Voltage Source Converter Modelling

Size: px
Start display at page:

Download "Voltage Source Converter Modelling"

Transcription

1 Voltage Source Converter Modelling Introduction The AC/DC converters in Ipsa represent either voltage source converters (VSC) or line commutated converters (LCC). A single converter component is used to represent monopole, bipolar and homopole converters of 6, 12, 24 or 48 pulses. Line commutated converters rely on the AC voltage waveform to provide the commutation between the diodes or thyristors which make up the bridge circuits. The thyristors provide the mechanism for controlling the DC current, diodes do not provide any control. The firing angle for an LCC defines the point in the AC waveform at which the thyristors are turned on to conduct. They are only turned off when at the next zero crossing point on the AC waveform. Voltage source converters utilise insulated gate bipolar transistors (IGBTs) which can be turned both on and off giving a greater degree of control. These VSCs are also known as pulse width modulated (PWM) controllers since the IGBTs can be turned on and off many times per cycle. This tutorial explains how to represent a simple Voltage Source Converter in Ipsa 2. A simple network is developed which represents two AC systems connected by a DC link. Typical values are used to represent two back to back voltage source convertors at each end of a 300kV DC cable. The DC link connects two separate AC systems, one at 400kV and one at 275kV. The final network is suitable for load flow and fault level studies. 1. Draw the AC Network Draw the network below using normal AC components:

2 2. Enter the AC Network Data Enter the following data for the busbars: Name Nominal Voltage (kv) Rectifier Grid 400 Rectifier 150 Inverter 150 Inverter Grid 275 The Grid Infeeds should be set up as follows: Busbar Voltage Magnitude (pu) RMS LLL (MVA) X2R LLL Rectifier Grid Inverter Grid It is important to enter the voltage magnitude for both infeeds. This tells Ipsa that these infeeds are to be treated as slack sources. Each AC island in the network requires one slack generator. Now enter some typical transformer impedances, for example: From Busbar To Busbar Resistance (pu) Reactance (pu) Tap Range (%) Tap Step (%) Target Voltage (pu) Rectifier Grid Rectifier / Inverter Grid Inverter /

3 3. Test the AC Network There is now enough data in the network for Ipsa to perform a load flow calculation. When you run a load flow for the first time Ipsa will ask you to select one slack busbar for each AC island. Set the Rectifier Grid and Inverter Grid busbars as slacks: The slack busbars can also be viewed or edited from the Network > Slacks menu The load flow results should appear as follows:

4 4. Draw the DC Network Draw the two DC busbars and AC/DC Converters as shown below: The AC/DC Converters should be drawn from the AC busbar to the DC busbar Use the normal branch component to draw the DC cable. Ipsa knows it is a DC cable due to the way it s connected to the AC/DC converters If you can t find the AC/DC converter symbol then right click on a blank part of the Ipsa toolbar and make sure the Draw DC toolbar is ticked. 5. Enter the DC Network Data Enter the following data for the DC busbars. Note that the busbar voltage should be the maximum DC pole to pole voltage. For example a +/- 150kV link would require busbar voltages of 300kV. Name Nominal Voltage (kv) Rectifier DC 300 Inverter DC 300 Now enter a typical DC cable impedance, for example: From Busbar To Busbar Resistance (pu) Reactance (pu) Rectifier DC Inverter DC 0.05 Only resistance data is required for the DC cable. Ratings can also be entered if required.

5 6. Enter the Rectifier Data The rectifier converter will be set up to transfer power from the AC network to the DC network. This will be set up as a voltage source converter (VSC) and configured to control the DC power transfer to the inverter. The following voltages and power levels need to be set: Parameter Value Description Type PWM (VSC) Select the voltage source converter model DC Power (MW) 100MW Sets the DC MW power transfer from the rectifier to the inverter AC Reactive Power (MVAr) Transformer Reactance 10MVAr 0.06pu Sets the MVArs injected into the AC network. A positive value injects reactive power whilst a negative value absorbs reactive power. The per unit value of the rectifier transformer. This is the reactance of the internal rectifier transformer from 150kV The transformer at the Rectifier side will control the AC busbar voltage whilst the rectifier itself controls the DC power flow. 7. Enter the Inverter Data The inverter will be set up to transfer power from the DC network to the AC network. This will be set up as a voltage source converter (VSC) and configured to control the DC power transfer through the inverter to the AC side. The following voltages and power levels need to be set: Parameter Value Description Type PWM (VSC) Select the voltage source converter model DC Power (MW) Not set Set by Ipsa as a results from the load flow DC Voltage (pu) 0.99pu Sets the DC voltage level that the inverter will maintain. The inverter will set the power extracted from the DC link in order to maintain this DC voltage AC Reactive Power (MVAr) Transformer Reactance -20MVAr 0.06pu Sets the MVArs injected into the AC network. A positive value injects reactive power whilst a negative value absorbs reactive power. The per unit value of the rectifier transformer. This is the reactance of the internal rectifier transformer from 150kV The transformer at the Inverter Grid will control the Inverter AC busbar voltage whilst the Inverter itself controls reactive power imported or exported to the AC network. The real power from the Inverter to the AC network is calculated by the load flow analysis such that the DC voltage is maintained at the target set in the Inverter.

