DESIGN OF ON CHIP TEMPERATURE MONITORING IN 90NM CMOS

Size: px
Start display at page:

Download "DESIGN OF ON CHIP TEMPERATURE MONITORING IN 90NM CMOS"

Transcription

1 DESIGN OF ON CHIP TEMPERATURE MONITORING IN 90NM CMOS A thesis submitted to the faculty of San Francisco State University In partial fulfillment of The Requirements for The Degree Master of Science In Engineering: Concentration In Embedded Electrical and Computer Systems by Mojan Norouzi San Francisco, CA August 2010

2 Copyright by Mojan Norouzi 2010

3 CERTIFICATION OF APPROVAL I certify that I have read Design of on chip Temperature Monitoring in 90nm CMOS by Mojan Norouzi, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirements for the degree: Master of Science in Engineering: Concentration in Embedded Electrical and Computer Systems at San Francisco State University. Hamid Mahmoodi Assistant Professor, Electrical and Computer Engineering Hamid Shahnasser Professor, Electrical and Computer Engineering

4 DESIGN OF ON CHIP TEMPERATURE MONITORING IN 90NM CMOS Mojan Norouzi San Francisco, California 2010 Modern VLSI designs experience significant temperature change due to variations in workload and ambient conditions. The change in temperature can cause variation in other performance parameters such as power and reliability. Modern chips use complex selfcalibration techniques to adjust design parameters to safeguard the chip s operation against temperature fluctuations. Any on-chip self-calibration system needs a temperature monitoring to observe the temperature of the chip at the spot of interest. This thesis describes a novel integrated design of on chip temperature monitoring sensor in 90nm CMOS technology for a wide range of temperature variation. I certify that the Abstract is a correct representation of the content of this thesis Chair, Thesis Committee Date

5 ACKNOWLEDGMENTS The following thesis, while an individual work, benefited from the insights and direction of several people. First, my Thesis Chair, Dr. Hamid Mahmoodi provided timely and instructive comments and evaluation at every stage of the thesis process, allowing me to complete this project on schedule. Next, I wish to thank the thesis committee: Dr. Hamid mahmoodi and Dr. Hamid Shahnasser. Each individual provided insights that guided and challenged my thinking, substantially improving the finished product. In addition to the technical and instrumental assistance above, I received equally important assistance from family. My parents provided on-going support throughout the thesis process, as well as technical assistance critical for completing the project in a timely manner. My mother instilled in me, from an early age, the desire and skills to obtain the Master s. v

6 TABLE OF CONTENTS List of Figures..vii Introduction.1 Design and Specifications Integrated Temperature Sensor...6 Design of Analog Operational Amplifier... 9 Implementation of the Resistors and Capacitor 15 Design of Analog Comparator.. 18 Voltage Reference.20 Results and Discussions Conclusions...24 References.25 vi

7 LIST OF FIGURES Fig.1: Increase in leakage with technology scaling....1 Fig.2: Sleep transistor implementations..2 Fig.3: System Block Diagram..5 Fig.4: Integrated Temperature Sensor Fig.5: Layout of Integrated Temperature Sensor 7 Fig.6: Biasing Circuit for op-amp Width are shown Fig.7: Two stage op-amp Fig.8: Temperature sensor connected to the differential amplifier...13 Fig.9: Output of Temp sensor and differential amplifier.. 14 Fig. 10: Layout view of Capacitor.17 Fig.11: Comparator Fig.12: Voltage Reference.20 Fig.13: Output of Voltage Reference Fig.14: Schematic of complete system.. 22 Fig.15: Output of comparators...23 vii

8 1 INTRODUCTION Leakage current has been increasing exponentially with scaling down of the transistor as shown in Fig.1. In 90nm node leakage current can reach as high as 35% of chip current. Moreover reduction in power consumption becomes critical in low-power applications such as mobile devices. Power-gating is the most recent and effective technique developed to reduce leakage power [1]. Fig.1: Increase in leakage with technology scaling In this technique array of sleep transistors are used as switches to shut on/off the power supply to part of the system. As shown in Fig.2, an array of PMOS is used to connect and disconnect supply voltage from the rest of the circuit. The gates of each PMOS are connected to a source of proper voltage, which allows the entire array to turn on. However, one notable disadvantage of this configuration is that the entire array of sleep transistors are turned ON/OFF together using a single control signal, irrespective of the operating temperature of the chip. Without temperature sensitivity the sleep transistor array experiences increasing ON/OFF switching, which is known to accelerate the aging

