Keywords: ultrasonic shadow method, measuring the width of the packaging tape, primary measuring transducers of width.

Size: px
Start display at page:

Download "Keywords: ultrasonic shadow method, measuring the width of the packaging tape, primary measuring transducers of width."

Transcription

1 UDC UTRASONIC SHADOW METHOD OF MEASURING THE WIDTH OF PACKING TAPE IN THE AIR AND THE RESEARCH OF OPTIONS OF MEASURING TRANSDUCERS FOR ITS IMPEMENTATION Rishan A.І., PhD in Technical Sciences 1 Novachevskyi Ya.V., Master s degree student 1 Zaiko V.М., Master s degree student 1 1 National University of Food Technologies, 68, Volodymyrska Str., Kyiv, Ukraine, The article presents the results of research and development of ultrasonic shadow method of measuring the width of the packaging tape. The essence of this method is to control the deviation from the initial position of edge of the packaging tape using two identical primary measuring transducers of width (PMTW), each of which contains rigidly fixed and directed towards each other planes of emission and receiving of ultrasonic vibrations, they are oscillator and measuring receiver, which create acoustic control zone of edge position of the tape which is measured by the width in the air. Each emitter is a linear group of emitters that are excited by common-mode voltage from the transformer with plenty of windings, that leads to creation of equally distributed acoustic beam by the intensity and length, which overlaps by the edge of the acoustically nontransparent tape. The latter gives an opportunity to get a proportional correlation between the acoustic pressure on the receiver and the position of the edge of the tape. There are derived basic mathematical dependencies that describe the considered shadow measurement method in its implementation in the air, and dependencies by choosing of parameters of acoustic measurement zone PMTW in the implementation of the method and the results of experimental researches are presented. Keywords: ultrasonic shadow method, measuring the width of the packaging tape, primary measuring transducers of width. Formulation of the problem. Ultrasonic shadow method of measurement is commonly used in the flaw detection search for cracks or presence of impurities in the metal products. The same method can be used to measure the width of the tape semi products in the air, which in their turn can be either optically transparent or easily susceptible to deformation [4], such as sheets for packaging products in the food industry, etc. The main condition for the implementing of the shadow method is that there must be a big difference between acoustic air resistance and semiproducts [1], that will allow to get a clear shadow from the edge of the packing list on the receiver. Usually this condition is satisfied because the acoustic resistance of the air and the sheet are different almost by three ranks [2].

2 One more condition for the implementation of this shadow method is to create in the air equally divided by intensity ultrasound beam at some length, that overlap the edge of packing sheet. To solve it, there is used well-known hydroacoustics dependency for pressure on the distance H, which is formed by a linear group of ultrasonic oscillator located in the hard screen with radiation in halfspace along the normal to their surface [3]: Р 2 * m* Q j( t ) С е, (1) 2 where С - acoustic impedance environment; λ - length of ultrasonic waves; m - number of 2 radiators, which form linear group; - Setting emitted wave; t - time factor; - cyclic frequency radiation; Q - volume velocity of ultrasonic vibrations source, which describes the ability of the emitter to the formation of acoustic field. From the dependence (1) we can see that pressure, which linear group of emitter at a distance H develops, depends on the number of emitters in the group which create common acoustic beam and if that common beam overlaps the edge of the acoustically nontransparent tape, then it is possible to receive a proportional correlation between the pressure and the position of the edge of the tape to implement the shadow method of measuring the position of the edge of the tape. Purpose of the article is the development of a functional scheme of the device of measuring the width of the tape in the air and the research of conditions of building acoustic zone of measurement by the implementation of the shadow amplitude method. Presenting of the main material. Dependence (1) for pressure of the ultrasonic wave may be submitted in the following form: Р С * m* Q SС РО, (2) 2 2 where Q S * V - volume velocity of ultrasonic radiation source; S plane of one emitter in a РО group; S С m* S V - total area which form linear group; С - oscillatory speed on the surface of one emitter in a group; Р О - pressure which one emitter group develops in its surface; Dependence (2) unlike the dependence (1) describes the resulting amplitude value of pressure of ultrasonic vibrations, which is proportional to the general plane of the linear group of emitters, and point to a basic condition that must be executed to achieve a proportional dependence between the change of pressure and size of the overlap ultrasound beam by the edge of the tape. Such a condition is a proportional change in the total area of linear group of emitters which can easily be made in case when the group of emitters is rectangular. The latter points to feasibility of a set of emitter of single rectangular emitters and their location in the package along the length of its overlapping by the edge of the tape on the minimum allowable distances causing acoustic and electrical solution (pic.1).

