ENEE 306: Electronics Analysis and Design Laboratory

Size: px
Start display at page:

Download "ENEE 306: Electronics Analysis and Design Laboratory"

Transcription

1 ENEE 306: Electronics Analysis and Design Laboratory Neil Goldsman Department of Electrical and Computer Engineering University of Maryland College Park, MD Spring 2005 Instructor: Professor Neil Goldsman Department of Electrical and Computer Engineering University of Maryland College Park, MD 20742

2 Contents 2 Simple Transistor Amplifiers BJT Forward Active Operation, Equivalent Circuit and β Theory DC Levels, Loop Equations and β Common Emitter Amplifier: DC Bias Theory CE Amp Small Signal Voltage Gain at Midband Frequencies Theory: Approximate Analysis Experiment

3 Laboratory 2 Simple Transistor Amplifiers 2.1 BJT Forward Active Operation, Equivalent Circuit and β Theory Figure 2.1: BJT Basic Structure (NPN) 2

4 Large Signal Equivalent Circuit & Forward Active Mode BJT in forward active to be a three-terminal device composed of a diode and a current controlled current source as shown in Fig Forward Active V C >V B >V E (2.1) Figure 2.2: Large Signal Equivalent Circuit BJT circuit symbol on the left of Fig. 2.2 with the equivalent circuit on the right of Fig The BJT then has three terminals, the base, collector and emitter, and thus three terminal currents, I b, I c,andi e, which are defined in the Figure above. In forward active, the collector current is equal to the base current times the current gain β or I c = βi b,whereβ is typically about 200. From Kirchoff s current law we have Substituting I c = βi b we have I e = I c + I b (2.2) I e = I b (1 + β) (2.3) 3

5 Diode Equation I b = I S exp V be (2.4) V t I S is the saturation current which is a parameter like β that depends on the specific BJT construction. V t is the thermal voltage which is equal to KT where K, T, q are q Boltzmann s constant, absolute temperature At room temperature V t =0.026V. 4

6 2.1.2 DC Levels, Loop Equations and β Fig DC voltage levels at the base (V B ), emitter (V E ) and collector (V C ). Applying the following loop equations: where V CC in the figure is 10V. V B = V CC I B R B (2.5) V E = V B V BE V B 0.7 =I E R E (2.6) V CC I B R B 0.7 I E R E = 0 (2.7) Since β 1, I E I C, we can use the following expression for the collector voltage: V C = V CC I C R C V CC I E R C (2.8) Figure 2.3: Circuit for Determining β 5

7 2.2 Common Emitter Amplifier: DC Bias Theory Amplifies small AC signals, but first must set up a DC bias and operating point. The circuit in Fig. 2.4 is a Common Emitter (CE) Amplifier. Figure 2.4: Common Emitter Amplifier First use R 1, R 2, C 1,andC 2 to set up a DC operating point with v in =0. Purpose of C 1 and C 2 is to isolate the DC operating point currents and voltages from the rest of the world, i.e, the signal source and the load. Replace voltage divider with its Thevenin equivalent, and then by directly applying loop equations to the circuit. To see this consider the circuit in Fig Using KVL on the base emitter loop, we obtain V BB = I B R B + I E R E + V BE (2.9) where R B = R 1 R 2 and V BB = V CCR 2 R 1 +R 2. 6

8 Figure 2.5: Determining DC Bias The B-E loop gives one equation and three unknowns. We can easily reduce the number of unknowns by making the very good approximations I C I E,andV BE =0.7V. Using these approximations and recalling that βi B = I C,wecan obtain the following equation for I C in terms of known parameters. I C = V BB 0.7 R B (2.10) β + R E With I C determined, V C and V E are readily obtained by observing that: V C = V CC I C R C (2.11) V E = I E R E (2.12) V B = V E +0.7 (2.13) 7