9 2 effect [2]. These disadvantages result in accelerating aging sleep transistors over time. Thus, there is an observed practical need for a system that can monitor the temperature and control the power gating. At low temperatures, where the circuit operates faster, portions of the sleep transistor array can be switched off to stop their aging. This requires design sensor. Fig.2: Sleep transistor implementations The objective of this paper is to design a temperature monitoring system that can identify if the temperature is in any of the pre-defined low, medium and high regions. To realize such a design, four components are needed: Temperature sensor, Voltage reference, analog Op-amp and analog Comparator. The intended application of this temperature monitoring design is for self calibration of the sleep transistors against temperature. The design shall be implemented and verified in the Synopsys 90nm CMOS technology. The design that has resulted from the analyses discussed in subsequent sections of this thieses, carries the following distinguishing features:

10 3 Fewer transistors and resistors for integrated temperature sensor than the design reported in [5-6]. The temperature sensor proposed herein carries no resistors and consumes less area. CMOS is used instead of BICMOS [6], which allows for easier and less expensive fabrication. In [5-8], there is no completed temperature monitoring system, providing ability to control other circuit such as array of sleep transistors.

11 4 DESIGN SPECIFICATIONS The sensor in this work is a MOSFET temperature sensor (see Fig.3). The threshold voltage for MOSFETs in this sensor is 200 mv at 25 C ambient temperature. The sensor output voltage changes at the rate of 4.1 mv/ C, and the application requires the sensor to measure temperatures ranging from 20 C to 100 C. Based on the application, the sensor must recognize three ranges of temperatures: low (less than 60 C), medium (between 60 C to 70 C) and high (greater than 90 C). In addition, these temperature set-points must be adjustable according to the requirements. In this system, the circuit uses a single 1.2V power supply. The limitation of this design is that it must use a 90nm transistor. Also is desire to have small size of resistors and capacitors as much as possible. A high-level block diagram of the design is shown in Fig.3. The design is composed of three main modules, namely a temperature sensor, an op-amp and a comparator. Basically the temperature sensor will sense the temperature of wanted area. Since the output of temperature sensor is not large enough an op-amp is needed to boost the signal. The output of the op-amp is an analog signal (something between 0 to 1.2V). A comparator is needed to convert the analog output of the op-amp to logic zero or one in order to control the sleep transistors.

12 5 Temperature Sensor Op-amp Comparator Referenc Fig.3: System Block Diagram

13 6 INTEGRATED TEMPERATURE SENSOR The schematic and layout of the temperature sensor is shown in Fig.3 and 5, respectively. All transistors are biased to operate in the saturation region. Transistors & are forming a current mirror and transistors and provide proper bias for the current mirror. & are diode-connected and make a current source for the current mirror, which generate voltages and [1]. Fig.4: Integrated Temperature Sensor (The numbers represent width and L=0.1um for all transistors) From basic electronics, in saturation mode the current of an NMOS transistor is given as follows (α 2):

14 7 (2.1) Where µ is the electron mobility, is the oxide capacitance, W is the width of transistor, is the threshold voltage and L is the channel length (in this research L = 0.1u). There are two parameters in Eq.2.1, which are temperature dependent: μ and. In general as temperature increases, both the threshold and the mobility decrease. Reduction in mobility reduces drain current, but, reduction in causes to increase the drain current. However, because decrease with temperature and its effect is a dominant one, the overall effect of temperature increase is a decrease in drain current. In some technologies because of small supply voltage, the current will be more sensitive to, resulting in current increase with temperature increase. Fig.5: Layout of Integrated Temperature Sensor

15 8 Using Eq 2.1 for &, and can be expressed as follows: = + (2.2) = + (2.2) Since in both & threshold voltage and mobility will decrease as temperature increases, choosing significantly larger than can noticeably increase the differences between and. In order to amplify the difference between and, a differential op-amp is needed, which is described next.

16 9 DESIGN OF ANALOG OPERATIONAL AMPLIFIER The second component in this system is an operational amplifier. The op-amp has two main parts which are biasing circuit and two stages op-amp. Fig.6 shows a biasing circuit for a general analog design, which uses the Beta-multiplier and critical capacitance MCP for stability. PMOS is chosen for increasing the capacitance and further stabilize the circuit [3]. The next circuit is op-amp with output buffer. A two-stage op-amp is shown in Fig.7. The first stage, there is a cascaded differential amplifier. The gain of the first stage is: (3.1) (3.2) The resistance looking into the drain of MC2, assuming M2 and MC2 are the same size, is given by =. (3.3) And again the resistance looking into the drain of MC4, assuming MC4 and M4 are the same size is given by: =. (3.4) So the gain of first stage is:

17 10 = (. //. ) (3.5) Where, and represent the transconductance (the constant relating and ) of transistor MC2 and MC4 and is the resistance looking at the drain of transistor The gain of second stage of op-amp depends on the load. If no load is connected to the output, then the gain is: (3.6) Where and represent the transconductance of transistor MC2 and MC4 and is the resistance looking at the drain of transistor MP and MN.

