION IN NON-GAUSSIAN NOISE BY A KURTOSIS-BASED PROBABILITY DENSITY FUNCTION MODEL

SIGNAL DETECTION IN NON-GAUSSIAN NOISE BY A KURTOSIS-BASED PROBABILITY DENSITY FUNCTION MODEL SIGNAL DETECTION IN NON-GAUSSIAN NOISE BY A KURTOSIS-BASED PROBABILITY DENSITY FUNCTION MODEL A. Tesei, and C.S. Regazzoni Department of Biophysical and Electronic Engineering (DIBE), University of Genoa

More information

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis Mohini Avatade & S.L. Sahare Electronics & Telecommunication Department, Cummins

More information

Understanding the performance of atmospheric free-space laser communications systems using coherent detection

Understanding the performance of atmospheric free-space laser communications systems using coherent detection !"#$%&'()*+&, Understanding the performance of atmospheric free-space laser communications systems using coherent detection Aniceto Belmonte Technical University of Catalonia, Department of Signal Theory

More information

Amplitude and Phase Distortions in MIMO and Diversity Systems

Amplitude and Phase Distortions in MIMO and Diversity Systems Amplitude and Phase Distortions in MIMO and Diversity Systems Christiane Kuhnert, Gerd Saala, Christian Waldschmidt, Werner Wiesbeck Institut für Höchstfrequenztechnik und Elektronik (IHE) Universität

More information

Nonuniform multi level crossing for signal reconstruction

Nonuniform multi level crossing for signal reconstruction 6 Nonuniform multi level crossing for signal reconstruction 6.1 Introduction In recent years, there has been considerable interest in level crossing algorithms for sampling continuous time signals. Driven

More information

DESIGN AND DEVELOPMENT OF SIGNAL

DESIGN AND DEVELOPMENT OF SIGNAL DESIGN AND DEVELOPMENT OF SIGNAL PROCESSING ALGORITHMS FOR GROUND BASED ACTIVE PHASED ARRAY RADAR. Kapil A. Bohara Student : Dept of electronics and communication, R.V. College of engineering Bangalore-59,

More information

Energy Detection Spectrum Sensing Technique in Cognitive Radio over Fading Channels Models

Energy Detection Spectrum Sensing Technique in Cognitive Radio over Fading Channels Models Energy Detection Spectrum Sensing Technique in Cognitive Radio over Fading Channels Models Kandunuri Kalyani, MTech G. Narayanamma Institute of Technology and Science, Hyderabad Y. Rakesh Kumar, Asst.

More information

Detection of Obscured Targets: Signal Processing

Detection of Obscured Targets: Signal Processing Detection of Obscured Targets: Signal Processing James McClellan and Waymond R. Scott, Jr. School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA 30332-0250 jim.mcclellan@ece.gatech.edu

More information

Optimum and Decentralized Detection for Multistatic Airborne Radar

Optimum and Decentralized Detection for Multistatic Airborne Radar Optimum and Decentralized Detection for Multistatic Airborne Radar The likelihood ratio test (LRT) for multistatic detection is derived for the case where each sensor platform is a coherent space-time

More information

(Refer Slide Time: 00:01:31 min)

(Refer Slide Time: 00:01:31 min) Wireless Communications Dr. Ranjan Bose Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture No. # 32 Equalization and Diversity Techniques for Wireless Communications (Continued)

More information

Principles of Modern Radar

Principles of Modern Radar Principles of Modern Radar Vol. I: Basic Principles Mark A. Richards Georgia Institute of Technology James A. Scheer Georgia Institute of Technology William A. Holm Georgia Institute of Technology PUBLiSH]J

More information

RESEARCH ON METHODS FOR ANALYZING AND PROCESSING SIGNALS USED BY INTERCEPTION SYSTEMS WITH SPECIAL APPLICATIONS

RESEARCH ON METHODS FOR ANALYZING AND PROCESSING SIGNALS USED BY INTERCEPTION SYSTEMS WITH SPECIAL APPLICATIONS Abstract of Doctorate Thesis RESEARCH ON METHODS FOR ANALYZING AND PROCESSING SIGNALS USED BY INTERCEPTION SYSTEMS WITH SPECIAL APPLICATIONS PhD Coordinator: Prof. Dr. Eng. Radu MUNTEANU Author: Radu MITRAN