9 2.3 CE Amp Small Signal Voltage Gain at Midband Frequencies Theory: Approximate Analysis CE configuration is useful for amplifying small signal voltages. Voltage gain is A v = v out v in Figure 2.6: Common Emitter Amplifier = V c V b. General procedure: Find V c and V b from simple applications of Kirchoff s laws, and then find the small or incremental changes in these voltages due to an applied signal at the base. Using KVL directly on the base emitter loop, and recalling that formostbjt si e I c, and thus substituting I e for I c,gives V b = I c R E + V be (2.14) If we make an incremental change in V b by applying a small signal to the base we obtain: V b = I c R E + V be (2.15) V be is almost always very small. Therefore, a zero order approximation can often be made to neglect V be compared with I c R E to 8

10 yield: V b I c R E (2.16) Look at the collector voltage V C. From KVL we have V c = V CC I c R C (2.17) Since V CC represents a DC power supply V CC =0 V c = I c R C (2.18) Taking the ratio v out v in = V c V b for the voltage gain yields: v out v in R C R E (2.19) Experiment Figure 2.7: CE Circuit for small signal gain 9

Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers

Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Analog Voltage Amplifiers Circuit Design and Configurations 2 Objective

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018 Transistor Biasing DC Biasing of BJT Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com A transistors steady state of operation depends a great deal

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers

Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 BJT Modes of Operation Electrical Equations of BJT 2 BJT

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 1 Solution

55:041 Electronic Circuits The University of Iowa Fall Exam 1 Solution Exam 1 Name: Score /60 Question 1 Short takes. For True/False questions, write T, or F in the right-hand column as appropriate. For other questions, provide answers in the space provided. 1. Tue of false:

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

Midterm 2 Exam. Max: 90 Points

Midterm 2 Exam. Max: 90 Points Midterm 2 Exam Name: Max: 90 Points Question 1 Consider the circuit below. The duty cycle and frequency of the 555 astable is 55% and 5 khz respectively. (a) Determine a value for so that the average current

More information

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Page1 Name ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Problem 1 (15 points) You are given an NMOS amplifier with drain load resistor R D = 20 k. The DC voltage (V RD

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

I C I E =I B = I C 1 V BE 0.7 V

I C I E =I B = I C 1 V BE 0.7 V Guide to NPN Amplifier Analysis Jason Woytowich 1. Transistor characteristics A BJT has three operating modes cutoff, active, and saturation. For applications, like amplifiers, where linear characteristics

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture I James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Introduction This Lecture 1 Introduction Aims &

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

C H A P T E R 6 Bipolar Junction Transistors (BJTs)

C H A P T E R 6 Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode EBJ CBJ Cutoff Reverse Reverse Active

More information

Lecture #3 ( 2 weeks) Transistors

Lecture #3 ( 2 weeks) Transistors Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-291 Electronic Engineering Lecture #3 ( 2 weeks) Transistors Instructor: Dr. Ahmad El-Banna 1 Agenda BJT Structure Basic Operation Transistor

More information

Lecture 8. Summary of Amplifier Design Methods Specific G T and F. Transistor Biasing. Lecture 8 RF Amplifier Design

Lecture 8. Summary of Amplifier Design Methods Specific G T and F. Transistor Biasing. Lecture 8 RF Amplifier Design Lecture 8 RF Amplifier Design Johan Wernehag Electrical and Information Technology Lecture 8 Amplifier Design Summary of Design Methods Transistor Biasing Voltage and Current Drive of Bipolar Transistors

More information

ET215 Devices I Unit 4A

ET215 Devices I Unit 4A ITT Technical Institute ET215 Devices I Unit 4A Chapter 3, Section 3.1-3.2 This unit is divided into two parts; Unit 4A and Unit 4B Chapter 3 Section 3.1 Structure of Bipolar Junction Transistors The basic

More information

Diode and Bipolar Transistor Circuits

Diode and Bipolar Transistor Circuits Diode and Bipolar Transistor Circuits 2 2.1 A Brief Review of Semiconductors Semiconductors are crystalline structures in which each atom shares its valance electrons with the neighboring atoms. The simple

More information

Communication Microelectronics (W17)

Communication Microelectronics (W17) Communication Microelectronics (W17) Lecture 4: Bipolar Junction Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Bipolar Junction Transistor (BJT) Physical Structure and I-V

More information

Chapter 4 DC Biasing BJTs. BJTs

Chapter 4 DC Biasing BJTs. BJTs hapter 4 D Biasing BJTs BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

Lab 3: BJT Digital Switch

Lab 3: BJT Digital Switch Lab 3: BJT Digital Switch Objectives The purpose of this lab is to acquaint you with the basic operation of bipolar junction transistor (BJT) and to demonstrate its functionality in digital switching circuits.