18 11 Width is labeled for MOSFETs and L=0.1um for all Fig.6: Biasing Circuit for op-amp Width is labeled for MOSFETs and L=0.1um for all transistors Fig.7: Two stage op-amp

19 12 The designed op-amp can be used in a differential amplifier configuration. The use of differential op-amp has two advantages: Firstly, it increases the sensitivity of the temperature sensor s output. Secondly, the differential op-amp cancels common mode noise on and also improving the reliability of the sensor. A schematic showing the connection of the differential amplifier to the temperature sensor is shown in Fig.8 [4]. Fig.8 shows the simulated output of the temperature sensor and differential amplifier as temperature is swept from to. The gain of differential amplifier (Fig.7) can be expressed as follows: ( - )( ) (3.7) Using the simulated result from Fig. 9 the above equation can be validated as follows: = ( )*( ) = 1.01V A gain larger than that shown above cannot be chosen because in this technology the power supply cannot go higher than 1.2V. Any larger gain would cause saturation of the circuit.

20 Fig.8: Temperature sensor connected to the differential amplifier 13

21 Fig.9: Output of Temperature sensor and differential amplifier 14

22 15 IMPLEMENTATION OF THE RESISTORS AND CAPACITOR Since in the above design (op-amp), the use of resistors is required this section focuses on the implementation of these resistors in CMOS. As a first step, the relevant properties of resistive materials in a 90 nm CMOS process shall be evaluated. There are three options for the selection of resistors: (1) N-well which provides 500 ohms/sq and 2400 ppm/c (parts per million per degree C) (2) poly which gives 200 ohms/sq and 20ppm/C (3) poly 400 ohms/sq and 160 ppm/c [1]. A notable advantage of the n-well resistor is its established savings in area. However its inherent sensitivity to changing temperature is as high as 2400 ppm/c. For this system, the high temperature sensitivity is undesirable. The best case is using poly which is the most stable resistor under temperature variations, and thus, the most suitable for this design configuration. To demonstrate the low sensitivity of poly to changing temperatures, the changes in resistivity of a 1kΩ resistor (at room temperature =27C) shall be calculated. Using following relation: R(T) = R( ) * [1+ TCR* (T- ) ] (4.1) Where is room temperature and TCR is temperature coefficient. For the resistance of = 1K at room temperature

23 16 = 1kΩ (1+ 2* *(100-27) = kΩ As shown above, the change in resistivity between room temperature and 100C is insignificant relative to this configuration (0.14%). For example for calculating the resistance of n-well that is W= 10 and L = 100 and n-well sheet resistance is about 2KΩ/square. Using the following formula: R =. L/W (4.2) Where is sheet resistance, W is width and L is length. So the typical resistance between the ends of n-well is R = 2000 (100/10) = 20 kω I here I would like to discuss the layout of the capacitor using n-well covered by n-imp and poly. Layout view of the capacitor is shown in Fig. 10. The capacitor can be calculated as follow:. A (4.3) Where = 8.85* F/um and represents dielectric constant ( = 3.9) and A is area.

24 17 Contact n-imp n-well Poly Fig.10: Layout view of Capacitor

25 18 DESIGN OF ANALOG COMPARATOR In order to recognize three temperature regions (low, medium, high), two comparators are needed. The comparator consists of three stages (as shown in Fig. 11): (1) Preamplifier stage, which amplifies the input signal to increase the sensitivity. This circuit is a differential amplifier with the input of Vm and Vp (2) Positive feedback stage which determine which signal is larger is basically is a heart of the comparator, and should be capable of discriminating mv-level signal (3) the final component in this comparator is output buffer which convert the signal to logic one or zero [3].

26 19 Biasing Generator Output buffer Decision Pre-amplifier Width is labeled for MOSFETs and L=0.1um for all transistors Fig.11: Comparator

27 20 VOLTAGE REFERENCE A voltage reference is needed as an input to the comparators. It is critical to have a reference voltage, insensitive to temperature variation, to be used as a reference input to comparators. Presented below (reference Fig. 12) is a voltage reference using a MOSFET-only voltage divider. Since =, we can write ( = ( (6.1) Hence the reference voltage is given by = (6.2) Now by changing W, can be adjusted [3]. Fig.12: Voltage Reference

28 21 = 5.5um and = 0.23um yields 0.74V at the output. Fig.13 shows the stability of voltage reference verses temperature. For C change in temperature, there is only 6.8mv change at the output. Therefore the output voltage is very stable in wide range of temperature variations. Fig.13: Output of Voltage Reference

