Harmonic Distortion in Transmission Networks due to Wind Farm Interconnection using IGBT Frequency Inverters

Size: px
Start display at page:

Download "Harmonic Distortion in Transmission Networks due to Wind Farm Interconnection using IGBT Frequency Inverters"

Transcription

1 Harmonic Distortion in Transmission Networks due to Wind Farm Interconnection using IGBT Frequency Inverters Daphne Schwanz and Roberto Chouhy Leborgne Electric Power Systems Laboratory Federal University of Rio Grande do Sul Porto Alegre, Brazil and Abstract This paper presents an analysis of the harmonic distortion on the electric power system due to the connection of a large wind farm. The wind farm simulated use variable speed multipolar synchronous generators and their connection to the grid is made by an IGBT frequency inverter. These frequency inverters are modeled by using current sources. The simulation is performed in the time domain using the EMTP program. The current and voltage signals obtained at the wind farm point of common coupling (PCC) and the neighboring buses will be analyzed in order to calculate the total and individual harmonic distortion. The results will be showed by graphs and tables. The analysis of the voltage harmonic propagation into the bulk power system due to the connection of a new wind farm will show the possible need for harmonic distortion mitigation. I. INTRODUCTION The contribution of alternative sources of electricity generation, such as wind power, in the Brazilian energy matrix and worldwide has increased considerably in recent years. As a result, studies have been conducted to ascertain the impact that such energy sources can cause in their connection to the grid. The power quality is an important factor in these studies because it is related to any deviation in magnitude, waveform and frequency of the voltage or current, as the harmonic distortion. The harmonic distortion is caused by the operation of nonlinear loads and can cause problems for utility equipment such as overheating of transformers and failures of control equipment. The use of frequency inverters to connect wind farms to the grid can cause high harmonic distortion due to the switching of currents in these devices. Therefore, due to the huge increase of new wind farm projects to be connected in the power system of Rio Grande do Sul, it was carried out a case study on the harmonic propagation resulting from the connection of a wind farm located in Santana do Livramento. II. INERTERS AND FREQUENCY CONERTERS Frequency converters are built with semiconductor devices and intended for the control of frequency and voltage magnitude [1]. For variable speed wind turbines, the use of frequency converters is fundamental for the interconnection to the power system. Diodes and thyristors are the most frequently power electronic components used for rectifiers and inverters. Thyristor based frequency inverters are considered low-cost and low-loss devices. However, it consumes a large amount of reactive power and produces a considerable harmonic distortion [1]. These are some of the reasons for its limited use compared to GTO and IGBT inverters. Rectifiers using the latter technologies can be used for variable speed induction generators reactive power control [2]. Regarding frequency converters, there are different topologies that can be applied for wind farms, as back-to-back converters, multilevel converters and matrix converters. There are two types of switching strategies: the network switched converter and the auto-switched converter. In the first system, it is used a converter based on thyristors which consumes reactive power. Therefore, it is not able to control the reactive power. This type of system is used in high voltage and large power applications such as HDC systems [3]. In auto-switched systems, it is used PWM control methods and IGBT semiconductors. In this configuration it is possible to transfer active and reactive power in AC-DC (rectifier mode) or DC-AC (inverter mode). On the other hand, the PWM converter can produce high frequency harmonics and inter-harmonics. Fig. 1 shows the IGBT converter considered in this work. The authors also thank Capes and CNPq for financial support.

2 Figure 3. Example of a circuit using Thevenin and Norton Equivalents [4]. Figure 1. Frequency Converter using IGBT Technology. III. MODELING PROPOSAL According [4], [5] and [6] harmonics sources are nonlinear loads that can be modeled as current sources or voltage sources. The frequency converter used to connect the induction generator to the AC system is modeled in this study as a harmonic current source, as shown in Fig. 2. In order to use this model it is needed to have harmonic measurements or converter manufacturer data to calibrate the harmonic current sources. Another possible model is the Thevenin or Norton, which has a series or parallel impedance that moderates the response of the resonance of the circuit, as shown in Fig. 3. However, the determination of this impedance it is not straightforward, and often not very precise [4]. Thus, in this study it was used a current source model for the frequency converter, due to its simplicity without losing the reliability and accuracy of results. I. CASE STUDY The case study showed in this paper is based in the connection of the wind farm Cerro Chato, located in Santana do Livramento in Rio Grande do Sul. The connection of the wind farm to the grid was made by the bus LI2, as shown in Fig. 4. The single line diagram of the nearby power system is shown in Fig. 5. Fig. 6 shows the EMTP modeled wind generators and the step-up transformers. Figure 4. Wind Farm connection to the Grid. The study was carried out through time domain simulation using the program EMTP. This simulation approach is a very accurate method for harmonic analysis [7]. This wind generation facility is composed of three wind farms (Cerro Chato I, II and III). Each of them has a generation capacity of 30 MW (15 wind turbines of 2 MW), totaling 90 MW. The turbines are variable speed without gearbox, with a synchronous generator using a frequency converter for grid connection. Figure 2. Modeling of a Frequency Converter using a Current Source [4]. Figure 5. Single line diagram of the simulated network.