More information

UNIT I - TRANSISTOR BIAS STABILITY

UNIT I - TRANSISTOR BIAS STABILITY UNIT I - TRANSISTOR BIAS STABILITY OBJECTIVE On the completion of this unit the student will understand NEED OF BIASING CONCEPTS OF LOAD LINE Q-POINT AND ITS STABILIZATION AND COMPENSATION DIFFERENT TYPES

More information

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections ITT Technical Institute ET215 Devices 1 Unit 6 Chapter 3, Sections 3.7-3.9 Chapter 3 Section 3.7 The Bipolar Transistor as a Switch Objectives: Explain how a transistor can be used as a switch 1. Compute

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Lecture 8. RF Amplifier Design. Johan Wernehag Electrical and Information Technology. Johan Wernehag, EIT

Lecture 8. RF Amplifier Design. Johan Wernehag Electrical and Information Technology. Johan Wernehag, EIT Lecture 8 RF Amplifier Design Johan Wernehag Electrical and nformation Technology Lecture 8 Amplifier Design Summary of Design Methods Transistor Biasing Voltage and Current Drive of Bipolar Transistors

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

The Bipolar Junction Transistor- Small Signal Characteristics

The Bipolar Junction Transistor- Small Signal Characteristics The Bipolar Junction Transistor- Small Signal Characteristics Debapratim Ghosh deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay

More information

Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode Cutoff Active Saturation EBJ Reverse

More information

F7 Transistor Amplifiers

F7 Transistor Amplifiers Lars Ohlsson 2018-09-25 F7 Transistor Amplifiers Outline Transfer characteristics Small signal operation and models Basic configurations Common source (CS) CS/CE w/ source/ emitter degeneration resistance

More information

EXP8: AMPLIFIERS II.

EXP8: AMPLIFIERS II. EXP8: AMPLIFIES II. Objectives. The objectives of this lab are:. To analyze the behavior of a class A amplifier. 2. To understand the role the components play in the gain of the circuit. 3. To find the

More information

Transistors Used as an Amplifier

Transistors Used as an Amplifier Transistors Used as an Amplifier Background: Transistors can operate in three states: Off & Saturated: Used when operating as a switch Active: Used when operating as an amplifier. In active mode, the colelctor

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS Most of the content is from the textbook: Electronic devices and circuit theory,

More information

BIPOLAR JUNCTION TRANSISTOR (BJT) NOISE MEASUREMENTS 1

BIPOLAR JUNCTION TRANSISTOR (BJT) NOISE MEASUREMENTS 1 4. BIPOLAR JUNCTION TRANSISTOR (BJT) NOISE MEASUREMENTS 4.1 Object The objective of this experiment is to measure the mean-square equivalent input noise, v 2 ni, and base spreading resistance, r x, of

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EC 6304 ELECTRONIC CIRCUITS I. (Regulations 2013)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EC 6304 ELECTRONIC CIRCUITS I. (Regulations 2013) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EC 6304 ELECTRONIC CIRCUITS I (Regulations 2013 UNIT-1 Part A 1. What is a Q-point? [N/D 16] The operating point also known as quiescent

More information

Analog Electronics (Course Code: EE314) Lecture 9 10: BJT Small Signal, Biasing, Amplifiers

Analog Electronics (Course Code: EE314) Lecture 9 10: BJT Small Signal, Biasing, Amplifiers Indian Institute of Technology Jodhpur, Year 08 Analog Electronics (ourse ode: EE34) Lecture 9 0: BJT Small Signal, Biasing, Amplifiers ourse Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