29 22 RESULTS AND DISCUTIONS After designing all subsystems, it is necessary to observe the desired output from the entire system. Fig.14 shows the schematic of the complete designed temperature sensor. The first comparator compares the output of the op-amp with the reference voltage. In order to produce a reference voltage for the second comparator a voltage divider ( and ) is used for produce a smaller reference voltage. Fig.14 Schematic of complete system The simulated response of the complete design is shown in Fig.15. After biasing the circuit, the output of comparators at low temperature (below C) is at logic zero (low region). For temperatures C (medium region), the output of comparator one is at logic one however the output of comparator two remains zero. For above C (high region), the output of the second comparator is at logic high.

30 Fig.15: Output of comparators 23

31 24 CONCLUSION Having a control over temperature is an increasingly important problem in scaled technologies. In this thesis, a novel integrated system has been proposed for recognizing three ranges of temperature. The proposed system employs integrated temperature sensor followed by an op-amp in differential mode of operation with two comparators and the voltage reference. This system provides a control of temperature on a chip for a wide range in temperature. The advantages of the proposed system is its all CMOS implementation for system-on-chip design

32 25 REFERENCES 1. Meterelliyoz, M.; Mahmoodi, H.; Roy, K.;, "A leakage control system for thermal stability during burn-in test," Test Conference, Proceedings. ITC IEEE International, pp.10 pp.-991, 8-8 Nov Ramaprasath Vilangudipitchai; Balsara, P.T.;, "Decap aware sleep transistor design," Implementation of High Performance Circuits, (DCAS-04). Proceedings of the 2004 IEEE Dallas/CAS Workshop, pp , 27 Sept Baker Jacob, CMOS Circuit Design, Layout and Simulation, Wiley, Franco Sergio, Design with Operational Amplifiers and Analog Integrated Circuit, McGraw Hill, Sasaki, M.; Ikeda, M.; Asada, K.;, "A Temperature Sensor With an Inaccuracy of -1/0.8 C Using 90-nm 1-V CMOS for Online Thermal Monitoring of VLSI Circuits," Semiconductor Manufacturing, IEEE Transactions on, vol.21, no.2, pp , May Sosna, C.; Buchner, R.; Lang, W.;, "A Temperature Compensation Circuit for Thermal Flow Sensors Operated in Constant-Temperature-Difference Mode," Instrumentation and Measurement, IEEE Transactions on, vol.59, no.6, pp , June 2010.

33 26 7. Jun He; Chen Zhao; Sheng-Huang Lee; Peterson, K.; Geiger, R.; Degang Chen;, "Highly linear very compact untrimmed on-chip temperature sensor with second and third order temperature compensation," Circuits and Systems (MWSCAS), rd IEEE International Midwest Symposium on, vol., no., pp , 1-4 Aug Jha, C.M.; Bahl, G.; Melamud, R.; Chandorkar, S.A.; Hopcroft, M.A.; Kim, B.; Agarwal, M.; Salvia, J.; Mehta, H.; Kenny, T.W.;, "Cmos-Compatible Dual- Resonator MEMS Temperature Sensor with Milli-Degree Accuracy," Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS International, vol., no., pp , June 2007.

High Voltage Operational Amplifiers in SOI Technology

High Voltage Operational Amplifiers in SOI Technology High Voltage Operational Amplifiers in SOI Technology Kishore Penmetsa, Kenneth V. Noren, Herbert L. Hess and Kevin M. Buck Department of Electrical Engineering, University of Idaho Abstract This paper

More information

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

DAT175: Topics in Electronic System Design

DAT175: Topics in Electronic System Design DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application Author Mohd-Yasin, Faisal, Yap, M., I Reaz, M. Published 2006 Conference Title 5th WSEAS Int. Conference on

More information

High Speed CMOS Comparator Design with 5mV Resolution

High Speed CMOS Comparator Design with 5mV Resolution High Speed CMOS Comparator Design with 5mV Resolution Raghava Garipelly Assistant Professor, Dept. of ECE, Sree Chaitanya College of Engineering, Karimnagar, A.P, INDIA. Abstract: A high speed CMOS comparator

More information

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407 Index A Accuracy active resistor structures, 46, 323, 328, 329, 341, 344, 360 computational circuits, 171 differential amplifiers, 30, 31 exponential circuits, 285, 291, 292 multifunctional structures,

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Design of High Gain Two stage Op-Amp using 90nm Technology

