Wireless Point to Point Frequently Asked Questions

Size: px
Start display at page:

Download "Wireless Point to Point Frequently Asked Questions"

Transcription

1 Wireless Point to Point Frequently Asked Questions Document ID: 9217 Contents Introduction What type(s) of antennas can I use with my system? Do the antennas for both ends of my link need to be the same exact size or type? What is antenna gain? How does antenna gain relate to the pattern or directivity? What is antenna polarization? What is cross polarization? How can I tell if and when my antennas are properly aligned? The path for my link crosses through the path of another link. Will the two links interfere with each other? The path for my link has some telephone and/or power wires that run perpendicular through the path. Will these affect my link? I notice that there is an unused coax cable already installed in my building between where I want to install the wireless router interface and the outdoor transverter. Can I just use this cable for the IF cable? I am about to install an unlicensed link. Which antenna polarization must I choose? I have just learned that the outdoor coax connections must be sealed, but my link is already installed and operational. Is it too late to seal these connections, and must I bother now? How much distance can there be, in miles, between the antennas at each end of a link? What does the duplexer really do? Why must I order the correct, specific one? Are there any safety concerns regarding antennas or the radio system in general? How do I know if I need the diversity option? If I do need it, what kind of antenna must I use? Is there any way to know how likely I am to experience an interference problem? Related Information Introduction This document answers frequently asked questions about wireless systems, and covers areas such as antennas, polarization, interference, and safety. Q. What type(s) of antennas can I use with my system? A. Use any antenna that is: Specified to work at the chosen or assigned carrier frequency. Specified to operate over at least the 6 or 12 MHz bandwidth, as appropriate. All antennas must have a 50 ohm impedance specification, and almost all do. For the most part, your antenna choice(s) are based on gain and directivity pattern characteristics required, which in turn are based on the range (path length) of the link and the topology (point to point or multipoint). Q. Do the antennas for both ends of my link need to be the same exact size or type? A. No. For example, there are cases where the antenna mounting arrangements at one end of

2 a link is only able to physically support relatively small antennas, such as a one or two foot dish. Yet the link requires a larger antenna at the other end to provide the necessary antenna gain for the path length in question. Sometimes, a high gain, narrow pattern antenna is necessary at one end to avert an interference problem, which is probably not a concern at the other end. Remember that the total antenna gain for a link is commutativeif the two antennas have different gains, you do not need to consider which antenna is at which end (except in consideration of mounting/interference issues). Warning: Even though the two antennas for a link can look very different from each other, they must have the same polarization in order for the link to work properly. Q. What is antenna gain? How does antenna gain relate to the pattern or directivity? A. The gain of any antenna is essentially a specification that quantifies how well that antenna is able to direct the radiated radio frequency (RF) energy into a particular direction. Thus, high gain antennas direct energy more narrowly and precisely, and low gain antennas direct energy more broadly. With dish type antennas, for example, the operation is exactly analogous to the operation of the reflector on a flashlight. The reflector concentrates the output of the flashlight bulb into one predominant direction in order to maximize the brightness of the light output. This principle applies equally to any gain antenna, because there is always a trade off between gain (brightness in a particular direction) and beam width (narrowness of the beam). Therefore, the gain and pattern of an antenna are fundamentally related. They are actually the same thing. Higher gain antennas always have narrower beamwidths (patterns), and low gain antennas always have wider beam widths. Q. What is antenna polarization? A. Polarization is a physical phenomenon of radio signal propagation. In general, any two antennas that are to form a link with each other must be set for the same polarization. Typically, you set polarization through the way you mount the antenna (or just the feedhorn). As such, polarization is almost always adjustable at the time of antenna installation, or later. There are two types of polarization, namely, linear and circular. Each has two subcategories within: for, and right or left handed for. Linear polarization is categorized as vertical or horizontal. Circular polarization is categorized as right handed or left handed. Polarization Category Linear Circular Polarization Subcategory Vertical or Horizontal Right Handed or Left Handed Notes The vast majority of microwave or dish type antennas are linearly polarized. Not encountered much in the commercial data communications realm.

3 If, for example, the two antennas for a link are linearly polarized, they must both be either vertically polarized or horizontally polarized. If both antennas do not have the same polarization the link either works poorly or does not work at all. The situation where one antenna is vertically polarized and the other is horizontally polarized is known as cross polarization. For licensed links, the terms of the license can specifically dictate the polarization. For unlicensed links, you are typically free to choose, and the choice can be crucial to avert or correct an interference problem. See the interference resolution section for more information. Note that for most microwave (dish) antennas, you cannot determine the exact type of polarization the antenna is set up for through observation from a distance (such as when you view a tower mounted antenna from the ground). Q. What is cross polarization? A. When two antennas do not have the same polarization the condition is called cross polarization. For example, if two antennas both had linear polarization, but one had vertical polarization and the other had horizontal polarization, the antennas are cross polarized. The term cross polarization (or "cross pol") also generally describes any two antennas with opposite polarization. Cross polarization is sometimes beneficial. An example of this is a situation in which the antennas of link A are cross polarized to the antennas of link B, where links A and B are two different but nearby links that are not meant to communicate with each other. In this case, the fact that links A and B are cross polarized is beneficial because the cross polarization prevents or reduces any possible interference between the links. Q. How can I tell if and when my antennas are properly aligned? A. First of all, be sure that the two antennas for the link are not cross polarized. After that, you need to be sure that each antenna is pointed or aligned to maximize the received signal level. A tool is commonly provided on the radio equipment to help determine this, in the form of an indicator or alignment port (use the Find function on your browser to locate this term) for a meter that gives a voltage reading proportional to the received signal level. At one end of the link at a time, the antenna pointing direction is carefully adjusted to maximize (or "peak") the reading on the indicator tool. After this is done for both ends, you must obtain the actual received signal level in dbm in order to verify that it is within 0 to 4 db of the value obtained from the link budget calculation. If the measured and calculated values differ by more than about 8 db, you can suspect either that the antenna alignment is still not correct or that there is another defect in the antenna/transmission line system (or both). Note: You can get a "peak" reading during the antenna alignment process if one or both of the antennas is aligned on a "side lobe," in which case the measured receive level may be 20 db (or more) lower than the calculated value would indicate it should be. Be aware that the link may still work under these circumstances. If you get agreement to within 0 to 4 db between the measured and calculated receive signal levels, you can be confident that the antennas are properly aligned with no other problems.