3 with two circuits. The parameters of this line are shown in Table IX. The voltage at the boundary buses were obtained by power flow simulation, as shown in Table X. The equivalent inductances of the buses MAC, URUG5, S.IC, P.MED and UTE URU are in Table XI. The loads at the buses LI2, ALE2 and BAG2 were modeled as constant impedances as shown in Table XII. The data of the substation power transformers are shown in Tables XIII to XI. These transformers were modeled using two different configurations. The bus ALE2 has just one 83MA transformer, as shown in Tables XIII and XI, and the buses LI2 and BAG2 have each two 69MA transformers as shown in Tables X and XI. The EMTP simulation was performed using a time window of 1s and a time step of 6μs. Figure 6. Equivalent of Wind Generators and Harmonics Sources The transmission system was modeled up to the third neighborhood bus from the point of common coupling (PAC) LI2. The rest of the grid was modeled by an equivalent circuit represented by a voltage source and the series shortcircuit impedance as shown in Fig. 5. The study was carried with the wind farm operating at its nominal power. According to [4], the frequency converters can be modeled by current sources. The amplitude of each one of the harmonic current sources was obtained by measurements carry out at the step-up 0.400/34.5k transformer. The RMS current of the fundamental and each harmonic frequency are shown in Table I. The data of the equivalent step-up transformer is shown in Table II. Using such procedure it is possible to simplify the modeling of the frequency converter without loss of reliability. The underground circuits and the transmission lines were modeled using frequency-dependent parameter models. For the transmission lines, it was used the J. Marti model, according to [8], which is widely used in the modeling of frequency-dependent overhead lines. The parameters used in this line model are shown in Table III and I. The underground cables connecting each generator were modeled by Wideband which is also a frequency dependent model [9]. The parameters used in this line model are shown in Table and I. The Substation Cerro Chato has three 34.5/230k power transformers. The parameters of these transformers are shown in Tables II and III. Furthermore, this substation is connected to the bus LI2 by a km transmission line Harmonic Order TABLE I. HARMONIC SOURCES Current Harmonic (A) Order Current (A)

4 TABLE II. EQUIALENT STEP-UP TRANSFORMERS TABLE II. CERRO CHATO TRANSFORMERS Data Primary Secondary oltage 0,4 k 34,5 k Power of the Equivalent Transformer 10 MA 10 MA Connection Y Inductive Reactance p.u p.u. Resistance p.u p.u. TABLE III. Fase DC Resist. [ohm/km] GEOMETRIC DATA OF THE 230K TRANSMISSION LINES Ext. Diam. [cm] Horiz. Dist. Height of the Tower Height Fase Fase Fase TABLE. TABLE I. Line LI 2 - ALE 2 LI 2 - BAG 2 ALE 2 MAÇ ALE 2 URU 5 ALE 2 S.IC ALE 2 UTE URU BAG 2 P. MÉD. Cable Type LENGTH OF THE 230K TRANSMISSION LINES Length 123 km 171 km 80 km 146 km 115 km 143 km 52.3 km GEOMETRIC DATA OF THE UNDERGROUND CABLES OF THE WIND FARM Single Core Number of Cables 3 ertical Distance Horizontal Distance between Cables External Radius of the Cable Internal Radius of the Conductor External Radius of the Conductor Internal Radius of Aluminum Coating External Radius of Aluminum Coating TABLE I. 0.9 m m 0.02 m 0 m 6.42E-3 m m m LENGTH OF THE UNDERGROUND CABLES Line Circuit Length Cerro Chato I Cerro Chato II Cerro Chato III Circuit 1 Circuit 1 Circuit km 2.58 km 1.19 km 4.18 km 2.89 km 1.70 km 1.42 km 1.44 km 2.05 km TABLE III. Data Primary Secondary oltage 34.5 k 230 k Power 35 MA 35 MA Connection Y Y IMPEDANCE OF THE SUBSTATION TRANSFORMERS Transformer Impedance Primary Secondary CCH 1 Cerro Chato Substation CCH 2 Cerro Chato Substation CCH 3 Cerro Chato Substation TABLE IX. Fase DC Resist. [ohm/km] Reactance pu pu Resistance pu pu Reactance pu pu Resistance pu pu Reactance pu pu Resistance pu pu GEOMETRIC DATA OF THE 230K TRANSMISSION LINE CERRO CHATO - LI2 Ext. Diam. [cm] Horiz. Dist. Height of the Tower Height Fase Fase Fase Fase Fase Fase Fase Fase TABLE X. OLTAGES AND ANGLES IN THE ANALYZED BUSES oltage (k) Angle (degrees) MAC URUG S.IC P. MED UTE URU TABLE XI. SHORT-CIRCUIT EQUIALENT INDUCTANCES Equivalent Inductance (mh) MAC 70.6 mh URUG mh S.IC 99.3 mh P. MED 30.9 mh UTE URU 49.6 mh TABLE XII. LOADS CONNECTED TO THE BUSES Resistance (Ω) Inductance (mh) LI ALE BAG