More information

CHAPTER 8 AUTOMATIC DETECTION, TRACKING, AND SENSOR INTEGRATION. G. V. Trunk Naval Research Laboratory

CHAPTER 8 AUTOMATIC DETECTION, TRACKING, AND SENSOR INTEGRATION. G. V. Trunk Naval Research Laboratory CHAPTER 8 AUTOMATIC DETECTION, TRACKING, AND SENSOR INTEGRATION G. V. Trunk Naval Research Laboratory 8.1 INTRODUCTION Since the invention of radar, radar operators have detected and tracked targets by

More information

Dynamic thresholding for automated analysis of bobbin probe eddy current data

Dynamic thresholding for automated analysis of bobbin probe eddy current data International Journal of Applied Electromagnetics and Mechanics 15 (2001/2002) 39 46 39 IOS Press Dynamic thresholding for automated analysis of bobbin probe eddy current data H. Shekhar, R. Polikar, P.

More information

works must be obtained from the IEE

works must be obtained from the IEE Title A filtered-x LMS algorithm for sinu Effects of frequency mismatch Author(s) Hinamoto, Y; Sakai, H Citation IEEE SIGNAL PROCESSING LETTERS (200 262 Issue Date 2007-04 URL http://hdl.hle.net/2433/50542

More information

TRANSMIT diversity has emerged in the last decade as an

TRANSMIT diversity has emerged in the last decade as an IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 5, SEPTEMBER 2004 1369 Performance of Alamouti Transmit Diversity Over Time-Varying Rayleigh-Fading Channels Antony Vielmon, Ye (Geoffrey) Li,

More information

DIGITAL processing has become ubiquitous, and is the

DIGITAL processing has become ubiquitous, and is the IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 4, APRIL 2011 1491 Multichannel Sampling of Pulse Streams at the Rate of Innovation Kfir Gedalyahu, Ronen Tur, and Yonina C. Eldar, Senior Member, IEEE

More information

Capacity of Multi-Antenna Array Systems for HVAC ducts

Capacity of Multi-Antenna Array Systems for HVAC ducts Capacity of Multi-Antenna Array Systems for HVAC ducts A.G. Cepni, D.D. Stancil, A.E. Xhafa, B. Henty, P.V. Nikitin, O.K. Tonguz, and D. Brodtkorb Carnegie Mellon University, Department of Electrical and

More information

Noise Reduction Technique in Synthetic Aperture Radar Datasets using Adaptive and Laplacian Filters

Noise Reduction Technique in Synthetic Aperture Radar Datasets using Adaptive and Laplacian Filters RESEARCH ARTICLE OPEN ACCESS Noise Reduction Technique in Synthetic Aperture Radar Datasets using Adaptive and Laplacian Filters Sakshi Kukreti*, Amit Joshi*, Sudhir Kumar Chaturvedi* *(Department of Aerospace

More information

An HARQ scheme with antenna switching for V-BLAST system

An HARQ scheme with antenna switching for V-BLAST system An HARQ scheme with antenna switching for V-BLAST system Bonghoe Kim* and Donghee Shim* *Standardization & System Research Gr., Mobile Communication Technology Research LAB., LG Electronics Inc., 533,

More information

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function.