4 Q. The path for my link crosses through the path of another link. Will the two links interfere with each other? A. No. Any type of radio (or other electromagnetic) signal that propagates through space (or air) remains unaffected by any other signal that happens to cross the same point in space. In order to prove this, get two flashlights, and shine one onto a wall. Hold the other flashlight a distance away from the first, but point the second flashlight so that the two light beams cross. You notice that the beam from the second flashlight has no effect on the spot on the wall from the first. This same principle is true for radio signals of any frequency. Of course, in the flashlight example, if you shine the second light onto the same point on the wall, the spot appears brighter. If the beams were radio signals of the same frequency, and the spot on the wall was a receive antenna for one of the links, the second beam is indeed likely to cause interference. However, this is a different situation from when the beams cross in space. Q. The path for my link has some telephone and/or power wires that run perpendicular through the path. Will these affect my link? A. No. Problems are unlikely in this situation. At the radio frequencies at which the links operate, the wires appear to be infinitely long conductors. As such, there is bound to be some slight diffraction effect on the signal that propagates across them. However, because the wires are thin, this effect is very slight, so much so that you can not even measure the effect. There must be no adverse impact on the operation of the link. Q. I notice that there is an unused coax cable already installed in my building between where I want to install the wireless router interface and the outdoor transverter. Can I just use this cable for the IF cable? A. Probably not. First of all, the intermediate frequency (IF) cable (and RF cable) must have a 50 ohm impedance specification. Some types of coax cables that are/were used with LANs can have other impedance specifications, and thus you cannot use such cables. If you verify that the existing cable is a 50 ohm type, the cable still must meet two other specification requirements before you can use the cable: The total loss at 400 MHz for the entire run length must be 12 db or less. The center conductor size of the coax must be #14 AWG or larger. If these requirements are met, you can use the existing cable. If there is any doubt, do not use the cable. Also remember that someone stopped using the existing cable for a reason, and that reason can that the cable has some invisible internal damage that caused the previous user expensive and frustrating problems. Coaxial cable, and even its installation, is relatively inexpensive, so do not take chances with your important link. Q. I am about to install an unlicensed link. Which antenna polarization must I choose? A. For your own single link, polarization does not really matter. However, there are two situations in which polarization is important: (a) There are other nearby links that you do not control. (b) You plan to install, or have already installed, other links to one of the end points of the new link.

5 For (a), determine whether the other nearby links are on a frequency that can possibly cause you an interference problem. Then attempt to determine the polarization of those links. If you can, you must set up your new link to be cross polarized to the nearby links. For (b), the same applies as for (a), except that now you can easily determine the frequency and polarization, because you deal with links that you control. A site with multiple links is known as a hub, and any two links to that hub that are on the same frequency (or a close enough frequency that they could interfere with each other) must be cross polarized to each other to avoid potential interference problems. Q. I have just learned that the outdoor coax connections must be sealed, but my link is already installed and operational. Is it too late to seal these connections, and must I bother now? A. You must seal the connections as soon as possible, as long as the system is functional and has not yet suffered any moisture related damage. Some types of sealing products, such as Coax Seal, enable you to seal the connections without the need to disconnect the connections or take an operational link off line. Q. How much distance can there be, in miles, between the antennas at each end of a link? A. Unfortunately, this common question does not have a quick or simple answer. Here are the factors that govern the maximum link distance: Maximum available transmit power. Receiver sensitivity. Availability of an unobstructed path for the radio signal. Maximum available gain for the antenna(s). System losses (such as loss through coax cable runs, connectors, and so forth). Desired reliability level (availability) of link. Some product literature or application tables quote figures, such as "20 miles." In general, these quoted single values are optimum, with all of the above variables optimized. Also, remember that the availability requirement has a drastic affect on the maximum range. That is, the link distance can perhaps be double, or more, than the quoted value if you are willing to accept consistently higher error rates, which can be appropriate in an example where you use the link only for digitized voice applications. The best way to get a useful answer is to do a physical site survey, which involves examination of the radio path environment (terrain and man made obstructions) at the proposed link location. The results of such a survey can yield valuable information on: The radio path loss. Any issues that can further compromise link performance, for example, potential interference. When you obtain this information, you can choose and know the other variables, such as antenna gain, and you can obtain a very definitive answer for the maximum range. Q. What does the duplexer really do? Why must I order the correct, specific one?

6 A. In short, the duplexer is a device that allows a transmitter and a receiver to be connected simultaneously to the same antenna. Any two way wireless communication requires both a transmitter and a receiver. If you want to transmit and receive at the same time (also known as full duplex operation), clearly the transmitter and receiver must both operate at the same time. Even if each had its own antenna, full duplex operation can present a problem because the power output of the transmitter is millions of times greater than the power level of signals the receiver tries to receive. If these two devices operate at the same time in close proximity (which they typically are), some of the energy from the transmitter is bound to find its way into the receiver, where the energy is more powerful in comparison to the signals the receiver wants to receive. When the transmitter and receiver are connected to the same antenna, the problem becomes even more acute. In order for full duplex to work at all, there has to be some scheme to separate the transmit and receive signals. One common technique to do this, which Cisco broadband wireless products employ, is to transmit and receive on different frequencies. This system is called frequency division duplex. The idea is that the receiver will not be able to "hear" the transmitted signal because the receiver is selective. The receiver only receives a frequency (or a small range of frequencies) to which the receiver is tuned, and does not receive the transmitted signal if the frequency is outside of the tuning range of the receiver (called the receive passband). Although this fundamental idea is quite sound, you can still face a problem. The receiver obtains the selectivity characteristic through filters, which pass certain frequencies and reject others. However, the types of filters that are practical to incorporate into the internal circuitry design of the receiver are not selective enough to prevent the relatively powerful transmit signal from adversely affecting the operation of the receiver, even if the transmit frequency is well outside the passband range of the receiver filter. In this situation, add more filtering. Think of the duplexer as just a pair of bandpass filters incorporated together in one box. It has three connection ports: The transmit (TX) port. The receive (RX) port. The antenna port. The TX and RX ports are usually interchangeable. In most implementations (including Cisco's broadband wireless solutions), the duplexer is a passive device. The duplexer neither requires nor consumes any power. Consequently, you cannot configure the duplexer, either through software control or other means. In fact, some mechanical adjustments are made at the time of manufacture, but after that time there must never be any need to readjust these, and so any adjustment or calibration access points are typically sealed and you must not tamper with them. The two passband filters that make up the duplexer are very steep skirted, which means they easily pass frequencies within the passband, but then greatly attenuate signals that are outside of the passband frequency range by only a small amount. This characteristic is important to enable the duplexer to keep powerful transmit signals out of the receiver. The requirements of steep skirted selectivity and high out of band attenuation are what make the duplexer unique. The duplexer must also be able to handle the power level of the transmitted signal that passes through. The duplexer has two non overlapping passband frequency ranges, and thus one is naturally higher than the other. You can set up a system to transmit through the higher frequency passband filter and receive through the lower frequency one, or vice versa. These two