5 TABLE XIII. TRASFORMER AT ALE2 Data Primary Secondary Tertiary oltage 230 k 69 k 13.8 k Power 83 MA 83 MA 83 MA Connection Y Y TABLE XI. Resistance Inductive Reactance TABLE X. IMPEDANCE OF THE TRASFORMER AT ALE2 R 12 R 13 R E-3 pu E-3 pu E-3 pu X 12 X 13 X pu pu pu TRASFORMERS AT LI2 AND BAG2 Data Primary Secondary tertiary oltage 230 k 69 k 13.8 k Power 69 MA 69 MA 69 MA Connection Y Y for IHD and THD are shown in Table XII and XIII, respectively. According to the results shown in Table XII, it was observed that the harmonic propagation was not the same for each frequency. Some frequencies were dumped and other amplified as a result of transmission network impedances. For same frequencies resonance between transmission lines series inductance and shunt capacitance may happened. For most frequencies there was a reduction in the value of the individual harmonic distortion as the observation point distanced from the harmonic source, the distance of the nearby buses from the Wind Farm are shown in Table XIX. The total harmonic distortion at the three buses analyzed is in accordance with the recommended limits [10], as shown in Table XX. TABLE XI. Resistance Inductive Reactance IMPEDANCES OF TRASFORMERS AT LI2 AND BAG2 R 12 R 13 R E-3 pu pu pu X 12 X 13 X pu pu pu TABLE XII. INDIIDUAL OLTAGE HARMONIC DISTORTION Frequency (Hz) 300 IHD(%) LI BAG ALE HARMONIC DISTORTION AND PROPAGATION The harmonic propagation analysis was performed by comparing the results obtained from the individual and total harmonic distortion of the voltage at LI2, ALE2 and BAG2, using (1) and (2), respectively. IHD = h 100, THD = H 1 h= h 100 Where h is the h-harmonic voltage and 1 the fundamental frequency voltage. The harmonic propagation analysis is of paramount importance, because it verifies how far the harmonic frequencies propagate. Considering that only the wind farm is injecting harmonic currents in the electrical system, it was possible to determine the rate of propagation of harmonic according to the voltage level and the distance from the source harmonic. I. RESULTS It was calculated the individual harmonic distortion (IHD) and total harmonic distortion (THD) using (1) and (2). The total harmonic distortion was calculated considering up to the 50th harmonic frequency. Only the most representative harmonic frequencies are shown in Table XII. The results LI BAG ALE LI BAG ALE LI BAG ALE LI BAG ALE TABLE XIII. TOTAL OLTAGE HARMONIC DISTORTION THD(%) LI BAG ALE TABLE XIX. DISTANCE FROM THE HARMONIC SOURCE (WIND FARM) Distance (km) LI BAG ALE

6 TABLE XX. oltage HARMONIC DISTORTION LIMITS Total Harmonic Limit (%) 69 k 5 69,001 k 161 k ,001 k 1.5 II. CONCLUSION Using the proposed methodology of simulation, it was possible to determine the harmonic propagation caused by the connection of a large wind farm through IGBT frequency converters. It was observed that the total harmonic distortion exceeded the maximum recommended values in all the analyzed buses. The propagation of the harmonics, assessed by the individual and total distortion indices, showed a heterogeneous behavior. For some frequencies the distortion was dumped while for other it was amplified. From the results it is possible to conclude that harmonic distortion should be a great concern for power system operators when large wind farms apply for connection permits. ACKNOWLEDGMENT The authors thank engineers Miguel Pires De Carli, Renato Ferraz Gonçalves, Yuri Solis Stypulkowski, Leonardo Ulises Iurinic, Martin Cruz Rodriguez Paz, Daniel da Silva Gazzana e André Bernardes Michel by the data provided and knowledge shared. REFERENCES [1] Arrilaga, J., Watson N. R., Power System Harmonics, John Wiley & Sons, 2nd edition, New Zeland, [2] Ackermann, T., Wind Power in Power Systems, John Wiley & Sons, 2 nd edition, England, [3] Chen, Z., Guerrero, J. M., Blaabjerg, F., A Review of the State of the Art of Power Electronics for Wind Turbines, IEEE Transactions on Power Electronics, ol. 24, N 8, August, [4] Dugan, R. C., McGranaghan, M. F., Santoso, S. Beaty., H. W., Electrical Power Systems Quality, McGraw-Hill, 2 nd edition, [5] Pomilio, J. A., Deckmann, S. M., Characterization and Compensation of Harmonics and Reactive Power of Residential and Comercial Loads, IEEE Transactions on Power Delivery, ol. 22, N 2, April, [6] Oliveira, L.C.O., Melo, G. A., Souza, B. D., Canesin, C. A., Bonatto, J. B., Belchior, F. N., Oliveira, M., Mertens Jr., E. A., Harmonic Propagation Analysis in Electric Energy Distribution Systems, 11 th International Con Electrical Power Quality and Utilisation (EPQU), [7] Badrzadeh, B., Gupta, M.,Singh N., Petersson, A., Max, L., Hogdahl, M., Power System Analysis in Wind Power Plants Part I: Study Methodology and Techniques, IEEE Industry Applications Society Annual Meeting (IAS), [8] Marti, J., Accurate Modelling of Frequency-Dependent Transmission Lines in Electromagnetic Transient Simulation, IEEE Transactions on Power Apparatus and Systems, ol. PAS-101, Nº 1, January [9] Morched, A., Gustavsen, B., Tartibi, M., A Universal Model for Accurate Calculation of Electromagnetic Transients on Overhead Lines and Underground Cable, IEEE Transactions on Power Delivery, ol. 14, N 3, July [10] International Electrotechnical Commission. IEC/TR : Electromagnetic compatibility (EMC) - Part 38: Limits - Assessment of emission limits for the connection of distorting installations to M, H and EH power systems. International Electrotechnical Commission, Genebra: p.