6 8. Test the Combined AC and DC Network There is now enough data in the network for Ipsa to perform a load flow calculation on the complete network. Ipsa will again ask you to select a busbar for the DC network. Select the Inverter DC busbars as the DC area slack since the Inverter is the device that controls the DC system voltage: The slack busbars can also be viewed or edited from the Network > Slacks menu The load flow results should appear as follows:

7 9. Reversing the Power Flow Direction The following steps should be taken to reverse the DC power flow. At the Rectifier Converter: o Delete the DC Voltage o Ipsa will calculate the DC Power Flow At the Inverter Converter o Enter a DC Voltage o Enter the required DC Power Flow (MW) Change the slack busbars o Go to Network > Slacks o Move the DC Area Slack busbar from the Rectifier to the Inverter 10. Adding Fault Analysis Data Grid infeed components are required in order to represent a fault contribution from the rectifier and inverter. The fault contribution is dependant on the specific protection and control circuits used by the converters and it therefore specific to each manufacturer. It is typically in the range of 100% to 150% of the full load current rating of the converter. Therefore two grid infeeds are added to the model to provide a 1.0 per unit fault level contribution. The grid infeed data is as shown below; Parameter Value Description RMS LLL (MVA) 100 RMS 3 phase fault contribution in MVA X2R LLL 1 3 phase X/R ratio The fault level results without an additional grid infeed for a 3 phase fault at 100ms are shown below; Symmetrical 3 Phase Fault Level at 100ms

8 The fault level results with an additional grid infeed for a 3 phase fault at 100ms are shown below; Symmetrical 3 Phase Fault Level at 100ms

9 Converter Data Summary The following table describes the data fields that are used for a Voltage Source Converter; Parameter DC Power (MW) DC Voltage (pu) AC Reactive Power (MVAr) Transformer Reactance Commutation Reactance Voltage Ratio (Advanced Option) DC Current Trip Limit (pu) (Advanced Option) Description Defines the DC side power output of the rectifier in MW. Ipsa will calculate this value for the Inverter end converter Defines the DC side target voltage at the Inverter end. This value is ignored for the Rectifier. This is in per unit and must be between 0.5 and 2.5 pu. Sets the MVArs injected into the AC network. A positive value injects reactive power whilst a negative value absorbs reactive power. The per unit value of the rectifier transformer. This is the reactance of the internal rectifier transformer in per unit on the system MVA base. The converter commutation reactance in per unit The ratio of RMS line to line voltage on the AC side to the DC voltage. This value is used to calculate the DC voltage and DC current. The voltage ratio is used in conjunction with the DC Current Trip limit. This value defaults to and must be less than This sets the maximum per unit DC current that can be absorbed or supplied by the DC side of the converter.

10 Parameter Pulse number AC Current Trip Limit (pu) DC Equivalent Capacitance (pu) Description Defines the number of pulses in the converter. Valid values are 6, 12, 24 and 48 only. This value is used to calculate the harmonics generated by an unfiltered converter automatically. It is also possible to manually configure the harmonics by entering harmonic source data. This sets the maximum per unit AC current that can be absorbed or supplied by the AC side of the converter. The DC Equivalent capacitance in per unit.

Thyristors. In this lecture you will learn the following. Module 4 : Voltage and Power Flow Control. Lecture 18a : HVDC converters.

Thyristors. In this lecture you will learn the following. Module 4 : Voltage and Power Flow Control. Lecture 18a : HVDC converters. Module 4 : Voltage and Power Flow Control Lecture 18a : HVDC converters Objectives In this lecture you will learn the following AC-DC Converters used for HVDC applications. Introduction to Voltage Source

More information

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL Basically the HVDC transmission consists in the basic case of two convertor stations which are connected to each other by a transmission link consisting of an overhead

More information

Introduction to HVDC VSC HVDC

Introduction to HVDC VSC HVDC Introduction to HVDC VSC HVDC Dr Radnya A Mukhedkar Group Leader, Senior Principal Engineer System Design GRID August 2010 The Voltage Sourced Converter Single Phase Alternating Voltage Output Steady DC

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 07, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 07, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 07, 2014 ISSN (online): 2321-0613 Control and Analysis of VSC based High Voltage DC Transmission Tripti Shahi 1 K.P.Singh