7 scenarios are usually described as transmit high or transmit low. The duplexer is not concerned with how this is done. The only real requirement, as far as the duplexer is concerned, is to make sure that the transmit frequency falls within the passband range of one of the filters of the duplexer, and the receive frequency falls within the other. This requires that you know the passband frequency ranges of the duplexer, and the TX and RX operating frequencies when you install or operate the duplexer. In practice, you must first determine, to at least some rough degree, what the transmit and receive frequencies must be. Then, choose a duplexer with appropriate TX and RX passband ranges to accommodate the necessary operation frequencies. This does not require an infinite range of offerings of duplexers. Rather, they are provided in a relatively few choices, one of which fulfills the requirement. If you try to operate on a TX or RX frequency (or both) that falls outside of the passband range(s) of the duplexer, the system does not work. After you install or order the system, if you want to alter either the TX or RX frequencies (or both), you can do so as long as any new frequencies that you choose fall within the passbands of the duplexer. Otherwise, you must obtain a different duplexer (for each end of the link). Finally, note that you cannot reverse the existing TX/RX split (change TX high to TX low, or vice versa) unless you also physically reverse the connections to the duplexer. Otherwise, the system cannot work after the split is reversed in the setup configuration, because now neither the TX nor RX frequencies fall within the duplexer passbands. For the Cisco Systems solution, in order to reverse the duplexer connections, you must remove the duplexer from the transverter, "flip" it around, and re install it. Q. Are there any safety concerns regarding antennas or the radio system in general? A. Yes. Aside from the obvious concerns, such as safety when you climb structures or when you work with dangerous AC line voltage, you must also be aware of the issue of exposure to RF radiation. There is still a lot that is unknown, so there is much debate about the safe limits of human exposure to RF radiation. Remember that the use of the word "radiation" here does not necessarily connote any linkage to or issue with nuclear fission or other radioactive processes. The best general rule is to avoid unnecessary exposure to radiated RF energy. Do not stand in front of, or in close proximity to, any antenna that radiates a transmitted signal. Antennas that are only used to receive signals do not pose any danger or problem. For dish type antennas, you can safely be near an operating transmit antenna if you are to the back or sides of the antenna, because these antennas are directional and potentially hazardous emission levels are only present at the front of the antenna. For more details, refer to the radiation hazard calculation table. Use the Find function on your browser to locate this term. Always assume that any antenna transmits RF energy, especially because most antennas are used in duplex systems. Be particularly wary of small sized dishes (one foot or less), because these dish antennas often radiate RF energy in the tens of gigahertz frequency range. As a general rule, the higher the frequency, the more potentially hazardous the radiation. If you look into the open (unterminated) end of waveguide that carries RF energy at 10 or more GHz, you can suffer from retinal damage if the exposure lasts only tens of seconds and the transmit power level is only a few watts. There is no known danger if you look at the unterminated end of coaxial cables that carry such energy. In any case, be careful to ensure

8 that the transmitter is not operational before you remove or replace any antenna connections. If you are on a rooftop and near an installation of microwave antennas, do not walk, and especially do not stand, in front of any of the equipment. If you must traverse a path in front of any such antennas, there is typically a very low safety concern if you move briskly across an antenna's path axis. Q. How do I know if I need the diversity option? If I do need it, what kind of antenna must I use? A. In general, the diversity option is not necessary if the link is unobstructed. In other words, you do not require the diversity option if the link is a "radio line of sight" link. The diversity feature of Cisco's broadband wireless solutions is designed to allow reliable link operation in installations where you cannot achieve line of sight, and where establishment of a usable radio link would not be possible otherwise. The diversity transverter, when installed, is used only to receive signals. The diversity transverter does not transmit. Note that the diversity option is not effective if the obstruction to the path is severe, for example, obstruction due to a mountain. The option is most effective in urban installations where the path might be line of sight except for one or two buildings in the path, for instance. In such cases, the best way to know the degree of effective performance gain that the diversity option provides is the empirical approachinstall and see. There is a way to run a test on an installed non diversity link to get a fairly good idea of how much such a link can benefit from the addition of the diversity feature. Refer to the wireless line card documentation for information about throughput setting. Use the find function on your browser to locate this term. In general, the antenna of the diversity transverter must be the same as the antenna you use for the main transverter, but this is not an absolute requirement. However, the polarization of the diversity antenna must be the same as the main antenna. Q. Is there any way to know how likely I am to experience an interference problem? A. When you consider the possibility of interference problems, there are some "common sense" items to know and watch out for. Here is the list: Understand that operation in unlicensed bands carries an inherently higher risk of interference, because the controls and protections of a license are not afforded to you. In the United States, for example, the Federal Communications Commission (FCC) does not have any rule that specifically prohibits a new user from installing a new unlicensed band radio link in your area and on "your" frequency. In such a case, you can experience interference. However, there are two issues to consider in such a situation. If someone installs a link that interferes with you, chances are that you also interfere with them. The other party can note the problem during system installation, and choose another frequency or channel. With point to point links that employ directional antennas, any signal source (of a comparable power level to yours) that can cause you any

9 interference would have to be closely aligned along your own path axis. The higher the gain of the antennas you use, the more precisely the interfering signal would have to be aligned with your path in order to cause a problem. That is why, Cisco recommends that you use the highest gain antennas for point to point links as is practical. Thus, in unlicensed bands, the potential for interference from another unlicensed user, as a practical matter, is not much greater than for licensed bands, where you essentially "own" your frequency. Remember that some licensed users sometimes operate in the unlicensed bands as well. The unlicensed bands are allocated on a shared basis, and while there is no requirement for you to obtain a license to operate for low power datacom applications with approved equipment, other licensed users can be allowed to operate with significantly higher power. A specifically important example of this is operation of U.S. government radar equipment in the U.S. U NII band at to GHz. These radars often operate at peak power levels of millions of watts, which can cause significant interference problems to other nearby users in this band. Therefore, look around your site to determine whether there are any airports or military bases, where such radars can exist. If so, you must be prepared to experience periods of interference. If you are a licensed user and you operate in a licensed band, you do not have to worry about interference. If you experience problems, there are legal statutes that provide for resolution of the matter. Related Information Wireless Quick Reference Sheet Wireless Point to Point Troubleshooting Guide Wireless Troubleshooting FAQs and Checklist Wireless Sample Configuration and Command Reference Cisco ubr7200 Series Wireless Modem Card and Subsystem Installation Point to Point Wireless Support for the Cisco ubr7200 Series Universal Broadband Router Wireless Site Planning Considerations Wireless Installation Considerations Technical Support & Documentation Cisco Systems Contacts & Feedback Help Site Map Cisco Systems, Inc. All rights reserved. Terms & Conditions Privacy Statement Cookie Policy Trademarks of Cisco Systems, Inc. Updated: Dec 14, 2005 Document ID: 9217