Design of High Gain Two stage Op-Amp using 90nm Technology Design of High Gain Two stage Op-Amp using 90nm Technology Shaik Aqeel 1, P. Krishna Deva 2, C. Mahesh Babu 3 and R.Ganesh 4 1 CVR College of Engineering/UG Student, Hyderabad, India 2 CVR College of Engineering/UG

More information

Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier

Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier A dissertation submitted in partial fulfillment of the requirement for the award of degree of Master of Technology in VLSI Design

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

ALTHOUGH zero-if and low-if architectures have been

ALTHOUGH zero-if and low-if architectures have been IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005 1249 A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function Chun-Pang Wu and Hen-Wai Tsao Abstract This paper describes

More information

GUJARAT TECHNOLOGICAL UNIVERSITY. Semester II. Type of course: ME-Electronics & Communication Engineering (VLSI & Embedded Systems Design)

GUJARAT TECHNOLOGICAL UNIVERSITY. Semester II. Type of course: ME-Electronics & Communication Engineering (VLSI & Embedded Systems Design) GUJARAT TECHNOLOGICAL UNIVERSITY Subject Name: Analog and Mixed Signal IC Design (Elective) Subject Code: 3725206 Semester II Type of course: ME-Electronics & Communication Engineering (VLSI & Embedded

More information

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1 ISSN 2277-2685 IJESR/June 2014/ Vol-4/Issue-6/319-323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL

More information

On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital VLSI

On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital VLSI ELEN 689 606 Techniques for Layout Synthesis and Simulation in EDA Project Report On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital

More information

A Low-Quiescent Current Low-Dropout Regulator with Wide Input Range

A Low-Quiescent Current Low-Dropout Regulator with Wide Input Range International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Low-Quiescent Current Low-Dropout Regulator with Wide Input Range Xueshuo Yang Beijing Microelectronics Tech.

More information

DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN WITH LATCH NETWORK. Thota Keerthi* 1, Ch. Anil Kumar 2

DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN WITH LATCH NETWORK. Thota Keerthi* 1, Ch. Anil Kumar 2 ISSN 2277-2685 IJESR/October 2014/ Vol-4/Issue-10/682-687 Thota Keerthi et al./ International Journal of Engineering & Science Research DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN

More information

Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP

Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP 1 Pathak Jay, 2 Sanjay Kumar M.Tech VLSI and Embedded System Design, Department of School of Electronics, KIIT University,

More information

Design and Layout of Two Stage High Bandwidth Operational Amplifier

Design and Layout of Two Stage High Bandwidth Operational Amplifier Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard

More information

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP 1 B. Praveen Kumar, 2 G.Rajarajeshwari, 3 J.Anu Infancia 1, 2, 3 PG students / ECE, SNS College of Technology, Coimbatore, (India)

More information

Design of High Gain Low Voltage CMOS Comparator

Design of High Gain Low Voltage CMOS Comparator Design of High Gain Low Voltage CMOS Comparator Shahid Khan 1 1 Rustomjee Academy for Global Careers Abstract: Comparators used in most of the analog circuits like analog to digital converters, switching

More information

Low Power Design of Schmitt Trigger Based SRAM Cell Using NBTI Technique

Low Power Design of Schmitt Trigger Based SRAM Cell Using NBTI Technique Low Power Design of Schmitt Trigger Based SRAM Cell Using NBTI Technique M.Padmaja 1, N.V.Maheswara Rao 2 Post Graduate Scholar, Gayatri Vidya Parishad College of Engineering for Women, Affiliated to JNTU,

More information

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage?

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage? Exam 2 Name: Score /90 Question 1 Short Takes 1 point each unless noted otherwise. 1. Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance

More information

Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits

Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits P. S. Aswale M. E. VLSI & Embedded Systems Department of E & TC Engineering SITRC, Nashik,

More information

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

IN RECENT years, low-dropout linear regulators (LDOs) are

IN RECENT years, low-dropout linear regulators (LDOs) are IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators

More information

VLSI Based Design of Low Power and Linear CMOS Temperature Sensor

VLSI Based Design of Low Power and Linear CMOS Temperature Sensor VLSI Based Design of Low Power and Linear CMOS Temperature Sensor Poorvi Jain 1, Pramod Kumar Jain 2 1 Research Scholar (M.Teh), Department of Electronics and Instrumentation,SGSIS, Indore 2 Associate

More information

A Case Study of Nanoscale FPGA Programmable Switches with Low Power

A Case Study of Nanoscale FPGA Programmable Switches with Low Power A Case Study of Nanoscale FPGA Programmable Switches with Low Power V.Elamaran 1, Har Narayan Upadhyay 2 1 Assistant Professor, Department of ECE, School of EEE SASTRA University, Tamilnadu - 613401, India