D.C Biasing using a Single Power Supply

D.C Biasing using a Single Power Supply 4/6/0 D Biasing using a Single Power Supply /6 D. Biasing using a Single Power Supply The general form of a single-supply BJT amplifier biasing circuit is: - - Generally, we have three goals in designing

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8 Bipolar Junction Transistor Aim: The aim of this experiment is to investigate the DC behavior

More information

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1 HTTP://NGNS.N/ NGNS- ONSULTANTS LTU NOTS SS LTONS NGNNG 1 YA UPTU iasing of JT As we know that JT can be operated in three regions: active, saturation and cutoff by applying proper voltage condition. n

More information

REVIEW TRANSISTOR BIAS CIRCUIT

REVIEW TRANSISTOR BIAS CIRCUIT EVIEW TANSISTO BIAS CICUIT OBJECTIVES Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collectorfeedback bias circuits. Basic troubleshooting

More information

Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below.

Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below. Exam 3 Name: Score /94 Question 1 Short Takes 1 point each unless noted otherwise. 1. Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier

More information

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Week - 08 Module - 04 BJT DC Circuits Hello, welcome to another module of this course

More information

ECE321 Electronics I Fall 2006

ECE321 Electronics I Fall 2006 ECE321 Electronics I Fall 2006 Professor James E. Morris Lecture 11 31 st October, 2006 Bipolar Junction Transistors (BJTs) 5.1 Device Structure & Physics 5.2 I-V Characteristics Convert 5.1 information

More information

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes Lab 1 Transistor Biasing and Operational amplifier fundamentals Experiment 1.1 Experiment 1.2 BJT biasing OP-amp Fundamentals and its DC characteristics BJT biasing schemes 1.1 Objective 1. To sketch potential

More information

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT)

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT) EE105 Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 utardja Dai Hall (DH) 1 NPN Bipolar Junction Transistor (BJT) Forward Bias Reverse Bias Hole Flow Electron

More information

ECE 3455: Electronics Section Spring Final Exam

ECE 3455: Electronics Section Spring Final Exam : Electronics Section 12071 Spring 2011 Version B May 7, 2011 Do not open the exam until instructed to do so. Answer the questions in the spaces provided on the question sheets. If you run out of room

More information

Lecture 19: Available Power. Distortion. Emitter Degeneration. Miller Effect.

Lecture 19: Available Power. Distortion. Emitter Degeneration. Miller Effect. Whites, EE 322 Lecture 19 Page 1 of 11 Lecture 19: Available Power. Distortion. Emitter Degeneration. Miller Effect. While the efficiency of an amplifier, as discussed in the previous lecture, is an important

More information

ECE 310 Microelectronics Circuits

ECE 310 Microelectronics Circuits ECE 310 Microelectronics Circuits Bipolar Transistors Dr. Vishal Saxena (vishalsaxena@boisetstate.edu) Jan 20, 2014 Vishal Saxena 1 Bipolar Transistor n the chapter, we will study the physics of bipolar

More information

Prof. Anyes Taffard. Physics 120/220. Diode Transistor

Prof. Anyes Taffard. Physics 120/220. Diode Transistor Prof. Anyes Taffard Physics 120/220 Diode Transistor Diode One can think of a diode as a device which allows current to flow in only one direction. Anode I F Cathode stripe Diode conducts current in this

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

EE 330 Lecture 21. Bipolar Process Flow

EE 330 Lecture 21. Bipolar Process Flow EE 330 Lecture 21 Bipolar Process Flow Exam 2 Friday March 9 Exam 3 Friday April 13 Review from Last Lecture Simplified Multi-Region Model I C βi B JSA IB β V 1 V E e V CE BE V t AF V BE >0.4V V BC

More information

Chapter 11 Output Stages

Chapter 11 Output Stages 1 Chapter 11 Output Stages Learning Objectives 2 1) The classification of amplifier output stages 2) Analysis and design of a variety of output-stage types 3) Overview of power amplifiers Introduction