Frequency Domain Analysis of Capacitor Transient Overvoltages

Frequency Domain Analysis of Capacitor Transient Overvoltages Frequency Domain Analysis of Capacitor Transient Overvoltages PATRICIA ROMEIRO DA SILVA JOTA Electrical Engineering Department CEFET-MG Av. Amazonas 7675, 30510-000 Belo Horizonte, Minas Gerais BRAZIL

More information

EMC Philosophy applied to Design the Grounding Systems for Gas Insulation Switchgear (GIS) Indoor Substation

EMC Philosophy applied to Design the Grounding Systems for Gas Insulation Switchgear (GIS) Indoor Substation EMC Philosophy applied to Design the Grounding Systems for Gas Insulation Switchgear (GIS) Indoor Substation Marcos Telló Department of Electrical Engineering Pontifical Catholic University of Rio Grande

More information

Harmonics Reduction using 4-Leg Shunt Active Power Filters

Harmonics Reduction using 4-Leg Shunt Active Power Filters Harmonics Reduction using 4-Leg Shunt Active Power Filters K Srinivas Assistant Professor & Department of EEE & JNTUH CEJ Telangana, India. Abstract Harmonics in power system are caused by highly non-linear

More information

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEM BY USING STATCOM Mr.Mukund S. Mahagaonkar*, Prof.D.S.Chavan * M.Tech

More information

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller Phanikumar.Ch, M.Tech Dept of Electrical and Electronics Engineering Bapatla Engineering College, Bapatla,

More information

Exercises on overhead power lines (and underground cables)

Exercises on overhead power lines (and underground cables) Exercises on overhead power lines (and underground cables) 1 From the laws of Electromagnetism it can be shown that l c = 1 v 2 where v is the speed of propagation of electromagnetic waves in the environment

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss Siemens AG, EV NP3 P.O. Box 3220 91050 Erlangen, Germany e-mail: Michael.Weinhold@erls04.siemens.de

More information

DESIGN AND ANALYSIS OF ELIMINATION OF HARMONICS USING WIND ENERGY CONVERSION SYSTEMS

DESIGN AND ANALYSIS OF ELIMINATION OF HARMONICS USING WIND ENERGY CONVERSION SYSTEMS DESIGN AND ANALYSIS OF ELIMINATION OF HARMONICS USING WIND ENERGY CONVERSION SYSTEMS Dr.S.K.PURUSHOTHAMAN Associate Professor Department of EEE Sri Venkateswara College Of Engineering And Technology, Thirupachur

More information

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults Enhancement of Power Quality in Distribution System Using D-Statcom for Different s Dr. B. Sure Kumar 1, B. Shravanya 2 1 Assistant Professor, CBIT, HYD 2 M.E (P.S & P.E), CBIT, HYD Abstract: The main

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

ASPECTS OF REAL-TIME DIGITAL SIMULATIONS OF ELECTRICAL NETWORKS

ASPECTS OF REAL-TIME DIGITAL SIMULATIONS OF ELECTRICAL NETWORKS 23 rd International Conference on Electricity Distribution Lyon, 58 June 25 ASPECTS OF REAL-TIME DIGITAL SIMULATIONS OF ELECTRICAL ABSTRACT Ambrož BOŽIČEK ambroz.bozicek@fe.uni-lj.si Boštjan BLAŽIČ bostjan.blazic@fe.uni-lj.si

More information

Power Quality Improvement in Distribution System Using D-STATCOM

Power Quality Improvement in Distribution System Using D-STATCOM Power Quality Improvement in Distribution System Using D-STATCOM 1 K.L.Sireesha, 2 K.Bhushana Kumar 1 K L University, AP, India 2 Sasi Institute of Technology, Tadepalligudem, AP, India Abstract This paper

More information

Resonances in Collection Grids of Offshore Wind Farms

Resonances in Collection Grids of Offshore Wind Farms Downloaded from orbit.dtu.dk on: Dec 20, 2017 Resonances in Collection Grids of Offshore Wind Farms Holdyk, Andrzej Publication date: 2013 Link back to DTU Orbit Citation (APA): Holdyk, A. (2013). Resonances

More information

ABB DRIVES Technical guide No. 6 Guide to harmonics with AC drives

ABB DRIVES Technical guide No. 6 Guide to harmonics with AC drives ABB DRIVES Technical guide No. 6 Guide to harmonics with AC drives 2 TECHNICAL GUIDE NO. 6 GUIDE TO HARMONICS WITH AC DRIVES Guide to harmonics This guide is part of ABB s technical guide series, describing

More information

ANALYSIS OF ACTIVE POWER FILTER FOR HARMONIC VOLTAGE RESONANCE SUPPRESSION IN DISTRIBUTION SYSTEM

ANALYSIS OF ACTIVE POWER FILTER FOR HARMONIC VOLTAGE RESONANCE SUPPRESSION IN DISTRIBUTION SYSTEM ANALYSIS OF ACTIVE POWER FILTER FOR HARMONIC VOLTAGE RESONANCE SUPPRESSION IN DISTRIBUTION SYSTEM Original Research Article ISSN CODE: 456-1045 (Online) (ICV-EE/Impact Value): 3.08 (GIF) Impact Factor:.174

More information

Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions

Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions Fernando Bastião and Humberto Jorge Department of Electrical Engineering and Computers

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 07, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 07, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 07, 2014 ISSN (online): 2321-0613 Control and Analysis of VSC based High Voltage DC Transmission Tripti Shahi 1 K.P.Singh

More information

WILEY CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION. Qing-Chang Zhong. Tomas Hornik IEEE PRESS

WILEY CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION. Qing-Chang Zhong. Tomas Hornik IEEE PRESS CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION Qing-Chang Zhong The University of Sheffield, UK Tomas Hornik Turbo Power Systems Ltd., UK WILEY A John Wiley & Sons, Ltd., Publication