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. 1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. Matched-Filter Receiver: A network whose frequency-response function maximizes

More information

Image Enhancement in Spatial Domain

Image Enhancement in Spatial Domain Image Enhancement in Spatial Domain 2 Image enhancement is a process, rather a preprocessing step, through which an original image is made suitable for a specific application. The application scenarios

More information

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Tobias Rommel, German Aerospace Centre (DLR), tobias.rommel@dlr.de, Germany Gerhard Krieger, German Aerospace Centre (DLR),

More information

Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm

Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm Volume-8, Issue-2, April 2018 International Journal of Engineering and Management Research Page Number: 50-55 Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm Bhupenmewada 1, Prof. Kamal

More information

Basics of Dual-Polarized Antennas

Basics of Dual-Polarized Antennas Basics of Dual-Polarized Antennas Definition Many wireless service providers have discussed the adoption of a polarization diversity scheme in place of a space diversity approach. Like space diversity,

More information

Robust Differential Protection with Intermittent Cable Faults for Aircraft AC Generators

Robust Differential Protection with Intermittent Cable Faults for Aircraft AC Generators Robust Differential Protection with Intermittent Cable Faults for Aircraft AC Generators Ashraf Tantawy, Xenofon Koutsoukos, and Gautam Biswas Institute for Software Integrated Systems ISIS, Department

More information

RECOMMENDATION ITU-R SM Method for measurements of radio noise

RECOMMENDATION ITU-R SM Method for measurements of radio noise Rec. ITU-R SM.1753 1 RECOMMENDATION ITU-R SM.1753 Method for measurements of radio noise (Question ITU-R 1/45) (2006) Scope For radio noise measurements there is a need to have a uniform, frequency-independent

More information

Background Adaptive Band Selection in a Fixed Filter System

Background Adaptive Band Selection in a Fixed Filter System Background Adaptive Band Selection in a Fixed Filter System Frank J. Crosby, Harold Suiter Naval Surface Warfare Center, Coastal Systems Station, Panama City, FL 32407 ABSTRACT An automated band selection

More information

A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS

A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS A JOINT MODULATION IDENTIFICATION AND FREQUENCY OFFSET CORRECTION ALGORITHM FOR QAM SYSTEMS Evren Terzi, Hasan B. Celebi, and Huseyin Arslan Department of Electrical Engineering, University of South Florida

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR Progress In Electromagnetics Research, PIER 66, 229 237, 2006 A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR A. Kr. Singh, P. Kumar, T. Chakravarty, G. Singh and S. Bhooshan

More information

Radar Imagery for Forest Cover Mapping

Radar Imagery for Forest Cover Mapping Purdue University Purdue e-pubs LARS Symposia Laboratory for Applications of Remote Sensing 1-1-1981 Radar magery for Forest Cover Mapping D. J. Knowlton R. M. Hoffer Follow this and additional works at:

More information

Real Time Deconvolution of In-Vivo Ultrasound Images

Real Time Deconvolution of In-Vivo Ultrasound Images Paper presented at the IEEE International Ultrasonics Symposium, Prague, Czech Republic, 3: Real Time Deconvolution of In-Vivo Ultrasound Images Jørgen Arendt Jensen Center for Fast Ultrasound Imaging,

More information

IMPULSE RADAR EMERGENCY SYSTEM TO PREVENT DAMAGE DUE TO HARMFUL OBJECTS IN VEGETATION

IMPULSE RADAR EMERGENCY SYSTEM TO PREVENT DAMAGE DUE TO HARMFUL OBJECTS IN VEGETATION IMPULSE RADAR EMERGENCY SYSTEM TO PREVENT DAMAGE DUE TO HARMFUL OBJECTS IN VEGETATION Anatoliy A. Boryssenko, Research Co. DIASCARB, Kyiv, Ukraine Abstract The paper presents the experimental radarbased

More information

STAP Capability of Sea Based MIMO Radar Using Virtual Array

STAP Capability of Sea Based MIMO Radar Using Virtual Array International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 7, Number 1 (2014), pp. 47-56 International Research Publication House http://www.irphouse.com STAP Capability

More information

Propagation Laboratory

Propagation Laboratory RUSK-Fujitsu Double-Directional Full Polarization Channel Sounder Clustering Results of Estimated MIMO Double-directional Channel Data of a Small Macrocell (Lawrence Materum) Introduction of Complex Radar

More information

Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz

Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz Myung-Don Kim*, Jae Joon Park*, Hyun Kyu Chung* and Xuefeng Yin** *Wireless Telecommunications Research Department,