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2011

ECEN474: (Analog) VLSI Circuit Design Fall 2011 ECEN474: (Analog) VLSI Circuit Design Fall 2011 Lecture 1: Introduction Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University Analog Circuit Sequence 326 2 Why is Analog Important? [Silva]

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Historical Background Recent advances in Very Large Scale Integration (VLSI) technologies have made possible the realization of complete systems on a single chip. Since complete

More information

Design & Analysis of Low Power Full Adder

Design & Analysis of Low Power Full Adder 1174 Design & Analysis of Low Power Full Adder Sana Fazal 1, Mohd Ahmer 2 1 Electronics & communication Engineering Integral University, Lucknow 2 Electronics & communication Engineering Integral University,

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 2 Ver. II (Mar Apr. 2015), PP 52-57 www.iosrjournals.org Design and Analysis of

More information

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Swetha Velicheti, Y. Sandhyarani, P.Praveen kumar, B.Umamaheshrao Assistant Professor, Dept. of ECE, SSCE, Srikakulam, A.P.,

More information

Design of Analog CMOS Integrated Circuits

Design of Analog CMOS Integrated Circuits Design of Analog CMOS Integrated Circuits Behzad Razavi Professor of Electrical Engineering University of California, Los Angeles H Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco

More information

A Study on the Characteristics of a Temperature Sensor with an Improved Ring Oscillator

A Study on the Characteristics of a Temperature Sensor with an Improved Ring Oscillator Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015) Barcelona, Spain July 13-14, 2015 Paper No. 137 A Study on the Characteristics of a Temperature

More information

Design of DC-DC Boost Converter in CMOS 0.18µm Technology

Design of DC-DC Boost Converter in CMOS 0.18µm Technology Volume 3, Issue 10, October-2016, pp. 554-560 ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Design of DC-DC Boost Converter in

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Sadeque Reza Khan Department of Electronic and Communication Engineering, National

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Analysis of Low Power-High Speed Sense Amplifier in Submicron Technology

Analysis of Low Power-High Speed Sense Amplifier in Submicron Technology Voltage IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 02, 2014 ISSN (online): 2321-0613 Analysis of Low Power-High Speed Sense Amplifier in Submicron Technology Sunil

More information

Sensors & Transducers Published by IFSA Publishing, S. L.,

Sensors & Transducers Published by IFSA Publishing, S. L., Sensors & Transducers Published by IFSA Publishing, S. L., 208 http://www.sensorsportal.com Fully Differential Operation Amplifier Using Self Cascode MOSFET Structure for High Slew Rate Applications Kalpraj

More information

ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL ACQUISITION SYSTEM USING 180nm CMOS TECHNOLOGY

ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL ACQUISITION SYSTEM USING 180nm CMOS TECHNOLOGY International Journal of Electronics and Communication Engineering (IJECE) ISSN 2278-9901 Vol. 2, Issue 4, Sep 2013, 67-74 IASET ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL

More information

DESIGN OF OTA-C FILTER FOR BIOMEDICAL APPLICATIONS

DESIGN OF OTA-C FILTER FOR BIOMEDICAL APPLICATIONS DESIGN OF OTA-C FILTER FOR BIOMEDICAL APPLICATIONS Sreedhar Bongani 1, Dvija Mounika Chirumamilla 2 1 (ECE, MCIS, MANIPAL UNIVERSITY, INDIA) 2 (ECE, K L University, INDIA) ABSTRACT-This paper presents

More information

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower.

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower. Characterization of CMOS Four Quadrant Analog Multiplier Nipa B. Modi*, Priyesh P. Gandhi ** *(PG Student, Department of Electronics & Communication, L. C. Institute of Technology, Gujarat Technological

More information

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations CHAPTER 3 Instrumentation Amplifier (IA) Background 3.1 Introduction The IAs are key circuits in many sensor readout systems where, there is a need to amplify small differential signals in the presence

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): 2321-0613 Design & Analysis of CMOS Telescopic Operational Transconductance Amplifier (OTA) with

More information

LOW POWER FOLDED CASCODE OTA

LOW POWER FOLDED CASCODE OTA LOW POWER FOLDED CASCODE OTA Swati Kundra 1, Priyanka Soni 2 and Anshul Kundra 3 1,2 FET, Mody Institute of Technology & Science, Lakshmangarh, Sikar-322331, INDIA swati.kundra87@gmail.com, priyankamec@gmail.com

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 Lecture 1: Introduction Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Turn in your 0.18um NDA form by Thursday Sep 1 No

More information

Design of a low voltage,low drop-out (LDO) voltage cmos regulator

Design of a low voltage,low drop-out (LDO) voltage cmos regulator Design of a low,low drop-out (LDO) cmos regulator Chaithra T S Ashwini Abstract- In this paper a low, low drop-out (LDO) regulator design procedure is proposed and implemented using 0.25 micron CMOS process.