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

Lecture (06) Bipolar Junction Transistor

Lecture (06) Bipolar Junction Transistor Lecture (06) Bipolar Junction Transistor By: Dr. Ahmed lshafee ١ Agenda BJT structure BJT operation BJT characteristics ٢ BJT structure The BJT is constructed with three doped semiconductor regions One

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE 3/9/011 lectronic Devices Ninth dition Floyd hapter 5: Transistor ias ircuits The D Operating Point ias establishes the operating point (Q-point) of a transistor amplifier; the ac signal (ma) moves above

More information

Dr. Charles Kim ELECTRONICS I. Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB

Dr. Charles Kim ELECTRONICS I. Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB ELECTRONICS I Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB MOBILE STUDIO LAB Before We Start A transistor is a 3-terminal device available in two configurations, NPN and PNP. The transistor

More information

Lecture 12 OUTLINE. Cascode Stage (cont d) Current Mirrors Reading: Chapter 9.2. EE105 Fall 2007 Lecture 12, Slide 1 Prof.

Lecture 12 OUTLINE. Cascode Stage (cont d) Current Mirrors Reading: Chapter 9.2. EE105 Fall 2007 Lecture 12, Slide 1 Prof. Lecture 12 ANNOUNCEMENTS Review session: 3 5PM 5PMFriday (10/5)in 306Soda (HP Auditorium) Midterm #1 (Thursday 10/11, 3:30PM 5:00PM) location: 106 Stanley Hall: Students with last names starting with A

More information

Last time: BJT CE and CB amplifiers biased by current source

Last time: BJT CE and CB amplifiers biased by current source Last time: BJT CE and CB amplifiers biased by current source Assume FA regime, then VB VC V E I B I E, β 1 I Q C α I, V 0. 7V Calculate V CE and confirm it is > 0.2-0.3V, then BJT can be replaced with

More information

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c)

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c) 380 Chapter 6 Bipolar Junction Transistors (BJTs) Example 6.4 Consider the circuit shown in Fig. 6., which is redrawn in Fig. 6. to remind the reader of the convention employed throughout this book for

More information

CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT SCHOOL OF ENGINEERING & TECHNOLOGYDEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT SCHOOL OF ENGINEERING & TECHNOLOGYDEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT SCHOOL OF ENGINEERING & TECHNOLOGYDEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING ELECTRONIC DEVICES Section: ECE SEM: II PART-A 1. a) In a N-type

More information

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan Carleton University ELEC 3509 Lab 1 L2 Friday 2:30 P.M. Student Number: 100977570 Operation of a BJT Author: Adam Heffernan October 13, 2017 Contents 1 Transistor DC Characterization 3 1.1 Calculations

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

Chapter 5 Transistor Bias Circuits

Chapter 5 Transistor Bias Circuits Chapter 5 Transistor Bias Circuits Objectives Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collector-feedback bias circuits. Basic

More information

The Difference Amplifier Sept. 17, 1997

The Difference Amplifier Sept. 17, 1997 Physics 63 The Difference Amplifier Sept. 17, 1997 1 Purpose To construct a difference amplifier, to measure the DC quiescent point and to compare to calculated values. To measure the difference mode gain,

More information

Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Video Course on Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. # 02 Transistors Lecture No. # 09 Biasing a Transistor (Contd) We continue our discussion

More information

4.1.3 Structure of Actual Transistors

4.1.3 Structure of Actual Transistors 4.1.3 Structure of Actual Transistors Figure 4.7 shows a more realistic BJT cross-section Collector virtually surrounds entire emitter region This makes it difficult for electrons injected into base to

More information

Transistor Biasing Nafees Ahamad

Transistor Biasing Nafees Ahamad Transistor Biasing Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Introduction The basic function of transistor is to do amplification. (CE connection)

More information

The first transistor. (Courtesy Bell Telephone Laboratories.)