Wireless Point to Point Quick Reference Sheet

Wireless Point to Point Quick Reference Sheet Wireless Point to Point Quick Reference Sheet Document ID: 98 Contents Introduction Prerequisites Requirements Components Used Conventions Formulas Frequency Bands Antenna Gain Receiver Sensitivity Some

More information

Colubris Networks. Antenna Guide

Colubris Networks. Antenna Guide Colubris Networks Antenna Guide Creation Date: February 10, 2006 Revision: 1.0 Table of Contents 1. INTRODUCTION... 3 2. ANTENNA TYPES... 3 2.1. OMNI-DIRECTIONAL ANTENNA... 3 2.2. DIRECTIONAL ANTENNA...

More information

Technician License. Course

Technician License. Course Technician License Course Technician License Course Chapter 4 Lesson Plan Module - 9 Antenna Fundamentals Feed Lines & SWR The Antenna System The Antenna System Antenna: Transforms current into radio waves

More information

Technician License Course Chapter 4. Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR

Technician License Course Chapter 4. Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR Technician License Course Chapter 4 Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR The Antenna System Antenna: Transforms current into radio waves (transmit) and vice versa (receive). Feed

More information

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib Computer Networks Lecture -4- Transmission Media Dr. Methaq Talib Transmission Media A transmission medium can be broadly defined as anything that can carry information from a source to a destination.

More information

Antenna Basics. Antennas. A guide to effective antenna use

Antenna Basics. Antennas. A guide to effective antenna use A guide to effective antenna use Antennas Antennas transmit radio signals by converting radio frequency electrical currents into electromagnetic waves. Antennas receive the signals by converting the electromagnetic

More information

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks.

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks. Networking Learn Wireless Basics Introduction This document covers the basics of how wireless technology works, and how it is used to create networks. Wireless technology is used in many types of communication.

More information

This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples.

This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples. Antenna Basics This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples. What Do Antennas Do? Antennas transmit radio

More information

Technician Licensing Class T9

Technician Licensing Class T9 Technician Licensing Class T9 Amateur Radio Course Monroe EMS Building Monroe, Utah January 11/18, 2014 January 22, 2014 Testing Session Valid dates: July 1, 2010 June 30, 2014 Amateur Radio Technician

More information

Design and Matching of a 60-GHz Printed Antenna

Design and Matching of a 60-GHz Printed Antenna Application Example Design and Matching of a 60-GHz Printed Antenna Using NI AWR Software and AWR Connected for Optenni Figure 1: Patch antenna performance. Impedance matching of high-frequency components

More information

Section 6 Remote Telemetry

Section 6 Remote Telemetry Pribusin Inc. Section 6 Remote Telemetry All Material contained in this manual is Copyright Pribusin Inc. 1996. No part of this manual may be used for any other purpose except for the sale of Pribusin

More information

Amateur Radio License. Propagation and Antennas

Amateur Radio License. Propagation and Antennas Amateur Radio License Propagation and Antennas Todays Topics Propagation Antennas Propagation Modes Ground wave Low HF and below, ground acts as waveguide Line-of-Sight (LOS) VHF and above, radio waves

More information

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE MITIGATING INTERFERENCE ON AN OUTDOOR RANGE Roger Dygert MI Technologies Suwanee, GA 30024 rdygert@mi-technologies.com ABSTRACT Making measurements on an outdoor range can be challenging for many reasons,

More information

Boosting Microwave Capacity Using Line-of-Sight MIMO

Boosting Microwave Capacity Using Line-of-Sight MIMO Boosting Microwave Capacity Using Line-of-Sight MIMO Introduction Demand for network capacity continues to escalate as mobile subscribers get accustomed to using more data-rich and video-oriented services

More information

4/25/2012. Supplement T9. 2 Exam Questions, 2 Groups. Amateur Radio Technician Class T9A: T9A: T9A: T9A:

4/25/2012. Supplement T9. 2 Exam Questions, 2 Groups. Amateur Radio Technician Class T9A: T9A: T9A: T9A: Amateur Radio Technician Class Element 2 Course Presentation ti ELEMENT 2 SUB-ELEMENTS Technician Licensing Class Supplement T9 Antennas, Feedlines 2 Exam Questions, 2 Groups T1 - FCC Rules, descriptions

More information

The Physics of Radio By John White

The Physics of Radio By John White The Physics of Radio By John White Radio Bands and Channels The use of wireless devices is heavily regulated throughout the world. Each country has a government department responsible for deciding where

More information

Technician Licensing Class. Antennas

Technician Licensing Class. Antennas Technician Licensing Class Antennas Antennas A simple dipole mounted so the conductor is parallel to the Earth's surface is a horizontally polarized antenna. T9A3 Polarization is referenced to the Earth

More information

Link Budget Calculation

Link Budget Calculation Link Budget Calculation Training materials for wireless trainers This 60 minute talk is about estimating wireless link performance by using link budget calculations. It also introduces the Radio Mobile

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

Multipath and Diversity

Multipath and Diversity Multipath and Diversity Document ID: 27147 Contents Introduction Prerequisites Requirements Components Used Conventions Multipath Diversity Case Study Summary Related Information Introduction This document

More information

Practical Antennas and. Tuesday, March 4, 14

Practical Antennas and. Tuesday, March 4, 14 Practical Antennas and Transmission Lines Goals Antennas are the interface between guided waves (from a cable) and unguided waves (in space). To understand the various properties of antennas, so as to

More information

AW-H5800. User s Manual. Point-to-point. Industrial-grade, ultra-long-range 5.8 GHz line-of-sight wireless Ethernet systems

AW-H5800. User s Manual. Point-to-point. Industrial-grade, ultra-long-range 5.8 GHz line-of-sight wireless Ethernet systems AW-H5800 Point-to-point Industrial-grade, ultra-long-range 5.8 GHz line-of-sight wireless Ethernet systems AW-H5800 Line-of-sight :: 5.8 GHz Thank you for your purchase of the AW-D5800 wireless Ethernet

More information

TAP 6 Demo Quick Tour

TAP 6 Demo Quick Tour TAP 6 Demo Quick Tour Sales Contact: Curt Alway P.O. Box 7205 Charlottesville, VA 22906 Voice: 303-344-5486, Ext 1 Fax: 303-265-9399 Email: sales@softwright.com Technical Contact: Todd Summers, Ph.D. P.O.