More information

A cost effective hybrid HVDC transmission system with high performance in DC line fault handling

A cost effective hybrid HVDC transmission system with high performance in DC line fault handling 2, rue d Artois, F-758 PARIS B4-7 CIGRE 28 http : //www.cigre.org A cost effective hybrid HVDC transmission system with high performance in DC line fault handling Mats Andersson, Xiaobo ang and ing-jiang

More information

Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow

Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow Queensland University of Technology From the SelectedWorks of Lasantha Bernard Perera Spring September 25, 2005 Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow Lasantha B Perera,

More information

Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System

Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System 1 Ramesh Gantha 1, Rasool Ahemmed 2 1 eee Kl University, India 2 AsstProfessor, EEE KL University,

More information

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter 1 Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu ISBN-10: 1118851560

More information

A Guide to the DC Decay of Fault Current and X/R Ratios

A Guide to the DC Decay of Fault Current and X/R Ratios A Guide to the DC Decay of Fault Current and X/R Ratios Introduction This guide presents a guide to the theory of DC decay of fault currents and X/R ratios and the calculation of these values in Ipsa.

More information

HVDC High Voltage Direct Current

HVDC High Voltage Direct Current HVDC High Voltage Direct Current Typical HVDC Station BACK TO BACK CONVERTER STATION MONO POLAR WITH GROUND RETURN PA Back to Back Converters indicates that the Rectifiers & Inverters are located in the

More information

USE OF HVDC MULTI TERMINAL OPTIONS FOR FUTURE UPGRADE OF THE NATIONAL GRID

USE OF HVDC MULTI TERMINAL OPTIONS FOR FUTURE UPGRADE OF THE NATIONAL GRID USE OF HVDC MULTI TERMINAL OPTIONS FOR FUTURE UPGRADE OF THE NATIONAL GRID JOS ARRILLAGA Emeritus Professor, FIEE, FIEEE, MNZM 2/77 HINAU STREET, RICCARTON CHRISTCHURCH ARRILLJ@ELEC.CANTERBURY.AC.NZ TELEPHONE

More information

Introduction to HVDC in GB. Ian Cowan Simulation Engineer 12 March 2018

Introduction to HVDC in GB. Ian Cowan Simulation Engineer 12 March 2018 Introduction to HVDC in GB Ian Cowan Simulation Engineer 12 March 2018 Contents 1) History of Electricity Networks 2) Overview of HVDC 3) Existing Schemes 4) Future Schemes 5) Regulation and Ownership

More information

ATC s Mackinac Back to Back. Summary

ATC s Mackinac Back to Back. Summary ATC s Mackinac Back to Back HVDC Project Update Michael B. Marz American Transmission Company Summary The Need For Flow Control at Mackinac Mackinac Flow Control Requirements Available Flow Control Technologies

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Design and Simulation of Passive Filter

Design and Simulation of Passive Filter Chapter 3 Design and Simulation of Passive Filter 3.1 Introduction Passive LC filters are conventionally used to suppress the harmonic distortion in power system. In general they consist of various shunt

More information

Sensitivity Analysis of MTDC Control System

Sensitivity Analysis of MTDC Control System Aalborg University Energy Department Sensitivity Analysis of MTDC Control System Long Master Thesis Aalborg 2016 Przemyslaw Drozd Title: Sensitivity Analysis of MTDC Control System Semester: 4 th M.SC

More information

ATC s Mackinac Back-to-Back HVDC Project: Planning and Operation Considerations for Michigan s Eastern Upper and Northern Lower Peninsulas

ATC s Mackinac Back-to-Back HVDC Project: Planning and Operation Considerations for Michigan s Eastern Upper and Northern Lower Peninsulas 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2013 Grid of the Future Symposium ATC s Mackinac Back-to-Back HVDC Project: Planning and Operation Considerations for

More information

Introduction to HVDC Transmission. High Voltage Direct Current (HVDC) Transmission

Introduction to HVDC Transmission. High Voltage Direct Current (HVDC) Transmission Lecture 29 Introduction to HVDC Transmission Series Compensation 1 Fall 2003 High Voltage Direct Current (HVDC) Transmission Update to Edison s Vision AC Power Generation at Relatively Lower Voltage» Step

More information

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter 1 Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu ISBN-10: 1118851560

More information

Dynamic Stability Improvement of Power System with VSC-HVDC Transmission

Dynamic Stability Improvement of Power System with VSC-HVDC Transmission Dynamic Stability Improvement of Power System with VSC-HVDC Transmission A Thesis submitted in partial fulfilment of the Requirements for the Award of the degree of Master of Technology In Industrial Electronics

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER CSEA2012 ISSN: ; e-issn:

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER  CSEA2012 ISSN: ; e-issn: POWER FLOW CONTROL BY USING OPTIMAL LOCATION OF STATCOM S.B. ARUNA Assistant Professor, Dept. of EEE, Sree Vidyanikethan Engineering College, Tirupati aruna_ee@hotmail.com 305 ABSTRACT In present scenario,

More information

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD A. F. Huweg, S. M. Bashi MIEEE, N. Mariun SMIEEE Universiti Putra Malaysia - Malaysia norman@eng.upm.edu.my

More information

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Ishwar Lal Yadav Department of Electrical Engineering Rungta College of Engineering and Technology Bhilai, India

More information

VSC Transmission. Presentation Overview. CIGRE B4 HVDC and Power Electronics HVDC Colloquium, Oslo, April LCC HVDC Transmission

VSC Transmission. Presentation Overview. CIGRE B4 HVDC and Power Electronics HVDC Colloquium, Oslo, April LCC HVDC Transmission CIGRE B4 HVDC and Power Electronics HVDC Colloquium, Oslo, April 2006 VSC Transmission presented by Dr Bjarne R Andersen, Andersen Power Electronic Solutions Ltd Presentation Overview - Basic Characteristics

More information

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India) ISSN: 2349-7637 (Online) RESEARCH HUB International Multidisciplinary Research Journal (RHIMRJ) Research Paper Available online at: www.rhimrj.com Modeling and Simulation of Distribution STATCOM Bhavin

More information

ZERO PHASE SEQUENCE VOLTAGE INJECTION FOR THE ALTERNATE ARM CONVERTER

ZERO PHASE SEQUENCE VOLTAGE INJECTION FOR THE ALTERNATE ARM CONVERTER ZERO PHASE SEQUENCE VOLTAGE INJECTION FOR THE ALTERNATE ARM CONVERTER F J Moreno*, M M C Merlin, D R Trainer*, T C Green, K J Dyke* *Alstom Grid, St Leonards Ave, Stafford, ST17 4LX Imperial College, South

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

Constant Terminal Voltage. Working Group Meeting 4 19 th September 2014

Constant Terminal Voltage. Working Group Meeting 4 19 th September 2014 Constant Terminal Voltage Working Group Meeting 4 19 th September 014 Overview Options summary System under investigation Options analysis Discussion Options Option 1 Constant Terminal Voltage controlled

More information

IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR)

IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR) IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR) Hadi Suyono 1, Lauhil Mahfudz Hayusman 2 and Moch. Dhofir 1 1 Department of Electrical Engineering, Brawijaya University, Malang,

More information

Multi-terminal HVDC operation in a weakly interconnected system: results from Best Paths Demo 3

Multi-terminal HVDC operation in a weakly interconnected system: results from Best Paths Demo 3 Multi-terminal HVDC operation in a weakly interconnected system: results from Best Paths Demo 3 E. Ciapessoni, D. Cirio, A. Iaria, A. Pitto, M. Rapizza RSE HVDC International Workshop Operational experience

More information

Investigation of D-Statcom Operation in Electric Distribution System

Investigation of D-Statcom Operation in Electric Distribution System J. Basic. Appl. Sci. Res., (2)29-297, 2 2, TextRoad Publication ISSN 29-434 Journal of Basic and Applied Scientific Research www.textroad.com Investigation of D-Statcom Operation in Electric Distribution

More information

Power flow improvement using Static Synchronous Series Compensator (SSSC)

Power flow improvement using Static Synchronous Series Compensator (SSSC) Page14 Power flow improvement using Static Synchronous Series Compensator (SSSC) Gandla Saraswathi*, Dr.N.Visali ** & B. Narasimha Reddy*** *P.G Student, Department of Electrical and Electronics Engineering,JNTUACEP,

More information

The rapid evolution of voltage Source Converters as applied to High Voltage DC power transmission Carl Barker

The rapid evolution of voltage Source Converters as applied to High Voltage DC power transmission Carl Barker The rapid evolution of voltage Source Converters as applied to High Voltage DC power transmission Carl Barker Chief Engineer HVDC Applications Tuesday 30 June 2015 HVDC Today Finding an increasing market

More information

Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation

Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation Slide 1 Excerpt from the BoA BoA: Book of Acronyms MSC/MSR: Mechanically

More information

Company Directive STANDARD TECHNIQUE: SD7F/2. Determination of Short Circuit Duty for Switchgear on the WPD Distribution System

Company Directive STANDARD TECHNIQUE: SD7F/2. Determination of Short Circuit Duty for Switchgear on the WPD Distribution System Company Directive STANDARD TECHNIQUE: SD7F/2 Determination of Short Circuit Duty for Switchgear on the WPD Distribution System Policy Summary This document provides guidance on calculation of fault levels

More information

CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM

CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM 49 CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM 4.0 INTRODUCTION This chapter covers in detail the experimental set up of proposed Z source Matrix (ZSMC) based UPFC and compares with a lab scale model