More information

THE GOAL of any detection system is to achieve a high

THE GOAL of any detection system is to achieve a high IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 2, MARCH 1999 811 An Improved Bayesian Decision Theoretic Approach for Land Mine Detection Leslie Collins, Member, IEEE, Ping Gao, Student

More information

FURTHER STUDY OF RAINFALL EFFECT ON VHF FORESTED RADIO-WAVE PROPAGATION WITH FOUR- LAYERED MODEL

FURTHER STUDY OF RAINFALL EFFECT ON VHF FORESTED RADIO-WAVE PROPAGATION WITH FOUR- LAYERED MODEL Progress In Electromagnetics Research, PIER 99, 149 161, 2009 FURTHER STUDY OF RAINFALL EFFECT ON VHF FORESTED RADIO-WAVE PROPAGATION WITH FOUR- LAYERED MODEL Y. S. Meng, Y. H. Lee, and B. C. Ng School

More information

Fig Color spectrum seen by passing white light through a prism.

Fig Color spectrum seen by passing white light through a prism. 1. Explain about color fundamentals. Color of an object is determined by the nature of the light reflected from it. When a beam of sunlight passes through a glass prism, the emerging beam of light is not

More information

Advances in Direction-of-Arrival Estimation

Advances in Direction-of-Arrival Estimation Advances in Direction-of-Arrival Estimation Sathish Chandran Editor ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xvii Acknowledgments xix Overview CHAPTER 1 Antenna Arrays for Direction-of-Arrival

More information

Resolution and location uncertainties in surface microseismic monitoring

Resolution and location uncertainties in surface microseismic monitoring Resolution and location uncertainties in surface microseismic monitoring Michael Thornton*, MicroSeismic Inc., Houston,Texas mthornton@microseismic.com Summary While related concepts, resolution and uncertainty

More information

Detection of Targets in Noise and Pulse Compression Techniques

Detection of Targets in Noise and Pulse Compression Techniques Introduction to Radar Systems Detection of Targets in Noise and Pulse Compression Techniques Radar Course_1.ppt ODonnell 6-18-2 Disclaimer of Endorsement and Liability The video courseware and accompanying

More information

Autocorrelator Sampler Level Setting and Transfer Function. Sampler voltage transfer functions

Autocorrelator Sampler Level Setting and Transfer Function. Sampler voltage transfer functions National Radio Astronomy Observatory Green Bank, West Virginia ELECTRONICS DIVISION INTERNAL REPORT NO. 311 Autocorrelator Sampler Level Setting and Transfer Function J. R. Fisher April 12, 22 Introduction

More information

REPORT ITU-R M Impact of radar detection requirements of dynamic frequency selection on 5 GHz wireless access system receivers

REPORT ITU-R M Impact of radar detection requirements of dynamic frequency selection on 5 GHz wireless access system receivers Rep. ITU-R M.2034 1 REPORT ITU-R M.2034 Impact of radar detection requirements of dynamic frequency selection on 5 GHz wireless access system receivers (2003) 1 Introduction Recommendation ITU-R M.1652

More information

Detection Algorithm of Target Buried in Doppler Spectrum of Clutter Using PCA

Detection Algorithm of Target Buried in Doppler Spectrum of Clutter Using PCA Detection Algorithm of Target Buried in Doppler Spectrum of Clutter Using PCA Muhammad WAQAS, Shouhei KIDERA, and Tetsuo KIRIMOTO Graduate School of Electro-Communications, University of Electro-Communications

More information

Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO Radar: Overview on Target Localization

Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO Radar: Overview on Target Localization Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO Radar Overview on Target Localization Samiran Pramanik, 1 Nirmalendu Bikas Sinha, 2 C.K. Sarkar 3 1 College of Engineering &

More information

Ultra Wideband Radio Propagation Measurement, Characterization and Modeling

Ultra Wideband Radio Propagation Measurement, Characterization and Modeling Ultra Wideband Radio Propagation Measurement, Characterization and Modeling Rachid Saadane rachid.saadane@gmail.com GSCM LRIT April 14, 2007 achid Saadane rachid.saadane@gmail.com ( GSCM Ultra Wideband