More information

RoamAbout Outdoor Antenna Site Preparation Guide

RoamAbout Outdoor Antenna Site Preparation Guide 9033153 RoamAbout 802.11 Outdoor Antenna Site Preparation Guide Notice Notice Cabletron Systems reserves the right to make changes in specifications and other information contained in this document without

More information

[APP NOTE TITLE] Application Profile. Challenges

[APP NOTE TITLE] Application Profile. Challenges [APP NOTE TITLE] 03/23/2018 Application Profile Wireless infrastructure encompasses a broad range of radio technologies, antennas, towers, and frequencies. Radio networks are built from this infrastructure

More information

Copyright Teletronics International, Inc. Patent Pending

Copyright Teletronics International, Inc. Patent Pending Copyright 2003 By Teletronics International, Inc. Patent Pending FCC NOTICES Electronic Emission Notice: This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

Welcome to AntennaSelect Volume 4 November Where is the RFR at my site?

Welcome to AntennaSelect Volume 4 November Where is the RFR at my site? Welcome to AntennaSelect Volume 4 November 2013 Welcome to Volume 4 of our newsletter AntennaSelect. Each month we will be giving you an under the radome look at antenna and RF technology. If there are

More information

Motorola Wireless Broadband Technical Brief OFDM & NLOS

Motorola Wireless Broadband Technical Brief OFDM & NLOS technical BRIEF TECHNICAL BRIEF Motorola Wireless Broadband Technical Brief OFDM & NLOS Splitting the Data Stream Exploring the Benefits of the Canopy 400 Series & OFDM Technology in Reaching Difficult

More information

Cell Extender Antenna System Design Guide Lines

Cell Extender Antenna System Design Guide Lines Cell Extender Antenna System Design Guide Lines 1. General The design of an Antenna system for a Cell Extender site needs to take into account the following specific factors: a) The systems input and output

More information

FM Transmission Systems Course

FM Transmission Systems Course FM Transmission Systems Course Course Description An FM transmission system, at its most basic level, consists of the transmitter, the transmission line and antenna. There are many variables within these

More information

Signal Leakage Patrolling in the 700 MHz Frequency Band

Signal Leakage Patrolling in the 700 MHz Frequency Band Signal Leakage Patrolling in the 700 MHz Frequency Band Welcome to the 1 st Quarter 2013 CSEI Technical Report. My last technical report, in the 2 nd Qtr of 2012 (the 3 rd & 4 th quarters of 2012 were

More information

Planning a Microwave Radio Link

Planning a Microwave Radio Link 8000 Lee Highway Falls Church, VA 22042 703-205-0600 www.ydi.com Planning a Microwave Radio Link By Michael F. Young President and CTO YDI Wireless Background Most installers know that clear line of sight

More information

Antenna Basics. A general guide for antenna selection and installation techniques

Antenna Basics. A general guide for antenna selection and installation techniques Antenna Basics A general guide for antenna selection and installation techniques Introduction to RF antennas What is an antenna, how does it work? An antenna is a metallic device that releases electromagnetic

More information

CHAPTER 8 ANTENNAS 1

CHAPTER 8 ANTENNAS 1 CHAPTER 8 ANTENNAS 1 2 Antennas A good antenna works A bad antenna is a waste of time & money Antenna systems can be very inexpensive and simple They can also be very expensive 3 Antenna Considerations

More information

SolidRF SOHO Tri-Band Cell Phone Signal Booster for GSM, GPRS, CDMA 3G and Verizon 4G LTE. 700 MHz(Band 13) / 850 MHz / 1900 MHz ONLY

SolidRF SOHO Tri-Band Cell Phone Signal Booster for GSM, GPRS, CDMA 3G and Verizon 4G LTE. 700 MHz(Band 13) / 850 MHz / 1900 MHz ONLY SolidRF SOHO Tri-Band Cell Phone Signal Booster for GSM, GPRS, CDMA 3G and Verizon 4G LTE 700 MHz(Band 13) / 850 MHz / 1900 MHz ONLY If you have any questions or concerns when installing or operating your

More information

Transmission Media. Transmission Media 12/14/2016

Transmission Media. Transmission Media 12/14/2016 Transmission Media in data communications DDE University of Kashmir By Suhail Qadir System Analyst suhailmir@uok.edu.in Transmission Media the transmission medium is the physical path between transmitter

More information

WiFi Installations : Frequently Asked Questions

WiFi Installations : Frequently Asked Questions Thank you for downloading our WiFi FAQ, we constructed this guide in order to aid you choosing and selecting the best solution to your WiFi range issues or for setting up a between building or a point

More information

Optimizing 16 db Capture Effect to Overcome Class A 'Channelized' Signal Booster Group Delay problems within Public Safety Communications Systems

Optimizing 16 db Capture Effect to Overcome Class A 'Channelized' Signal Booster Group Delay problems within Public Safety Communications Systems Optimizing 16 db Capture Effect to Overcome Class A 'Channelized' Signal Booster Group Delay problems within Public Safety Communications Systems July 30, 2008 2008 Jack Daniel Company 2008 Jack Daniel

More information

The Benefits of BEC s Antenna Design

The Benefits of BEC s Antenna Design The Benefits of BEC s Antenna Design Overview The explosive growth of wireless data communications is fast emerging with high peak data rates, which require superior antenna performance and design to support

More information

Guide. Installation. Wilson Electronics, Inc. Direct Connection High Power iden Amplifi er 800 MHz Band. Contents:

Guide. Installation. Wilson Electronics, Inc. Direct Connection High Power iden Amplifi er 800 MHz Band. Contents: Amplifier Installation Guide Direct Connection High Power iden Amplifi er 800 MHz Band Contents: Guarantee and Warranty 1 Before Getting Started / How it Works 3 Installing a Wilson Outside Antenna - In-Vehicle

More information

HyperLink Wireless High Density 2.4/5 GHz Four Element Dual Polarized Flat Panel Antenna Model: HG HDP-4NF

HyperLink Wireless High Density 2.4/5 GHz Four Element Dual Polarized Flat Panel Antenna Model: HG HDP-4NF HyperLink Wireless High Density 2.4/5 GHz Four Element Dual Polarized Flat Panel Antenna Model: HG2458-13HDP-4NF Features Four independent antennas, two vertical and two horizontal Narrow beamwidth for

More information

User's Manual F10G-5S-LCD 1 / 20 BOOST CELL PHONE SIGNAL BOOSTERS MADE BY HUAPTEC

User's Manual F10G-5S-LCD 1 / 20 BOOST CELL PHONE SIGNAL BOOSTERS MADE BY HUAPTEC User's Manual F10G-5S-LCD 1 / 20 BOOST CELL PHONE SIGNAL BOOSTERS MADE BY HUAPTEC Table of contents WHAT IS INCLUDED... 3 1 HOW IT WORKS... 3 2 TOOL REQUIRED... 3 3 HOW TO INSTALL YOUR NEW CELLULAR BOOSTER...