More information

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss Siemens AG, EV NP3 P.O. Box 3220 91050 Erlangen, Germany e-mail: Michael.Weinhold@erls04.siemens.de

More information

PFC Lite. How it works OMNIVERTER. OMNIVERTER November 14, 2015 Slide 1

PFC Lite. How it works OMNIVERTER. OMNIVERTER November 14, 2015 Slide 1 How it works OMNVERTER November 14, 2015 Slide 1 OMNVERTER How it works PFC Utility Displacement Power Factor correction -By injecting reactive current at the fundamental frequency either leading or lagging

More information

Var Control. Adding a transformer and transformer voltage regulation. engineers loadflow program. The control system engineers loadflow.

Var Control. Adding a transformer and transformer voltage regulation. engineers loadflow program. The control system engineers loadflow. November 2012 Adding a transformer and transformer voltage regulation to the control system engineers loadflow program The control system engineers loadflow program The loadflow program used by this website

More information

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Abstract: The objective of this research is to develop a novel voltage control scheme that

More information

Operation of a Three-Phase PWM Rectifier/Inverter

Operation of a Three-Phase PWM Rectifier/Inverter Exercise 1 Operation of a Three-Phase PWM Rectifier/Inverter EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the block diagram of the three-phase PWM rectifier/inverter.

More information

14. DC to AC Converters

14. DC to AC Converters 14. DC to AC Converters Single-phase inverters: 14.1 Single-phase half-bridge inverter This type of inverter is very simple in construction. It does not need output transformer like parallel inverter.

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Power Diode EE2301 POWER ELECTRONICS UNIT I POWER SEMICONDUCTOR DEVICES PART A 1. What is meant by fast recovery

More information

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters Straightforward questions are marked! Tripos standard questions are marked * Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits dc to ac converters! 1. A three-phase bridge converter using

More information

Fundamental Concepts of Dynamic Reactive Compensation. Outline

Fundamental Concepts of Dynamic Reactive Compensation. Outline 1 Fundamental Concepts of Dynamic Reactive Compensation and HVDC Transmission Brian K. Johnson University of Idaho b.k.johnson@ieee.org 2 Outline Objectives for this panel session Introduce Basic Concepts

More information

Improved Transient Compensation Using PI-SRF Control Scheme Based UHVDC For Offshore Wind Power Plant

Improved Transient Compensation Using PI-SRF Control Scheme Based UHVDC For Offshore Wind Power Plant Improved Transient Compensation Using PI-SRF Control Scheme Based UHVDC For Offshore Wind Power Plant Sangeetha M 1, Arivoli R 2, Karthikeyan B 3 1 Assistant Professor, Department of EEE, Imayam College

More information

U I. HVDC Control. LCC Reactive power characteristics

U I. HVDC Control. LCC Reactive power characteristics Lecture 29 HVDC Control Series Compensation 1 Fall 2017 LCC Reactive power characteristics LCC HVDC Reactive compensation by switched filters and shunt capacitor banks Operates at lagging power factor

More information

Voltage and Current Waveforms Enhancement using Harmonic Filters

Voltage and Current Waveforms Enhancement using Harmonic Filters Voltage and Current Waveforms Enhancement using Harmonic Filters Rajeb Ibsaim rabsaim@yahoo.com, Azzawia University, Libya Amer Daeri ibnjubair1@yahoo.co.uk Azzawia University, Libya Abstract The demand

More information

HVDC. for beginners and beyond

HVDC. for beginners and beyond for beginners and beyond PIONEERING HVDC SINCE 1962 Our timeline 1962 1968 1989 1996 1998 2004 Stafford UK English Electric GEC GEC - Alsthom Alstom AREVA France CGEE - Alsthom USA GE Germany AEG ( German

More information

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state.

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state. 1991 1.12 The operating state that distinguishes a silicon controlled rectifier (SCR) from a diode is (a) forward conduction state (b) forward blocking state (c) reverse conduction state (d) reverse blocking

More information

Simulation Study of a Monopole HVDC Transmission System Feeding a Very Weak AC Network with Firefly Algorithm Based Optimal PI Controller

Simulation Study of a Monopole HVDC Transmission System Feeding a Very Weak AC Network with Firefly Algorithm Based Optimal PI Controller Simulation Study of a Monopole HVDC Transmission System Feeding a Very Weak AC Network with Firefly Algorithm Based Optimal PI Controller S. Singaravelu, S. Seenivasan Abstract This paper presents a simulation

More information

Assessment of Saturable Reactor Replacement Options

Assessment of Saturable Reactor Replacement Options Assessment of Saturable Reactor Replacement Options D.T.A Kho, K.S. Smith Abstract-- The performance of the dynamic reactive power compensation provided by the existing variable static compensation (STC)