More information

A New Control Scheme for Power Quality Improvement with STATCOM

A New Control Scheme for Power Quality Improvement with STATCOM A New Control Scheme for Power Quality Improvement with STATCOM K. Sheshu Kumar, K. Suresh Kumar, Sk Baji Abstract The influence of the wind turbine in the grid system concerning the power quality measurements

More information

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System 1 Leena N C, 2 B. Rajesh Kamath, 3 Shri Harsha 1,2,3 Department of EEE, Sri Siddhartha Institute of Technology, Tumkur-572105,

More information

Harmonic impact of photovoltaic inverter systems on low and medium voltage distribution systems

Harmonic impact of photovoltaic inverter systems on low and medium voltage distribution systems University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2006 Harmonic impact of photovoltaic inverter systems on low and

More information

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS SIMUATION OF D-STATCOM AND DVR IN POWER SYSTEMS S.V Ravi Kumar 1 and S. Siva Nagaraju 1 1 J.N.T.U. College of Engineering, KAKINADA, A.P, India E-mail: ravijntu@gmail.com ABSTRACT A Power quality problem

More information

HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N

HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N Harmonic Basics 3 rd Harmonic Fundamental 5 t1h Harmonic 7 th Harmonic Harmonic

More information

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Dr. Jagdish Kumar, PEC University of Technology, Chandigarh Abstract the proper selection of values of energy storing

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System

Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System Kolli Nageswar Rao 1, C. Hari Krishna 2, Kiran Kumar Kuthadi 3 ABSTRACT: D-STATCOM (Distribution Static Compensator)

More information

A First Approach on the Fault Impedance Impact on Voltage Sags Studies

A First Approach on the Fault Impedance Impact on Voltage Sags Studies International Conference on Renewable Energies and Power Quality (ICREPQ 15) La Coruña (Spain), 25 th to 27 th March, 215 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-38 X, No.13, April

More information

Challenges with Harmonic Compensation at a Remote Bus in Offshore Wind Power Plant

Challenges with Harmonic Compensation at a Remote Bus in Offshore Wind Power Plant Article Challenges with Harmonic Compensation at a Remote Bus in Offshore Wind Power Plant Sanjay Chaudhary 1, *, Cristian Lascu 1, Bakhtyar Hoseinzadeh 1, Remus Teodorescu 1, Łukasz Kocewiak 2, and Troels

More information

A STUDY CASE ON HARMONIC DISTORTION CREATED BY WIND TURBINES

A STUDY CASE ON HARMONIC DISTORTION CREATED BY WIND TURBINES C I R E D 8 th International Conference on Electricity Distribution Turin, 6-9 June 5 A STUDY CASE ON HARMONIC DISTORTION CREATED BY WIND TURBINES Stavros PAPATHANASSIOU Michael PAPADOPOULOS National Technical

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Voltage Source Converter Modelling

Voltage Source Converter Modelling Voltage Source Converter Modelling Introduction The AC/DC converters in Ipsa represent either voltage source converters (VSC) or line commutated converters (LCC). A single converter component is used to

More information

OPTIMAL DESIGN OF A SINGLE TUNED PASSIVE FILTER TO MITIGATE HARMONICS IN POWER FREQUENCY

OPTIMAL DESIGN OF A SINGLE TUNED PASSIVE FILTER TO MITIGATE HARMONICS IN POWER FREQUENCY OPTIMAL DESIGN OF A SINGLE TUNED PASSIVE FILTER TO MITIGATE HARMONICS IN POWER FREQUENCY D. M. Soomro and M. M. Almelian Department of Electrical Power Engineering, Faculty of Electrical and Electronic

More information

Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow

Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow Queensland University of Technology From the SelectedWorks of Lasantha Bernard Perera Spring September 25, 2005 Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow Lasantha B Perera,

More information

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research International Journal of Engineering & Science Research POWER QUALITY IMPROVEMENT BY USING DSTATCOM DURING FAULT AND NONLINEAR CONDITIONS T. Srinivas* 1, V.Ramakrishna 2, Eedara Aswani Kumar 3 1 M-Tech

More information

International Journal of Engineering Research and General Science Volume 5, Issue 2, March-April, 2017 ISSN

International Journal of Engineering Research and General Science Volume 5, Issue 2, March-April, 2017 ISSN Analysis of H Link in Large Scale Offshore farm, Study and Comparison of LCC and SC Based H Links and Interconnection of Asynchronous Power Systems Utilizing SC-Based H Converter *Usman Raees Baig, **Mokhi

More information

SELECTING THE BEST POINT OF CONNECTION FOR SHUNT ACTIVE FILTERS IN MULTI-BUS POWER DISTRIBUTION SYSTEMS

SELECTING THE BEST POINT OF CONNECTION FOR SHUNT ACTIVE FILTERS IN MULTI-BUS POWER DISTRIBUTION SYSTEMS SELECTING TE BEST POINT OF CONNECTION FOR SUNT ACTIVE FILTERS IN MULTI-BUS POWER DISTRIBUTION SYSTEMS Luis Morán T. () José Mahomar J. () Juan Dixon R. (2) () Dept. of Electrical Engineering (2) Dept.