More information

Design of a BAW Quadplexer Module Using NI AWR Software

Design of a BAW Quadplexer Module Using NI AWR Software Application Note Design of a BAW Quadplexer Module Using NI AWR Software Overview With the development of the LTE-Advanced and orthogonal frequency division multiple access (OFDMA) techniques, multiple

More information

Calculated Radio Frequency Emissions Report. Cotuit Relo MA 414 Main Street, Cotuit, MA 02635

Calculated Radio Frequency Emissions Report. Cotuit Relo MA 414 Main Street, Cotuit, MA 02635 C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 (603) 644-2800 support@csquaredsystems.com Calculated Radio Frequency Emissions Report Cotuit Relo MA 414 Main Street, Cotuit, MA 02635 July 14,

More information

Cisco Aironet 2.4-GHz/5-GHz 8-dBi Directional Antenna (AIR-ANT2588P3M-N)

Cisco Aironet 2.4-GHz/5-GHz 8-dBi Directional Antenna (AIR-ANT2588P3M-N) Cisco Aironet.4-GHz/5-GHz 8-dBi Directional Antenna (AIR-ANT588P3M-N) This document outlines the specifications for the Cisco Aironet AIR-ANT588P3M-N.4/5-GHz 8-dBi 3-Port Directional Antenna with N-connectors

More information

Double-Ridged Waveguide Horn

Double-Ridged Waveguide Horn Model 3106 200 MHz 2 GHz Uniform Gain Power Handling up to 1.6 kw Model 3115 1 GHz 18 GHz Low VSWR Model 3116 18 GHz 40 GHz Quality Construction M O D E L 3 1 0 6 Double-Ridged Waveguide Horn PROVIDING

More information

IT-24 RigExpert. 2.4 GHz ISM Band Universal Tester. User s manual

IT-24 RigExpert. 2.4 GHz ISM Band Universal Tester. User s manual IT-24 RigExpert 2.4 GHz ISM Band Universal Tester User s manual Table of contents 1. Description 2. Specifications 3. Using the tester 3.1. Before you start 3.2. Turning the tester on and off 3.3. Main

More information

Field Intensity Units

Field Intensity Units Page 1 of 5 Field Intensity Units Q: What is the difference between dbu, dbm, dbuv, and other units? A: There is a great deal of confusion when engineers, technicians, and equipment salespersons talk about

More information

TACTICAL DIRECTORY ANTENNA DIAGRAM 3 INTRODUCTION LARGE OR SMALL INDOOR OR OUTDOOR EXTERNAL OR INTEGRATED US, EU, OR GLOBAL ENERGY FLOW

TACTICAL DIRECTORY ANTENNA DIAGRAM 3 INTRODUCTION LARGE OR SMALL INDOOR OR OUTDOOR EXTERNAL OR INTEGRATED US, EU, OR GLOBAL ENERGY FLOW TACTICAL DIRECTORY DIAGRAM 3 INTRODUCTION LARGE OR SMALL INDOOR OR OUTDOOR EXTERNAL OR INTEGRATED US, EU, OR GLOBAL ENERGY FLOW CIRCULAR OR LINEAR POLARIZATION DIAGRAM FAR FIELD OR NEAR FIELD FAR FIELD

More information

1 Propagation in free space and the aperture antenna

1 Propagation in free space and the aperture antenna 1 Propagation in free space and the aperture antenna This chapter introduces the basic concepts of radio signals travelling from one antenna to another. The aperture antenna is used initially to illustrate

More information

SPECIAL SPECIFICATION 6744 Spread Spectrum Radio

SPECIAL SPECIFICATION 6744 Spread Spectrum Radio 2004 Specifications CSJ 0924-06-244 SPECIAL SPECIFICATION 6744 Spread Spectrum Radio 1. Description. Furnish and install spread spectrum radio system. 2. Materials. Supply complete manufacturer specifications

More information

Digi-Wave Technology Williams Sound Digi-Wave White Paper

Digi-Wave Technology Williams Sound Digi-Wave White Paper Digi-Wave Technology Williams Sound Digi-Wave White Paper TECHNICAL DESCRIPTION Operating Frequency: The Digi-Wave System operates on the 2.4 GHz Industrial, Scientific, and Medical (ISM) Band, which is

More information

ORiNOCO AP-4000MR-LR and AP-4900MR-LR Access Points Safety and Regulatory Compliance Information

ORiNOCO AP-4000MR-LR and AP-4900MR-LR Access Points Safety and Regulatory Compliance Information IMPORTANT! Visit http://support.proxim.com for the latest safety and regulatory compliance information for this product. ORiNOCO AP-4000MR-LR and AP-4900MR-LR Access Points Safety and Regulatory Compliance

More information

Unlicensed, Wireless, Transport SMPTE292M, Video using V-Band MMW

Unlicensed, Wireless, Transport SMPTE292M, Video using V-Band MMW Unlicensed, Wireless, Transport SMPTE292M, Video using V-Band MMW by Dave Russell, MMW Radio Product-Line Manager HXI, LLC. Contact HXI at 978-521-7300 ext. 7304 for more information. Forward Once the

More information

Industrial Wireless Systems

Industrial Wireless Systems Application Considerations Don Pretty Principal Engineer Geometric Controls Inc Bethlehem, PA Sheet 1 Ethernet Dominates on the Plant Floor Sheet 2 Recognize Any of These? Sheet 3 Answers: 10 BASE 2 RG

More information

BROADBAND GAIN STANDARDS FOR WIRELESS MEASUREMENTS

BROADBAND GAIN STANDARDS FOR WIRELESS MEASUREMENTS BROADBAND GAIN STANDARDS FOR WIRELESS MEASUREMENTS James D. Huff Carl W. Sirles The Howland Company, Inc. 4540 Atwater Court, Suite 107 Buford, Georgia 30518 USA Abstract Total Radiated Power (TRP) and