More information

A Prototype Wire Position Monitoring System

A Prototype Wire Position Monitoring System LCLS-TN-05-27 A Prototype Wire Position Monitoring System Wei Wang and Zachary Wolf Metrology Department, SLAC 1. INTRODUCTION ¹ The Wire Position Monitoring System (WPM) will track changes in the transverse

More information

Chapter 4 Results. 4.1 Pattern recognition algorithm performance

Chapter 4 Results. 4.1 Pattern recognition algorithm performance 94 Chapter 4 Results 4.1 Pattern recognition algorithm performance The results of analyzing PERES data using the pattern recognition algorithm described in Chapter 3 are presented here in Chapter 4 to

More information

Cognitive Radio Techniques

Cognitive Radio Techniques Cognitive Radio Techniques Spectrum Sensing, Interference Mitigation, and Localization Kandeepan Sithamparanathan Andrea Giorgetti ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xxi 1 Introduction

More information

Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication

Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication Advanced RF Sensors and Remote Sensing Instruments 2014 Ka-band Earth

More information

Approaches for Angle of Arrival Estimation. Wenguang Mao

Approaches for Angle of Arrival Estimation. Wenguang Mao Approaches for Angle of Arrival Estimation Wenguang Mao Angle of Arrival (AoA) Definition: the elevation and azimuth angle of incoming signals Also called direction of arrival (DoA) AoA Estimation Applications:

More information

IN WIRELESS and wireline digital communications systems,

IN WIRELESS and wireline digital communications systems, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 10, OCTOBER 2006 1725 Blind NLLS Carrier Frequency-Offset Estimation for QAM, PSK, PAM Modulations: Performance at Low SNR Philippe Ciblat Mounir Ghogho

More information

Detection of Targets in Bandlimited and Spatially Correlated Clutter

Detection of Targets in Bandlimited and Spatially Correlated Clutter Detection of Targets in Bandlimited and Spatially Correlated Clutter Peter Vouras Radar Division aval Research Laboratory Washington D.C., USA peter.vouras@nrl.navy.mil Abstract This paper describes the

More information

Utilization of Multipaths for Spread-Spectrum Code Acquisition in Frequency-Selective Rayleigh Fading Channels

Utilization of Multipaths for Spread-Spectrum Code Acquisition in Frequency-Selective Rayleigh Fading Channels 734 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 4, APRIL 2001 Utilization of Multipaths for Spread-Spectrum Code Acquisition in Frequency-Selective Rayleigh Fading Channels Oh-Soon Shin, Student

More information

Advanced Cell Averaging Constant False Alarm Rate Method in Homogeneous and Multiple Target Environment

Advanced Cell Averaging Constant False Alarm Rate Method in Homogeneous and Multiple Target Environment Advanced Cell Averaging Constant False Alarm Rate Method in Homogeneous and Multiple Target Environment Mrs. Charishma 1, Shrivathsa V. S 2 1Assistant Professor, Dept. of Electronics and Communication

More information

Synthetic Aperture Radar. Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London

Synthetic Aperture Radar. Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London Synthetic Aperture Radar Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London CEOI Training Workshop Designing and Delivering and Instrument Concept 15 March

More information

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing Digital Image Processing Lecture # 6 Corner Detection & Color Processing 1 Corners Corners (interest points) Unlike edges, corners (patches of pixels surrounding the corner) do not necessarily correspond

More information

Evaluation of a Multiple versus a Single Reference MIMO ANC Algorithm on Dornier 328 Test Data Set

Evaluation of a Multiple versus a Single Reference MIMO ANC Algorithm on Dornier 328 Test Data Set Evaluation of a Multiple versus a Single Reference MIMO ANC Algorithm on Dornier 328 Test Data Set S. Johansson, S. Nordebo, T. L. Lagö, P. Sjösten, I. Claesson I. U. Borchers, K. Renger University of

More information

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES Chris Oliver, CBE, NASoftware Ltd 28th January 2007 Introduction Both satellite and airborne SAR data is subject to a number of perturbations which stem from

More information