More information

Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities

Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities Tzung-Lin Lee Yen-Ching Wang Jian-Cheng Li Department of Electrical Engineering National Sun Yat-sen University 7, Lienhai

More information

Mitigation of Voltage sag and Harmonics in Grid connected Wind Energy System using STATCOM

Mitigation of Voltage sag and Harmonics in Grid connected Wind Energy System using STATCOM IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 13, Issue 4 Ver. IV. (Apr. 2014), PP 111-119 Mitigation of Voltage sag and Harmonics in Grid connected

More information

Voltage Sag and Mitigation Using Dynamic Voltage Restorer (DVR) System

Voltage Sag and Mitigation Using Dynamic Voltage Restorer (DVR) System Faculty of Electrical Engineering Universiti Teknologi Malaysia OL. 8, NO., 006, 3 37 ELEKTRIKA oltage Sag and Mitigation Using Dynamic oltage Restorer (DR) System Shairul Wizmar Wahab and Alias Mohd Yusof

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

Power Quality Summary

Power Quality Summary Power Quality Summary This article provides an overview of how voltage harmonic distortion is managed on the distribution network and focuses on the current at future issues surround the connection of

More information

Design and Simulation of Passive Filter

Design and Simulation of Passive Filter Chapter 3 Design and Simulation of Passive Filter 3.1 Introduction Passive LC filters are conventionally used to suppress the harmonic distortion in power system. In general they consist of various shunt

More information

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1 Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load MADHYAMA V. WANKHEDE Department Of Electrical Engineering G. H. Raisoni College of

More information

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD T PRAHLADA 1, P SUJATHA 2, P BHARATH KUMAR 3 1PG Scholar,

More information

Simulation Results of a Shunt Active Power Filter with Control Based on p-q Theory

Simulation Results of a Shunt Active Power Filter with Control Based on p-q Theory Simulation Results of a Shunt Active Power Filter with Control Based on p-q Theory Emílio F. Couto, Júlio S. Martins, João L. Afonso Department of Industrial Electronic University of Minho Campus de Azurém

More information

Novelty Technique for Power factor Improvement by a Single phase Rectifier

Novelty Technique for Power factor Improvement by a Single phase Rectifier 162 Novelty Technique for Power factor Improvement by a Single phase Rectifier Baby.M 1, Poorinima.S 2, Bharani Prakash.T 3, Sudarsan.S 4 Abstract A new technique is implemented to improve the input power

More information

Power Quality Requirements for Connection to the Transmission System

Power Quality Requirements for Connection to the Transmission System Power Quality Requirements for Connection to the Transmission System Revision: 1.0 Date: September 2015 Introduction and Purpose of this Document The purpose of this document is to provide clarity to Customers

More information

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER CSEA2012 ISSN: ; e-issn:

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER  CSEA2012 ISSN: ; e-issn: POWER FLOW CONTROL BY USING OPTIMAL LOCATION OF STATCOM S.B. ARUNA Assistant Professor, Dept. of EEE, Sree Vidyanikethan Engineering College, Tirupati aruna_ee@hotmail.com 305 ABSTRACT In present scenario,

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 A Statcom-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System B.T.RAMAKRISHNARAO*, B.ESWARARAO**, L.NARENDRA**, K.PRAVALLIKA** * Associate.Professor, Dept.of EEE, Lendi Inst.Of

More information

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD A. F. Huweg, S. M. Bashi MIEEE, N. Mariun SMIEEE Universiti Putra Malaysia - Malaysia norman@eng.upm.edu.my

More information

ISSN Vol.07,Issue.11, August-2015, Pages:

ISSN Vol.07,Issue.11, August-2015, Pages: ISSN 2348 2370 Vol.07,Issue.11, August-2015, Pages:2063-2068 www.ijatir.org LCL Filter Design and Performance Analysis for Grid-Interconnected Systems T. BRAHMA CHARY 1, DR. J. BHAGWAN REDDY 2 1 PG Scholar,

More information

Performance of high voltage transducers for measurement of power quality disturbances modeling and simulation

Performance of high voltage transducers for measurement of power quality disturbances modeling and simulation Performance of high voltage transducers for measurement of power quality disturbances modeling and simulation HÉDIO TATIZAWA 1, ERASMO SILVEIRA NETO 2, GERALDO F. BURANI 1, ANTÔNIO A. C. ARRUDA 1, KLEIBER

More information

Aspects of Network Harmonic Impedance Modelling in High Voltage Distribution Networks

Aspects of Network Harmonic Impedance Modelling in High Voltage Distribution Networks Aspects of Network Harmonic Impedance Modelling in High Voltage Distribution Networks Diptargha Chakravorty Indian Institute of Technology Delhi (CES) New Delhi, India diptarghachakravorty@gmail.com Jan

More information

Ferroresonance Conditions Associated With a 13 kv Voltage Regulator During Back-feed Conditions

Ferroresonance Conditions Associated With a 13 kv Voltage Regulator During Back-feed Conditions Ferroresonance Conditions Associated With a Voltage Regulator During Back-feed Conditions D. Shoup, J. Paserba, A. Mannarino Abstract-- This paper describes ferroresonance conditions for a feeder circuit

More information

Enhancement of Power Quality in Distribution System Using D-Statcom

Enhancement of Power Quality in Distribution System Using D-Statcom Enhancement of Power Quality in Distribution System Using D-Statcom Ruma Deb 1, Dheeraj Pandey 2 Gyan Ganga Institute of Technology & Sciences, Tilwara Road, RGPV University, Jabalpur (M.P) INDIA 1 ruma.deb20@gmail.com,

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control Spring 2014 Instructor: Kai Sun 1 References Saadat s Chapters 12.6 ~12.7 Kundur s Sections

More information

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme I J E E E C International Journal of Electrical, Electronics ISSN No. (Online) : 2277-2626 and Computer Engineering 2(1): 7-12(2013) Transient stability improvement by using shunt FACT device (STATCOM)