More information

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS Exercise 1-4 The Radar Equation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the different parameters in the radar equation, and with the interaction between these

More information

Guide. Installation. Wilson Electronics, Inc. In-Building Wireless Amplifi er. Contents:

Guide. Installation. Wilson Electronics, Inc. In-Building Wireless Amplifi er. Contents: Amplifier Installation Guide In-Building Wireless Amplifi er Contents: Guarantee and Warranty 1 Antenna Options and Accessories 2 Before Getting Started / How It Works 2 Installation Overview 3 Installation

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert Planning Your Wireless Transportation Infrastructure Presented By: Jeremy Hiebert Agenda Agenda o Basic RF Theory o Wireless Technology Options o Antennas 101 o Designing a Wireless Network o Questions

More information

Cisco Aironet 13.5-dBi Yagi Mast Mount Antenna (AIR-ANT1949)

Cisco Aironet 13.5-dBi Yagi Mast Mount Antenna (AIR-ANT1949) Cisco Aironet 13.5-dBi Yagi Mast Mount Antenna (AIR-ANT1949) Overview This document describes the 13.5-dBi Yagi mast mount antenna and provides instructions for mounting it. The antenna operates in the

More information

Transmission Medium/ Media

Transmission Medium/ Media Transmission Medium/ Media The successful transmission of data depends principally on two factors: the quality of the signal being transmitted and the characteristics of the transmission medium Transmission

More information

4/29/2012. General Class Element 3 Course Presentation. Ant Antennas as. Subelement G9. 4 Exam Questions, 4 Groups

4/29/2012. General Class Element 3 Course Presentation. Ant Antennas as. Subelement G9. 4 Exam Questions, 4 Groups General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G9 Antennas and Feedlines 4 Exam Questions, 4 Groups G1 Commission s Rules G2 Operating Procedures

More information

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective Co-existence DECT/CAT-iq vs. other wireless technologies from a HW perspective Abstract: This White Paper addresses three different co-existence issues (blocking, sideband interference, and inter-modulation)

More information

Presentation Title Subhead Date

Presentation Title Subhead Date Getting The Most Out Of Your Wireless Mics Presentation Title Subhead Date Best Practices: Antennas, RF Coordination & Hardware Dave Mendez Senior Market Development Specialist The Wisdom of Dilbert Antennas:

More information

LTE Walk Test Measurements Using Consultix WTX-610 ILLuminator & Test Phones

LTE Walk Test Measurements Using Consultix WTX-610 ILLuminator & Test Phones LTE Walk Test Measurements Using Consultix WTX-610 ILLuminator & Test Phones Ultimate wireless coverage indoors is becoming a fundamental requirement of inbuilding infrastructure whether it s WiFi, cellular,

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - Prentice Hall, 2013 Wireless Transmission

More information

F10F Series Wide band booster User s Manual

F10F Series Wide band booster User s Manual F10F Series Wide band booster User s Manual Directory F10F Series Booster User s Manual 1. Abbreviations 2 2. Safety Warnings 2 3. Application 3 4. Introduction 4 5. System Characteristics 5 5.1. Features

More information

Antenna Performance. Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary...

Antenna Performance. Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary... Antenna Performance Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary... 9 06/15/07 135765 Introduction In this new age of wireless

More information

Stealth X2 Dual Band Boosters

Stealth X2 Dual Band Boosters Stealth X2 Dual Band Boosters BUILDINGS HOMES COTTAGES Stealth X2 Dual Band Boosters Table of Contents Features...3 Specifications...3 Package contents...4 Optional Parts...4 Antenna and Booster Installation...5

More information

SOLUTION BRIEF ONE POINT WIRELSS SUITE. PTP LINKPlanner: No Surprises Link Planning for PTP 800 Solutions

SOLUTION BRIEF ONE POINT WIRELSS SUITE. PTP LINKPlanner: No Surprises Link Planning for PTP 800 Solutions SOLUTION BRIEF ONE POINT WIRELSS SUITE PTP LINKPlanner: No Surprises Link Planning for PTP 800 Solutions Prior Planning Prevents Poor Performance. The five-p s serve as a simple, yet indisputable, reminder

More information

REFERENCE GUIDE External Antennas Guide 1

REFERENCE GUIDE External Antennas Guide 1 REFERENCE GUIDE External s Guide 1 Xirrus External s Guide Overview To optimize the overall performance of a Xirrus WLAN in an outdoor deployment it is important to understand how to maximize coverage

More information

by: Shaoyong Wang, Yuming Song Executive Summary I. PROBLEM STATEMENT

by: Shaoyong Wang, Yuming Song Executive Summary I. PROBLEM STATEMENT A NEAR-FIELD 2.4GHZ RING ANTENNA FOR HIGH DATA RATE AND HIGH SECURITY DATA TRANSMISSION IN SHORT RANGE FOR ROTATIONAL JOINT Advanced Development Engineering Team, Appliances, Shanghai, P. R. China by:

More information

Antenna Glossary. BEAMWIDTH The angle of signal coverage provided by an antenna. Beamwidth usually decreases as antenna gain increases.

Antenna Glossary. BEAMWIDTH The angle of signal coverage provided by an antenna. Beamwidth usually decreases as antenna gain increases. ADAPTIVE (SMART) ANTENNA An antenna system having circuit elements associated with its radiating elements such that one or more of the antenna properties are controlled by the received signal. ANTENNA

More information

Feed Line Currents for Neophytes.

Feed Line Currents for Neophytes. Feed Line Currents for Neophytes. This paper discusses the sources of feed line currents and the methods used to control them. During the course of this paper two sources of feed line currents are discussed:

More information

"Natural" Antennas. Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE. Security Engineering Services, Inc. PO Box 550 Chesapeake Beach, MD 20732

Natural Antennas. Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE. Security Engineering Services, Inc. PO Box 550 Chesapeake Beach, MD 20732 Published and presented: AFCEA TEMPEST Training Course, Burke, VA, 1992 Introduction "Natural" Antennas Mr. Robert Marcus, PE, NCE Dr. Bruce C. Gabrielson, NCE Security Engineering Services, Inc. PO Box

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 3: Cellular Fundamentals Chapter 3 - The Cellular Concept - System Design Fundamentals I. Introduction Goals of a Cellular System

More information

Wilson. iden 800 MHz. Adjustable Gain In-Building Wireless Smart Technology Signal Booster. Appearance of device and accessories may vary.