3 In this case, the excitation of all single emitters package by the common-mode voltage, the package can be viewed as monolithic rectangular emitter, and the dependence of the amplitude of pressure which develops such a linear group of emitters at the distance H along the normal to the surface of radiation takes the form: Р m* О * П П РО РО, (3) 2 2H where О - size of single emitter in the direction of dislocation of the edge of the tape; package size of emitters in the direction of dislocation of the edge of the tape; П - size of single emitter in the direction of the tape movement, which is controlled by the width; and О * m* П * П SС ; Dependency (3) allows the determining of the amplitude of the voltage at the output of the ultrasonic receiver that measures this pressure on the distance from the surface of emitter considering the size of overlapping ultrasound beam: - U К П Р О SС (1 Х 2 ), (4) where К П - receiver sensitivity; X - displacement of the tape edge that causes overlapping of ultrasonic beam of the package of emitters. The gain (sensitivity conversion) in the shadow method of the width measurement is defined by the dependency: К П дu ш SС РО. (5) дх 2 The signal of the receiver reaches the maximum value while Х = 0, and minimal by the full overlapping a parameter of the package of emitters, i.e. when Х. Thus, the parameter determines the range of measurement of the position of the edge of the tape and must be determined from the conditions: X 2 В, (6) 2 where Х - is a possible deviation from the edge of the tape from the starting position caused by a change of the width of the tape; В - displacement of the axis of the tape relatively to the starting position at a constant width of it. Dependency (5) makes it possible to determine the number of single emitters m that are necessary to ensure the specified range of measurement of the condition: 2 x 2 B m. (7) О О

4 Dependence (4) in the shadow method of measuring the width of the tape of the packing list is implemented with the structural scheme that is shown in pic.2. The scheme implements the differential measurement method only when the width deviation of a tape of its nominal value is measured which is algebraically added to the nominal value after each measurement. The method is performed by using two 1 and 2 of the primary measuring transducers of width (PMTW), each of which accommodates rigidly fixed and directed towards each other areas of emission and receiving of ultrasonic vibrations emitter 3 and measurement receiver 4 (pic.2). Both PMTW can move through bracket-line 5. PMTW are fixed in relation to the 6 strip width of which is measured in such a way that the left and right edge of the tape were between transmitter and receiver of both PMTW. Nominal (required) value of the tape is exposed corresponding to displacement in both bracket-line level 5 on of overlap of both ultrasound beams that correspond half of the maximum length and in reference 7. Adder 10 determines the sum of the average values of signals from both measuring receivers. After their detection by the detectors 8, 9, and zooming into amplifiers 11, it is considered as the beginning of the measurement of deviation of the tape width from its nominal value. At excitation of emitters of both PMTW ultrasonic beams of left and right PMTW are overlapped by the edges of the tape 6. A part of beams of each PMTW is reflected from the surface of the strip and does not get on receivers. With the change of the tape width in the direction of its increasing, the degree of overlap of acoustic beams of both PMTW increases. The total output signal decreases relative to its value which corresponded to the nominal value of the initial configuration. Negative difference between these signals is determined by algebraic adder-indicator 12, which determines the sign and the inclination of the tape width from its nominal value and reflects the actual value of the tape width 6. Decreasing the tape width causes opposite effect. By using a sum of signals of both PMTW, as informational, the independence of the output signal is ensured in the shadow method from a possible displacement of constant across the width of the tape toward the left or right PMTW. Dependency (5) characterizes the transfer factor in the shadow method for specific values of parameters of measurement zone between the emitter and receiver (S,,, λ), but in an explicit form does not assess the impact of diffraction on permitting property of the method and on his error. Diffraction is caused by the presence of the angular deviation of the ultrasound beam (angle of diffraction extension) and is manifested in the fact that violates the straightness of the ultrasound beam. This in turn leads to the fact that the acoustic shadow from the edge of the tape is blurred and not clear. Accordingly, in order to decrease an additional error from the impact of diffraction, the width of diffraction tape on the receiver should be as small as possible. In this case, diffraction takes a place in parallel beams from a half-plane that is formed by a tape that covers the acoustic beam. The width of the diffraction of the tape in this case depends on the length of the ultrasonic wave, direction of emission (angle difference of emission). In addition, it depends on the distance between the surface that forms a shadow, and the measuring receiver. To reduce the diffraction of the tape, which puts an additional error into measurement result, it is necessary to use emitting systems with high value of coefficient of direction, i.e. to