The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.1 The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.2 Types of transistors: (a) pnp; (b) npn. : (a) pnp; : (b) npn Fig. 3.3 Forward-biased junction of a pnp transistor. Fig. 3.4

More information

Bipolar Junction Transistor (BJT)

Bipolar Junction Transistor (BJT) Bipolar Junction Transistor (BJT) 1 Objectives To understand the structure of BJT. To explain and analyze the basic transistor circuits. To use transistors as an amplifier and electronic switch. To design

More information

FET, BJT, OpAmp Guide

FET, BJT, OpAmp Guide FET, BJT, OpAmp Guide Alexandr Newberry UCSD PHYS 120 June 2018 1 FETs 1.1 What is a Field Effect Transistor? Figure 1: FET with all relevant values labelled. FET stands for Field Effect Transistor, it

More information

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook)

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook) Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook) Recapitulation and Equivalent Circuit Models Previous slides present first order BJT model. Assumes npn transistor in active mode. Basic relationship

More information

BJT as an Amplifier and Its Biasing

BJT as an Amplifier and Its Biasing Microelectronic ircuits BJT as an Amplifier and Its Biasing Slide 1 Transfer haracteristics & Biasing Slide 2 BJT urrent-oltage relationship The collector current i I i i B s e i B vbe Is e T v BE T Emitter

More information

Bipolar Junction Transistor

Bipolar Junction Transistor ESE 211 / Spring 2011 / Lecture 10 Bipolar Junction Transistor Let us first consider general transconductance amplifier loaded with short circuit Transconductance Obviously, power supplies are needed for

More information

Electronics I ELEC 311/1 BB. Final August 14, hours 6

Electronics I ELEC 311/1 BB. Final August 14, hours 6 Course Number Section Electronics I ELEC 311/1 BB Examination Date Time # of pages Final August 14, 2009 3 hours 6 Instructor(s) Dr.R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

Lecture #3 BJT Transistors & DC Biasing

Lecture #3 BJT Transistors & DC Biasing November 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #3 BJT Transistors & DC Biasing Instructor: Dr. Ahmad El-Banna Agenda Transistor

More information

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier High Frequency BJT Model & Cascode BJT Amplifier 1 Gain of 10 Amplifier Non-ideal Transistor C in R 1 V CC R 2 v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that

More information

Lab 2: Common Base Common Collector Design Exercise

Lab 2: Common Base Common Collector Design Exercise CSUS EEE 109 Lab - Section 01 Lab 2: Common Base Common Collector Design Exercise Author: Bogdan Pishtoy / Lab Partner: Roman Vermenchuk Lab Report due March 26 th Lab Instructor: Dr. Kevin Geoghegan 2016-03-25

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture II James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk This Lecture 1 One Transistor Circuits Continued...

More information

ESE 319 MT Review

ESE 319 MT Review ESE 319 MT1 2010 Review 1)--> Physical operation of a BJT (layout, why currents are related, npn vs. pnp). 2)Cover the Eber's Mole Model for forward and reverse active configurations. (large signal model)

More information

Transistor electronic technologies

Transistor electronic technologies Transistor electronic technologies Bipolar Junction Transistor discrete or integrated circuit discrete = individual component MOS (Metal-Oxide-Silicon) Field Effect Transistor mainly used in integrated

More information

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN BJT AC Analysis 5 CHAPTER OBJECTIVES Become familiar with the, hybrid, and hybrid p models for the BJT transistor. Learn to use the equivalent model to find the important ac parameters for an amplifier.

More information

Concepts to be Covered

Concepts to be Covered Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Lesson 5 Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Types and Connections Semiconductors Semiconductors If there are many free

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Neamen Microelectronics Chapter 6-1 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 6 Basic BJT Amplifiers Neamen Microelectronics Chapter 6-2 In this chapter, we will: Understand

More information

Early Effect & BJT Biasing

Early Effect & BJT Biasing Early Effect & BJT Biasing Early Effect DC BJT Behavior DC Biasing the BJT 1 ESE319 Introduction to Microelectronics Early Effect Saturation region Forward-Active region 4 3 Ideal NPN BJT Transfer V Characteristic

More information