More information

Power Systems Modelling and Fault Analysis

Power Systems Modelling and Fault Analysis Power Systems Modelling and Fault Analysis Theory and Practice Nasser D. Tleis BSc, MSc, PhD, CEng, FIEE AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY

More information

Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads

Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads Vol.2, Issue.2, Mar-Apr 2012 pp-431-435 ISSN: 2249-6645 Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads M. CHANDRA SEKHAR 1, B. KIRAN BABU

More information

Volume I Issue VI 2012 September-2012 ISSN

Volume I Issue VI 2012 September-2012 ISSN A 24-pulse STATCOM Simulation model to improve voltage sag due to starting of 1 HP Induction-Motor Mr. Ajay Kumar Bansal 1 Mr. Govind Lal Suthar 2 Mr. Rohan Sharma 3 1 Associate Professor, Department of

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Wind Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Wind Aggregated Generating Facilities Technical Requirements Applicability 1(1) Section 502.1 applies to the ISO, and subject to the provisions of subsections 1(2), (3) and (4) to any: (a) a new wind aggregated generating facility to be connected to the transmission

More information

Improving Passive Filter Compensation Performance With Active Techniques

Improving Passive Filter Compensation Performance With Active Techniques IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, FEBRUARY 2003 161 Improving Passive Filter Compensation Performance With Active Techniques Darwin Rivas, Luis Morán, Senior Member, IEEE, Juan

More information

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL Basically the HVDC transmission consists in the basic case of two convertor stations which are connected to each other by a transmission link consisting of an overhead

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

Grid codes and wind farm interconnections CNY Engineering Expo. Syracuse, NY November 13, 2017

Grid codes and wind farm interconnections CNY Engineering Expo. Syracuse, NY November 13, 2017 Grid codes and wind farm interconnections CNY Engineering Expo Syracuse, NY November 13, 2017 Purposes of grid codes Grid codes are designed to ensure stable operating conditions and to coordinate the

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

Harmonic Mitigation for Variable Frequency Drives. HWEA Conference February 15, Kelvin J. Hurdle Rockwell Bus. Dev. Mgr.

Harmonic Mitigation for Variable Frequency Drives. HWEA Conference February 15, Kelvin J. Hurdle Rockwell Bus. Dev. Mgr. Harmonic Mitigation for Variable Frequency Drives HWEA Conference February 15, 2011 Kelvin J. Hurdle Rockwell Bus. Dev. Mgr. 1 OVERVIEW Linear vs. Non- Linear Load Definitions AC Drive Input Current Harmonics

More information

Comparison of Different Common Passive Filter Topologies for Harmonic Mitigation

Comparison of Different Common Passive Filter Topologies for Harmonic Mitigation UPEC21 31st Aug - 3rd Sept 21 Comparison of Different Common Passive Filter Topologies for Harmonic Mitigation H. M. Zubi IET and IEEE member hz224@bath.ac.uk R. W. Dunn IEEE member E-mail r.w.dunn@bath.ac.uk

More information

P2 Power Solutions Pvt. Ltd. P2 Power Magnetics. Quality Power within your Reach. An ISO 9001:2008 Company

P2 Power Solutions Pvt. Ltd. P2 Power Magnetics. Quality Power within your Reach. An ISO 9001:2008 Company P2 Power Solutions Pvt. Ltd. An ISO 9001:2008 Company Quality Power within your Reach P2 Power Magnetics P2 Power Solutions Pvt. Ltd. P2 Power Solutions Pvt. Ltd. provides EMC and power quality solutions,

More information

Effective Harmonic Mitigation with Active Filters

Effective Harmonic Mitigation with Active Filters Advancing Power Quality White Paper Effective Harmonic Mitigation with Active Filters Written by: Ian Wallace Variable Speed Drive with no Harmonic Mitigation Industry standard variable speed drives, with

More information

A Contribution to Isolated and Grid-Connected Photovoltaic Systems under Shadow Conditions

A Contribution to Isolated and Grid-Connected Photovoltaic Systems under Shadow Conditions 2 21 22 23 24 25 26 27 28 29 21 211 212 213 214 215 Power (GW) European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable

More information

SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER 75 CHAPTER 4 SHUNT ACTIVE POWER FILTER Abstract A synchronous logic based Phase angle control method pulse width modulation (PWM) algorithm is proposed for three phase Shunt Active Power Filter (SAPF)

More information

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Ishwar Lal Yadav Department of Electrical Engineering Rungta College of Engineering and Technology Bhilai, India

More information

Key-Words: - capacitive divider, high voltage, PSPICE, switching transients, high voltage measurements, atmospheric impulse voltages

Key-Words: - capacitive divider, high voltage, PSPICE, switching transients, high voltage measurements, atmospheric impulse voltages Application of computer simulation for the design of a new high voltage transducer, aiming to high voltage measurements at field, for DC measurements and power quality studies HÉDIO TATIZAWA, GERALDO F.

More information

ISSN Vol.03,Issue.07, August-2015, Pages:

ISSN Vol.03,Issue.07, August-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.07, August-2015, Pages:1276-1281 Comparison of an Active and Hybrid Power Filter Devices THAKKALAPELLI JEEVITHA 1, A. SURESH KUMAR 2 1 PG Scholar, Dept of EEE,

More information

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 20-26 www.iosrjournals.org Shunt Active Power Filter based on SRF theory and Hysteresis Band Current

More information

Harmonic Distortion in Renewable Energy Systems: Capacitive Couplings

Harmonic Distortion in Renewable Energy Systems: Capacitive Couplings 11 Harmonic Distortion in Renewable Energy Systems: Capacitive Couplings Miguel García-Gracia, Nabil El Halabi, Adrián Alonso and M.Paz Comech CIRCE (Centre of Research for Energy Resources and Consumption)

More information

Improvement of Power System Distribution Quality Due to Using Dc-Converter Loads and Electric Arc Furnaces. H.A. Khalik, M. A. Aziz, and E. Farouk.