More information

Simulative Study into the Development of a Hybrid HVDC System Through a Comparative Research with HVAC: a Futuristic Approach

Simulative Study into the Development of a Hybrid HVDC System Through a Comparative Research with HVAC: a Futuristic Approach Engineering, Technology & Applied Science Research Vol. 7, No. 3, 2017, 1600-1604 1600 Simulative Study into the Development of a Hybrid HVDC System Through a Comparative Research with HVAC: a Futuristic

More information

Overview of Actuation Thrust

Overview of Actuation Thrust Overview of Actuation Thrust Fred Wang Thrust Leader, UTK Professor Prepared for CURENT Course September 4, 2013 Actuation in CURENT Wide Area Control of Power Power Grid Grid Measurement &Monitoring HVDC

More information

Highgate Converter Overview. Prepared by Joshua Burroughs & Jeff Carrara IEEE PES

Highgate Converter Overview. Prepared by Joshua Burroughs & Jeff Carrara IEEE PES Highgate Converter Overview Prepared by Joshua Burroughs & Jeff Carrara IEEE PES Highgate Converter Abstract Introduction to HVDC Background on Highgate Operation and Control schemes of Highgate 22 Why

More information

Low Voltage High Current Controlled Rectifier with IGBT A.C Controller on Primary Side of the Transformer

Low Voltage High Current Controlled Rectifier with IGBT A.C Controller on Primary Side of the Transformer AU J.T. 6(4):193-198 (Apr. 2003) ow Voltage High Current Controlled Rectifier with IGBT A.C Controller on Primary Side of the Transformer Seshanna Panthala Faculty of Engineering, Assumption University

More information

Technical and Economic Analysis of Connecting Nuclear Generation to the National Electricity Transmission System via HVDC Technology.

Technical and Economic Analysis of Connecting Nuclear Generation to the National Electricity Transmission System via HVDC Technology. Technical and Economic Analysis of Connecting Nuclear Generation to the National Electricity Transmission System via HVDC Technology Richard Poole School of Engineering and Technology This thesis is submitted

More information

Reactive Power Compensation Technologies: State-of-the-Art Review

Reactive Power Compensation Technologies: State-of-the-Art Review Reactive Power Compensation Technologies: State-of-the-Art Review JUAN DIXON, SENIOR MEMBER, IEEE, LUIS MORÁN, FELLOW, IEEE, JOSÉ RODRÍGUEZ, SENIOR MEMBER, IEEE, AND RICARDO DOMKE Invited Paper This paper

More information

MMC Design Aspects and Applications. John Strauss Siemens AG.

MMC Design Aspects and Applications. John Strauss Siemens AG. MMC Design Aspects and Applications John Strauss Siemens AG. John.Strauss@Siemens.com 1 VSC-HVDC with MMC Basic Scheme Reference HVDC PLUS Converter Arm Converter Module Power Module Electronics (PME)

More information

Power Supplies in Accelerators

Power Supplies in Accelerators Power Supplies in Accelerators Neil Marks, ASTeC, Cockcroft Institute, Daresbury, Warrington WA4 4AD, neil.marks@stfc.ac.uk Tel: (44) (0)1925 603191 Fax: (44) (0)1925 603192 Contents 1. Basic elements

More information

Exercises on overhead power lines (and underground cables)

Exercises on overhead power lines (and underground cables) Exercises on overhead power lines (and underground cables) 1 From the laws of Electromagnetism it can be shown that l c = 1 v 2 where v is the speed of propagation of electromagnetic waves in the environment

More information

The University of Nottingham

The University of Nottingham The University of Nottingham Power Electronic Converters for HVDC Applications Prof Pat Wheeler Power Electronics, Machines and Control (PEMC) Group UNIVERSITY OF NOTTINGHAM, UK Email pat.wheeler@nottingham.ac.uk

More information

To Study The MATLAB Simulation Of A Single Phase STATCOM And Transmission Line

To Study The MATLAB Simulation Of A Single Phase STATCOM And Transmission Line To Study The MATLAB Simulation Of A Single Phase And Transmission Line Mr. Nileshkumar J. Kumbhar Abstract-As an important member of FACTS family, (Static Synchronous Compensator) has got more and more

More information

Line Impedance Estimation Using SCADA Data

Line Impedance Estimation Using SCADA Data Line Impedance Estimation Using SCADA Data Presenter: Ramiro Da Corte - Power System Engineer Prepared by: James Shen - Principal Engineer, AESO Nov. 5, 214 Background AESO is responsible for grid reliability

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

ELECTRICITY ASSOCIATION SERVICES LIMITED 2001

ELECTRICITY ASSOCIATION SERVICES LIMITED 2001 ELECTRICITY ASSOCIATION SERVICES LIMITED 2001 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,