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

STUDY OF VOLTAGE AND CURRENT SENSE AMPLIFIER

STUDY OF VOLTAGE AND CURRENT SENSE AMPLIFIER STUDY OF VOLTAGE AND CURRENT SENSE AMPLIFIER Sandeep kumar 1, Charanjeet Singh 2 1,2 ECE Department, DCRUST Murthal, Haryana Abstract Performance of sense amplifier has considerable impact on the speed

More information

Ultra Low Power VLSI Design: A Review

Ultra Low Power VLSI Design: A Review International Journal of Emerging Engineering Research and Technology Volume 4, Issue 3, March 2016, PP 11-18 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Ultra Low Power VLSI Design: A Review G.Bharathi

More information

PROCESS and environment parameter variations in scaled

PROCESS and environment parameter variations in scaled 1078 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 10, OCTOBER 2006 Reversed Temperature-Dependent Propagation Delay Characteristics in Nanometer CMOS Circuits Ranjith Kumar

More information

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

d. Can you find intrinsic gain more easily by examining the equation for current? Explain. EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a

More information

LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING

LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING Annals of the Academy of Romanian Scientists Series on Science and Technology of Information ISSN 2066-8562 Volume 3, Number 2/2010 7 LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING Vlad ANGHEL

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Design and Simulation of Low Dropout Regulator

Design and Simulation of Low Dropout Regulator Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,

More information

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

RELIABILITY ANALYSIS OF DYNAMIC LOGIC CIRCUITS UNDER TRANSISTOR AGING EFFECTS IN NANOTECHNOLOGY

RELIABILITY ANALYSIS OF DYNAMIC LOGIC CIRCUITS UNDER TRANSISTOR AGING EFFECTS IN NANOTECHNOLOGY RELIABILITY ANALYSIS OF DYNAMIC LOGIC CIRCUITS UNDER TRANSISTOR AGING EFFECTS IN NANOTECHNOLOGY A thesis work submitted to the faculty of San Francisco State University In partial fulfillment of The Requirements

More information

Design of a Capacitor-less Low Dropout Voltage Regulator

Design of a Capacitor-less Low Dropout Voltage Regulator Design of a Capacitor-less Low Dropout Voltage Regulator Sheenam Ahmed 1, Isha Baokar 2, R Sakthivel 3 1 Student, M.Tech VLSI, School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

More information

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 11 (June 2014) PP: 1-7 Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power

More information

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V power-efficient rail-to-rail Op-Amp from a lower total supply voltage.

More information

Pankaj Naik Electronic and Instrumentation Deptt. SGSITS, Indore, India. Priyanka Sharma Electronic and. SGSITS, Indore, India

Pankaj Naik Electronic and Instrumentation Deptt. SGSITS, Indore, India. Priyanka Sharma Electronic and. SGSITS, Indore, India Designing Of Current Mode Instrumentation Amplifier For Bio-Signal Using 180nm CMOS Technology Sonu Mourya Electronic and Instrumentation Deptt. SGSITS, Indore, India Pankaj Naik Electronic and Instrumentation

More information

NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME

NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME Neeta Pandey 1, Kirti Gupta 2, Rajeshwari Pandey 3, Rishi Pandey 4, Tanvi Mittal 5 1, 2,3,4,5 Department of Electronics and Communication Engineering, Delhi Technological

More information

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits TANSACTONS ON EECTCA AND EECTONC MATEAS Vol. 1, No. 6, pp. 6-66, December 5, 011 egular Paper pssn: 19-7607 essn: 09-759 DO: http://dx.doi.org/10.4313/teem.011.1.6.6 High Performance Current-Mode DC-DC

More information

Gain Boosted Telescopic OTA with 110db Gain and 1.8GHz. UGF

Gain Boosted Telescopic OTA with 110db Gain and 1.8GHz. UGF International Journal of Electronic Engineering Research ISSN 0975-6450 Volume 2 Number 2 (2010) pp. 159 166 Research India Publications http://www.ripublication.com/ijeer.htm Gain Boosted Telescopic OTA

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit

Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 4, AUGUST 2002 1819 Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit Tae-Hoon Lee, Gyuseong Cho, Hee Joon Kim, Seung Wook Lee, Wanno Lee, and

More information

Design of Low Voltage Low Power CMOS OP-AMP

Design of Low Voltage Low Power CMOS OP-AMP RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design RESEARCH ARTICLE OPEN ACCESS Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design Ankush S. Patharkar*, Dr. Shirish M. Deshmukh** *(Department of Electronics and Telecommunication,