Improvement of Power System Distribution Quality Due to Using Dc-Converter Loads and Electric Arc Furnaces. H.A. Khalik, M. A. Aziz, and E. Farouk. , 2011;4(12) Improvement of Power System Distribution Quality Due to Using Dc-Converter Loads and Electric Arc Furnaces H.A. Khalik, M. A. Aziz, and E. Farouk. Electrical power and Machines Engineering

More information

Modeling of the behavior of power electronic equipment to grid ripple control signal

Modeling of the behavior of power electronic equipment to grid ripple control signal Modeling of the behavior of power electronic equipment to grid ripple control signal X. Yang, S. Dennetière Abstract The paper presents time domain simulation for power electronic device equivalent impedance

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM

DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM A. JYOTEESH REDDY 1, A. ROHITH REDDY 2, P. VASUDEVANAIDU 3, M. BINDU PRIYA 4 1, 2, 3, 4 Department of Electrical & Electronics

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) VOL. 4, NO. 4, JUNE 9 ISSN 89-668 6-9 Asian Research Publishing Network (ARPN). All rights reserved. MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) Rosli Omar and Nasrudin Abd Rahim

More information

CHAPTER 3 ELECTRIC POWER QUALITY

CHAPTER 3 ELECTRIC POWER QUALITY 31 CHAPTER 3 ELECTRIC POWER QUALITY 3.1 INTRODUCTION The planning, design, and operation of industrial and commercial power systems require several studies to assist in the evaluation of the initial and

More information

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality P.Padmavathi, M.L.Dwarakanath, N.Sharief, K.Jyothi Abstract This paper presents an investigation

More information

Power Quality Analysis in Power System with Non Linear Load

Power Quality Analysis in Power System with Non Linear Load International Journal of Electrical Engineering. ISSN 0974-2158 Volume 10, Number 1 (2017), pp. 33-45 International Research Publication House http://www.irphouse.com Power Quality Analysis in Power System

More information

Study of Centralized Anti-Islanding Method on Large-Scale Photovoltaic Power Plants

Study of Centralized Anti-Islanding Method on Large-Scale Photovoltaic Power Plants 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016) Study of Centralized Anti-Islanding Method on Large-Scale Photovoltaic Power Plants Chen-Xin

More information

Converter Based Controlled Reactance for Damping Subsynchronous Resonance

Converter Based Controlled Reactance for Damping Subsynchronous Resonance Converter Based Controlled Reactance for Damping Subsynchronous Resonance Antonio C. Borré, Robson F. S. Dias, Antonio C. S. Lima, Edson H. Watanabe Abstract This works presents a methodology to synthesize

More information

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Mitigating Voltage Sag Using Dynamic Voltage Restorer Mitigating Voltage Sag Using Dynamic Voltage Restorer Sumit A. Borakhade 1, R.S. Pote 2 1 (M.E Scholar Electrical Engineering, S.S.G.M.C.E. / S.G.B.A.U. Amravati, India) 2 (Associate Professor, Electrical

More information

IEEE Power Engineering Society 2001 Winter Meeting Columbus, OH. Panel Session. Data for Modeling System Transients

IEEE Power Engineering Society 2001 Winter Meeting Columbus, OH. Panel Session. Data for Modeling System Transients IEEE Power Engineering Society 2001 Winter Meeting Columbus, OH Panel Session Data for Modeling System Transients Parameters for Modeling Transmission Lines and Transformers in Transient Studies Bruce

More information

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota POWER ELECTRONICS Converters, Applications, and Design THIRD EDITION NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota TORE M. UNDELAND Department of Electrical

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM Tawfikur Rahman, Muhammad I. Ibrahimy, Sheikh M. A. Motakabber and Mohammad G. Mostafa Department of Electrical and Computer

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements Division 502 Technical Applicability 1(1) Section 502.1 applies to: Expedited Filing Draft August 22, 2017 the legal owner of an aggregated generating facility directly connected to the transmission system

More information

Direct AC/AC power converter for wind power application

Direct AC/AC power converter for wind power application Direct AC/AC power converter for wind power application Kristian Prestrud Astad, Marta Molinas Norwegian University of Science and Technology Department of Electric Power Engineering Trondheim, Norway

More information

Harmonics Issues that Limit Solar Photovoltaic Generation on Distribution Circuits

Harmonics Issues that Limit Solar Photovoltaic Generation on Distribution Circuits WREF 01 Paper # 048 Harmonics Issues that Limit Solar Photovoltaic Generation on Distribution Circuits Ketut Dartawan Ricardo Austria, Le Hui and Mark Suehiro* Pterra Consulting Maui Electric Company*

More information

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES.

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. 1 RAJENDRA PANDAY, 2 C.VEERESH,ANIL KUMAR CHAUDHARY 1, 2 Mandsaur Institute of Techno;ogy,Mandsaur,

More information

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction Anju Yadav 1, K. Narayanan 2, Binsy Joseph 3 1, 2, 3 Fr. Conceicao Rodrigues College of Engineering, Mumbai, India

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information