More information

Extensive LV cable network. Figure 1: Simplified SLD of the transformer and associated LV network

Extensive LV cable network. Figure 1: Simplified SLD of the transformer and associated LV network Copyright 2017 ABB. All rights reserved. 1. Introduction Many distribution networks around the world have limited earth-fault current by a resistor located in the LV winding neutral point of for example

More information

IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs

IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs Mr. P. Biswas, ABB ABSTRACT The Indian Railways employ single phase 25 kv Traction sub-station (TSS) for supplying power

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

Dynamic Performance Evaluation of an HVDC Link following Inverter Side Disturbances

Dynamic Performance Evaluation of an HVDC Link following Inverter Side Disturbances 174 ACTA ELECTROTEHNICA Dynamic Performance Evaluation of an HVDC Link following Inverter Side Disturbances S. HADJERI, S.A. ZIDI, M.K. FELLAH and M. KHATIR Abstract The nature of AC/DC system interactions

More information

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 Unit.2-Voltage Sag D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 13/09/2012 Unit.2 Voltage sag 1 Unit-2 -Voltage Sag Mitigation Using

More information

PAPER-II (Subjective)

PAPER-II (Subjective) PAPER-II (Subjective) 1.(A) Choose and write the correct answer from among the four options given in each case for (a) to (j) below: (a) Improved commutation in d.c machines cannot be achieved by (i) Use

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

R10. III B.Tech. II Semester Supplementary Examinations, January POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours

R10. III B.Tech. II Semester Supplementary Examinations, January POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours Code No: R3 R1 Set No: 1 III B.Tech. II Semester Supplementary Examinations, January -14 POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours Max Marks: 75 Answer any FIVE Questions

More information

II. RESEARCH METHODOLOGY

II. RESEARCH METHODOLOGY Comparison of thyristor controlled series capacitor and discrete PWM generator six pulses in the reduction of voltage sag Manisha Chadar Electrical Engineering Department, Jabalpur Engineering College

More information

New Converter Topologies for High-Voltage Dc Converters. Prof. Ani Gole University of Manitoba, Canada

New Converter Topologies for High-Voltage Dc Converters. Prof. Ani Gole University of Manitoba, Canada New Converter Topologies for High-Voltage Dc Converters Prof. Ani Gole University of Manitoba, Canada IEEE Southern Alberta Section, Sept. 12, 2011 Outline Brief History of HVDC Transmission Conventional

More information

Grounded HVDC Grid Line Fault Protection Using Rate of Change of Voltage and Hybrid DC Breakers. Jeremy Sneath. The University of Manitoba

Grounded HVDC Grid Line Fault Protection Using Rate of Change of Voltage and Hybrid DC Breakers. Jeremy Sneath. The University of Manitoba Grounded HVDC Grid Line Fault Protection Using Rate of Change of Voltage and Hybrid DC Breakers By Jeremy Sneath A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In partial

More information

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K. POWER ELECTRONICS S.C. Tripathy Alpha Science International Ltd. Oxford, U.K. Contents Preface vii 1. SEMICONDUCTOR DIODE THEORY 1.1 1.1 Introduction 1.1 1.2 Charge Densities in a Doped Semiconductor 1.1

More information

Lab 1. Objectives. Single Line Diagram. Methodology. Observations. Jon Jawnsy Yu 26 October 2009

Lab 1. Objectives. Single Line Diagram. Methodology. Observations. Jon Jawnsy Yu 26 October 2009 Lab 1 Objectives In this lab, our objective is to simulate a simple single machine infinite bus configuration using the PowerWorld Simulator software. We design a local generator system (a synchronous

More information

ZENER ELECTRIC PTY LTD

ZENER ELECTRIC PTY LTD ACN 00 595 428 APPLICATION NOTE: IM 0002 Revision -, June 996 Effective: 24/06/96 Topic: Mains Harmonic Disturbance and Variable Speed AC-Drives Introduction Most common industrial variable speed drives

More information

MODELLING AND CONTROL OF HYBRID

MODELLING AND CONTROL OF HYBRID MODELLING AND CONTROL OF HYBRID LCC HVDC SYSTEM by YING XUE A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Electronic, Electrical and Systems Engineering

More information

Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis

Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis By ALL-TEST Pro, LLC & EMA Inc. Industry s use of Motor Drives for AC motors continues to grow and the Pulse-Width

More information

29 Level H- Bridge VSC for HVDC Application

29 Level H- Bridge VSC for HVDC Application 29 Level H- Bridge VSC for HVDC Application Syamdev.C.S 1, Asha Anu Kurian 2 PG Scholar, SAINTGITS College of Engineering, Kottayam, Kerala, India 1 Assistant Professor, SAINTGITS College of Engineering,