More information

DESIGN OF A PROGRAMMABLE LOW POWER LOW DROP-OUT REGULATOR

DESIGN OF A PROGRAMMABLE LOW POWER LOW DROP-OUT REGULATOR DESIGN OF A PROGRAMMABLE LOW POWER LOW DROP-OUT REGULATOR Jayanthi Vanama and G.L.Sampoorna Trainee Engineer, Powerwave Technologies Pvt. Ltd., R&D India jayanthi.vanama@pwav.com Intern, CONEXANT Systems

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

DESIGN OF RAIL-TO-RAIL OPERATIONAL AMPLIFIER USING XFAB 0.35µM PROCESS

DESIGN OF RAIL-TO-RAIL OPERATIONAL AMPLIFIER USING XFAB 0.35µM PROCESS DESIGN OF RAIL-TO-RAIL OPERATIONAL AMPLIFIER USING XFAB 0.35µM PROCESS A DISSERTATION SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY NAMRATA ANAND DATE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Ultra-low voltage high-speed Schmitt trigger circuit in SOI MOSFET technology

Ultra-low voltage high-speed Schmitt trigger circuit in SOI MOSFET technology Ultra-low voltage high-speed Schmitt trigger circuit in SOI MOSFET technology Kyung Ki Kim a) and Yong-Bin Kim b) Department of Electrical and Computer Engineering, Northeastern University, Boston, MA

More information

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL IEEE INDICON 2015 1570186537 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 60 61 62 63

More information

LOW POWER VLSI TECHNIQUES FOR PORTABLE DEVICES Sandeep Singh 1, Neeraj Gupta 2, Rashmi Gupta 2

LOW POWER VLSI TECHNIQUES FOR PORTABLE DEVICES Sandeep Singh 1, Neeraj Gupta 2, Rashmi Gupta 2 LOW POWER VLSI TECHNIQUES FOR PORTABLE DEVICES Sandeep Singh 1, Neeraj Gupta 2, Rashmi Gupta 2 1 M.Tech Student, Amity School of Engineering & Technology, India 2 Assistant Professor, Amity School of Engineering

More information

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB Department of Electronic ELEC 5808 (ELG 6388) Signal Processing Electronics Final Examination Dec 14th, 2010 5:30PM - 7:30PM R. Mason answer all questions one 8.5 x 11 crib sheets allowed 1. (5 points)

More information

Performance Analysis of Energy Efficient and Charge Recovery Adiabatic Techniques for Low Power Design

Performance Analysis of Energy Efficient and Charge Recovery Adiabatic Techniques for Low Power Design IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 6 (June. 2013), V1 PP 14-21 Performance Analysis of Energy Efficient and Charge Recovery Adiabatic Techniques for

More information

due to power supply and technology. Process specifications were obtained from the MOSIS

due to power supply and technology. Process specifications were obtained from the MOSIS design number 85739 VLSI Design Chromatic Instrument Tuner For the design of the operational amplifier, we have to take into consideration the constraints due to power supply and technology. Process specifications

More information

Short Channel Bandgap Voltage Reference

Short Channel Bandgap Voltage Reference Short Channel Bandgap Voltage Reference EE-584 Final Report Authors: Thymour Legba Yugu Yang Chris Magruder Steve Dominick Table of Contents Table of Figures... 3 Abstract... 4 Introduction... 5 Theory

More information

LOW VOLTAGE / LOW POWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER FOR PORTABLE ECG

LOW VOLTAGE / LOW POWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER FOR PORTABLE ECG LOW VOLTAGE / LOW POWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER FOR PORTABLE ECG A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY BORAM LEE IN PARTIAL FULFILLMENT

More information

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore

More information

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation 2017 International Conference on Electronic, Control, Automation and Mechanical Engineering (ECAME 2017) ISBN: 978-1-60595-523-0 A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement

More information

Using Transistor Roles in Teaching CMOS Integrated Circuits

Using Transistor Roles in Teaching CMOS Integrated Circuits Using Transistor Roles in Teaching CMOS Integrated Circuits G. S. KLIROS 1 and A. S. ANDREATOS 2 Department of Aeronautical Sciences (1) Div. of Electronics & Communications Engineering (2) Div. of Computer

More information

DVCC Based Current Mode and Voltage Mode PID Controller

DVCC Based Current Mode and Voltage Mode PID Controller DVCC Based Current Mode and Voltage Mode PID Controller Mohd.Shahbaz Alam Assistant Professor, Department of ECE, ABES Engineering College, Ghaziabad, India ABSTRACT: The demand of electronic circuit with

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information