5 reduce the angle of diffraction extension, which is given for a rectangular emitter with length by: sin /. (8) During the synthesis of the PMTW parameters, which is shown in the pic.1, and in which pressure measurement is carried out by distributing along the length of overlapping rectangular measuring receiver of length, there is taken into account the condition of ensuring specified absolute total error of measurement of edge position of the sheet that can be written in the following form: Ф, where - nonlinearity error; and Ф - fluctuation error (the impact of air environment on the measurement results). The acceptable error value from the impact of the phenomenon of diffraction at a selected frequency of emitting and the length of emitter is achieved by choosing the distance between the surface of the sheet that made public by ultrasonic vibrations and measuring receiver with conditions: tg sin * * F С, (9) where F - resonant frequency of used ultrasound emitters ; C - speed of ultrasound in the area of measurement of position of the edge of sheet. Since the choice of the emission frequency and size of linear group of emitters are achieved by the value of the angle, divergence of radiation within the degrees units, in dependence (9) tg for small angles is replaced by sin The acceptable error value oft the nonlinearity characteristics of PMTW transformation, which is due to nonlinearity of the diagram of the linear group direction of ultrasonic transducers constituting the emitter, is reached if a linear group of a single emitters generates and ultrasonic beam with the same intensity across its cross-section. For this purpose the addition of acoustic pressure, produced in an area of measuring receiver, should be carried out taking into account the characteristics of direction of each single emitter

6 within the angle of acuity of the main maximum. The angle of acuity of the main maximum is one of the key factor of the assessment of direction of emitter and is characterized by an angle И divergence (pic.1) from the axis of the direction of the main maximum of radiation, which corresponds to a relatively small change in pressure of the ultrasonic wave relative to the pressure at of maximum. For the rectangular single piston oscillator with the length О, the angle И is determined by the formula: sin 6 И. (10) О If we consider that the value in the implementation of the shadow method is a relative error of non-linearity within overlapping of ultrasound beam of a single emitter, i.e. / О,(11) then the distance between emitter and emitter receiver in which within the limits of the length of a single emitter nonlinearity in distribution of the intensity of ultrasonic field and thus the non-linearity of the output signal by measuring receiver in functions of overlapping his edge of the sheet will not extend beyond dependency (11), is determined by the formula: 2 О О О * F 0,64 2tg. (12) И 6 * С 2 О Dependency (12) determine the conditions of optimal adding of acoustic pressure from individual emitters in the plane of the measuring of receiver to obtain a given measurement range with the required nonlinearity, and points to the possible impact on the overall nonlinearity of output analog signal of measurement receiver by changing the excitation of each separate single emitter. In order to provide the linearization, the output transformer with many windings of ultrasonic generator (pic.1) is used with the possibility of individual voltage control single separate emitter by a change of the additional resistance in each of the windings of excitation.

7 In order to eliminate the occurrence of the standing wave in the shadow method of width control and its impact on the beam distributed by intensity ultrasound, plane of emission of acoustic system of emitters, it must be installed not across to the plane of measuring receiver but at an angle to it which is determined by the condition when the reflected beam from surface of the sheet does not shoot in the plane of the oscillator. This condition is determined by dependence (pic. 1): 2 П cos 2H О tg( ), (13) where - the angle of acoustic system of emitters in the direction of a sheet from the normal position between the plane of emitters and the surface of a sheet; - divergence angle of emission of acoustic system of emitters in the direction of a sheet whose width is measured and determined by dependence (8) for length П, and H О - the distance between the plane of emitters and the surface of a sheet that is under consideration. So, arctg 4 П. (14) О Considering that for the small angles of divergence the displacement of measuring receiver is calculated, which corresponds to the maximum pressure on him of the ultrasound beam after the turn of the emitters system: В П * tg H ( ). (15) 4 П О The actual pressure value of the amplitude of pressure of ultrasonic vibrations on the measuring receiver will be slightly smaller than at parallel location of planes of oscillator and receiver and it is determined by dependence (2) which is multiplied by the value cos. Conclusions. The device designed according to the structural scheme on the pic.2 to control the tape width, which implements the shadow method and in which piezoceramic transducers of the prismatic type ТБК-3 on resonant frequency of khz (by the size in the lower base of the

8 prism П = 10 mm and = 50 mm for receiver and = 25 mm for oscillator when the number m = 6 of oscillators in the package) are used, there should be noted that oscillators and receivers were used as piezoceramic transducers. Such device provides absolute error of ± 2 mm in deviation measuring range ± 50 mm. REFERENCES 1. Analysis and development of a method of measuring the level of substances in the air in spatial ultrasonic beatings / Rishan A.// Automation of production processes (22). P Research of basic parameters of ultrasonic interference level gauges on the standing wave/ Rishan A., Borodkina U. // Scientific and technical information P Basics of hydroacoustics/ Tyurin A.and others//.: Shipbuilding p. 4. An ultrasonic device for measuring the width of the tape/ Rishan A., Gumanyuk M..// С.С , BI 8, 1983.