More information

A New VSC HVDC model with IEEE 5 bus system

A New VSC HVDC model with IEEE 5 bus system A New VSC HVDC model with IEEE 5 bus system M.Sujatha 1 1 PG Student, Department of EEE, JNTUA, Ananthapuramu, Andhra Pradesh, India. ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System 1 Leena N C, 2 B. Rajesh Kamath, 3 Shri Harsha 1,2,3 Department of EEE, Sri Siddhartha Institute of Technology, Tumkur-572105,

More information

Copyright 2012 IEEE. Paper presented at 2012 IEEE Workshop on Complexity in Engineering 11 June, Aachen,

Copyright 2012 IEEE. Paper presented at 2012 IEEE Workshop on Complexity in Engineering 11 June, Aachen, Copyright 22 IEEE Paper presented at 22 IEEE Workshop on Complexity in Engineering June, Aachen, Germany 22 This material is posted here with the permission of the IEEE. Such permission of the IEEE does

More information

Electromagnetic Transient Simulation for Study on Commutation Failures in HVDC Systems

Electromagnetic Transient Simulation for Study on Commutation Failures in HVDC Systems Electromagnetic Transient Simulation for Study on Commutation Failures in HVDC Systems Xia Chengjun, Xu Yang, Shan Yuanda Abstract--In order to improve reliability of HVDC transmission system, commutation

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Lecture Note 10 DC-AC PWM Inverters Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Email: 30205@uotechnology.edu.iq Scan QR DC-AC PWM Inverters Inverters are AC converters used

More information

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 7 (2012), pp. 889-902 International Research Publication House http://www.irphouse.com Voltage Sags in Distribution Systems

More information

Modeling and Simulation of STATCOM

Modeling and Simulation of STATCOM Modeling and Simulation of STATCOM Parimal Borse, India Dr. A. G. Thosar Associate Professor, India Samruddhi Shaha, India Abstract:- This paper attempts to model and simulate Flexible Alternating Current

More information

Fault Ride Through Technical Assessment Report Template

Fault Ride Through Technical Assessment Report Template Fault Ride Through Technical Assessment Report Template Notes: 1. This template is intended to provide guidelines into the minimum content and scope of the technical studies required to demonstrate compliance

More information

CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY

CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY LIST OF TOPICS 1 Electric Circuit Principles 2 Electronic Circuit Principles 3 Generation 4 Distribution 5 Utilisation The expected learning outcome is

More information

Topics in JNTU Syllabus Modules and Sub Modules Lecture. Basic characteristics L21 T1-Ch4, T2-Ch14 Characteristics. Modification of the control

Topics in JNTU Syllabus Modules and Sub Modules Lecture. Basic characteristics L21 T1-Ch4, T2-Ch14 Characteristics. Modification of the control SESSION PLAN Sl. Topics in JNTU Syllabus Modules and Sub Modules UNIT-III 9 Principal of DC link control Introduction Steady state equivalent circuit of a 2 terminal DC link Lecture L20 Suggested Books

More information

Enhancement of Power Quality in Distribution System Using D-Statcom

Enhancement of Power Quality in Distribution System Using D-Statcom Enhancement of Power Quality in Distribution System Using D-Statcom Ruma Deb 1, Dheeraj Pandey 2 Gyan Ganga Institute of Technology & Sciences, Tilwara Road, RGPV University, Jabalpur (M.P) INDIA 1 ruma.deb20@gmail.com,

More information

3 CHAPTER III DESIGN, MODELING AND CONTROL OF VSC BASED HVDC SYSTEM

3 CHAPTER III DESIGN, MODELING AND CONTROL OF VSC BASED HVDC SYSTEM 3 CHAPTER III DESIGN, MODELING AND CONTROL OF VSC BASED HVDC SYSTEM The voltage source converter (VSC) is the prime unit of a VSC based HVDC system, therefore, its design and performance evaluation is

More information

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١ POWER ELECTRONICS POST GRADUATE 2010 AC Chopper Prepared by: Dr. Gamal SOwilam 11 December 2016 ١ 1. Introduction AC Chopper is An AC to AC Converter employs to vary the rms voltage across the load at

More information

Power Converters. Neil Marks. STFC ASTeC/ Cockcroft Institute/ U. of Liverpool, Daresbury Laboratory, Warrington WA4 4AD, U.K.

Power Converters. Neil Marks. STFC ASTeC/ Cockcroft Institute/ U. of Liverpool, Daresbury Laboratory, Warrington WA4 4AD, U.K. Power Converters Neil Marks STFC ASTeC/ Cockcroft Institute/ U. of Liverpool, Daresbury Laboratory, Warrington WA4 4AD, U.K. n.marks@dl.ac.uk Contents 1. Requirements. 2. Basic elements of power supplies.

More information