Wilson. iden 800 MHz. Adjustable Gain In-Building Wireless Smart Technology Signal Booster. Appearance of device and accessories may vary. iden 800 MHz Adjustable Gain In-Building Wireless Smart Technology Contents: Options & Accessories....................... 1 Quick Install Overview............................... 2 Installation Diagram.................................

More information

Technician Licensing Class. Lesson 4. presented by the Arlington Radio Public Service Club Arlington County, Virginia

Technician Licensing Class. Lesson 4. presented by the Arlington Radio Public Service Club Arlington County, Virginia Technician Licensing Class Lesson 4 presented by the Arlington Radio Public Service Club Arlington County, Virginia 1 Quiz Sub elements T6 & T7 2 Good Engineering Practice Sub element T8 3 A Basic Station

More information

How to Cover a 40,000 square-foot Warehouse with High-Level Wi-Fi Signals Using Waveguide Technology

How to Cover a 40,000 square-foot Warehouse with High-Level Wi-Fi Signals Using Waveguide Technology Wireless Expressways inc. How to Cover a 40,000 square-foot Warehouse with High-Level Wi-Fi Signals Using Waveguide Technology + WE Waveguide + = The Legacy (wrong) Way to Design an Indoor WLAN First,

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

Take These Ten Steps to Ensure Wireless Success

Take These Ten Steps to Ensure Wireless Success The Ten Commandments of Wireless Communications Take These Ten Steps to Ensure Wireless Success 724-746-5500 blackbox.com Table of Contents 1. Thou shalt know thy dbm and recall thy high school logarithms...

More information

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3)

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3) Rec. ITU-R P.833-2 1 RECOMMENDATION ITU-R P.833-2 ATTENUATION IN VEGETATION (Question ITU-R 2/3) Rec. ITU-R P.833-2 (1992-1994-1999) The ITU Radiocommunication Assembly considering a) that attenuation

More information

The Impact of Broadband PLC Over VDSL2 Inside The Home Environment

The Impact of Broadband PLC Over VDSL2 Inside The Home Environment The Impact of Broadband PLC Over VDSL2 Inside The Home Environment Mussa Bshara and Leo Van Biesen line Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Tel: +32 (0)2 629.29.46, Fax: +32

More information

CPSC Network Programming. How do computers really communicate?

CPSC Network Programming.   How do computers really communicate? CPSC 360 - Network Programming Data Transmission Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu February 11, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Intermediate Course (5) Antennas and Feeders

Intermediate Course (5) Antennas and Feeders Intermediate Course (5) Antennas and Feeders 1 System Transmitter 50 Ohms Output Standing Wave Ratio Meter Antenna Matching Unit Feeder Antenna Receiver 2 Feeders Feeder types: Coaxial, Twin Conductors

More information

Frequency Division Multiplexing and Headend Combining Techniques

Frequency Division Multiplexing and Headend Combining Techniques Frequency Division Multiplexing and Headend Combining Techniques In the 3 rd quarter technical report for 2010, I mentioned that the next subject would be wireless link calculations and measurements; however,

More information

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024 Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 1 Suwanee, GA 324 ABSTRACT Conventional antenna measurement systems use a multiplexer or

More information

Site Surveying and Antenna Mounting

Site Surveying and Antenna Mounting Site Surveying and Antenna Mounting Abdus Salam ICTP, February 2005 School on Digital Radio Communications for Research and Training in Developing Countries Ermanno Pietrosemoli Latin American Networking

More information

BATS WIRELESS. Electronically Steered Antenna (ESA) Omni Antenna. Sector Antenna. High Gain High Mobility Hi Reliability

BATS WIRELESS. Electronically Steered Antenna (ESA) Omni Antenna. Sector Antenna. High Gain High Mobility Hi Reliability BATS WIRELESS High Gain High Mobility Hi Reliability Omni Antenna Omni antennas have been predominately used in mobile communications for their ease of use. Ease of use has provided no protection from

More information

Shortened 3D Corner Reflector Antenna Dragoslav Dobričić, YU1AW

Shortened 3D Corner Reflector Antenna Dragoslav Dobričić, YU1AW Shortened 3D Corner Reflector Antenna Dragoslav Dobričić, YU1AW Abstract In this text two 3D corner reflector antenna modifications are described. The first modification is regarding the input impedance

More information

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it) UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE422H1S: RADIO AND MICROWAVE WIRELESS SYSTEMS EXPERIMENT 1:

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

Cellular Signal Booster Multi-User Tri-Band

Cellular Signal Booster Multi-User Tri-Band weboost Drive AM100-Pro Cellular Signal Booster Multi-User Tri-Band ! THE Drive AM100-Pro SIGNAL BOOSTER MAY REMAIN ON, IN VEHICLES WHOSE 12V DC POWER SOURCES DO NOT AUTOMATICALLY SHUTDOWN WHEN THE VEHICLE

More information

Technical Requirements for Land Mobile and Fixed Radio Services Operating in the Bands MHz and MHz

Technical Requirements for Land Mobile and Fixed Radio Services Operating in the Bands MHz and MHz Provisional - Issue 1 March 2004 Spectrum Management and Telecommunications Policy Standard Radio System Plans Technical Requirements for Land Mobile and Fixed Radio Services Operating in the Bands 138-144

More information

Electromagnetic Effects, original release, dated 31 October Contents: 17 page document plus 13 Figures. Enclosure (1)

Electromagnetic Effects, original release, dated 31 October Contents: 17 page document plus 13 Figures. Enclosure (1) Electromagnetic Effects, original release, dated 31 October 2005 Contents: 17 page document plus 13 Figures Enclosure (1) Electromagnetic effects. 1. Purpose. To ensure that the addition of fiber optic

More information

Radar System Impacts on Spectrum Management

Radar System Impacts on Spectrum Management Radar System Impacts on Spectrum Management National Spectrum Management Association Mitchell Lazarus 703-812-0440 0440 lazarus@fhhlaw.com May 13, 2014 Radar: Basic Principle Radio signal reflects from

More information

Reducing the entropy of the world. Himamshu Khasnis Founder and CEO Signalchip

Reducing the entropy of the world. Himamshu Khasnis Founder and CEO Signalchip Reducing the entropy of the world Himamshu Khasnis Founder and CEO Signalchip 2 Second law of thermodynamics says that the entropy of the universe is ever-increasing, the whole place is heating up, atmosphere

More information

Model AV-300AHD-MINI

Model AV-300AHD-MINI Model AV-300AHD-MINI v1.0 5.8GHz Wireless Transmission Kit for AHD The AV-500AHD-MINI is wireless transmission kit, compatible with composite AHD (AHD-L i AHD-M) video signal and Audio/Video PAL CVBS (960H).

More information