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by PC1141 Physics I Speed of Sound 1 Objectives Determination of several frequencies of the signal generator at which resonance occur in the closed and open resonance tube respectively. Determination of the

More information

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites Single-Sided Contact-Free Ultrasonic Testing A New Air-Coupled Inspection Technology for Weld and Bond Testing M. Kiel, R. Steinhausen, A. Bodi 1, and M. Lucas 1 Research Center for Ultrasonics - Forschungszentrum

More information

Measurement of Parameters and Automatic Selection of Optimal Modes during Ultrasonic Welding of Thermoplastic Materials

Measurement of Parameters and Automatic Selection of Optimal Modes during Ultrasonic Welding of Thermoplastic Materials Measurement of Parameters and Automatic Selection of Optimal Modes during Ultrasonic Welding of Thermoplastic Materials Vladimir N.Khmelev, Senior Member, IEEE, Alexey N.Slivin, Roman V.Barsukov, Sergey

More information

Sonic Distance Sensors

Sonic Distance Sensors Sonic Distance Sensors Introduction - Sound is transmitted through the propagation of pressure in the air. - The speed of sound in the air is normally 331m/sec at 0 o C. - Two of the important characteristics

More information

INTRODUCTION. Have applications for imaging, detection and navigation.

INTRODUCTION. Have applications for imaging, detection and navigation. ULTRASONICS INTRODUCTION The word ultrasonic combines the Latin roots ultra - beyond sonic - sound. Having frequencies above the audible range i.e. above 20000Hz Have applications for imaging, detection

More information

1. Introduction. 2. Concept. reflector. transduce r. node. Kraftmessung an verschiedenen Fluiden in akustischen Feldern

1. Introduction. 2. Concept. reflector. transduce r. node. Kraftmessung an verschiedenen Fluiden in akustischen Feldern 1. Introduction The aim of this Praktikum is to familiarize with the concept and the equipment of acoustic levitation and to measure the forces exerted by an acoustic field on small spherical objects.

More information

Ultrasonic Testing using a unipolar pulse

Ultrasonic Testing using a unipolar pulse Ultrasonic Testing using a unipolar pulse by Y. Udagawa* and T. Shiraiwa** *Imaging Supersonic Laboratories Co.,Ltd. 12-7 Tezukayamanakamachi Nara Japan 63163 1. Abstract Krautkramer Japan Co.,Ltd. 9-29

More information

Experiment 19. Microwave Optics 1

Experiment 19. Microwave Optics 1 Experiment 19 Microwave Optics 1 1. Introduction Optical phenomena may be studied at microwave frequencies. Using a three centimeter microwave wavelength transforms the scale of the experiment. Microns

More information

Physics Spring 2006 Experiment 9 TRAVELING WAVES

Physics Spring 2006 Experiment 9 TRAVELING WAVES Physics 31210 Spring 2006 Experiment 9 TRAVELING WAVES Reference: Halliday, Resnick & Walker, 7th Ed., Sections 16-1 to 5, Sections 17-1 to 4 I. Introduction: Waves of all kinds, propagating through many

More information

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014 Microwave Optics Department of Physics & Astronomy Texas Christian University, Fort Worth, TX January 16, 2014 1 Introduction Optical phenomena may be studied at microwave frequencies. Visible light has

More information

ACOUSTIC AND ELECTROMAGNETIC EMISSION FROM CRACK CREATED IN ROCK SAMPLE UNDER DEFORMATION

ACOUSTIC AND ELECTROMAGNETIC EMISSION FROM CRACK CREATED IN ROCK SAMPLE UNDER DEFORMATION ACOUSTIC AND ELECTROMAGNETIC EMISSION FROM CRACK CREATED IN ROCK SAMPLE UNDER DEFORMATION YASUHIKO MORI 1, YOSHIHIKO OBATA 1 and JOSEF SIKULA 2 1) College of Industrial Technology, Nihon University, Izumi

More information

Part 2: Second order systems: cantilever response

Part 2: Second order systems: cantilever response - cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

More information

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA Abstract: A novel interferometric scheme for detection of ultrasound is presented.

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 62092 First edition 2001-08 Utrasonics Hydrophones Characteristics and calibration in the frequency range from 15 MHz to 40 MHz Ultrasons Hydrophones Caractéristiques et étalonnage

More information

Ultrasonic Linear Array Medical Imaging System

Ultrasonic Linear Array Medical Imaging System Ultrasonic Linear Array Medical Imaging System R. K. Saha, S. Karmakar, S. Saha, M. Roy, S. Sarkar and S.K. Sen Microelectronics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064.

More information

Modal analysis: a comparison between Finite Element Analysis (FEA) and practical Laser Doppler Vibrometer (LDV) testing.

Modal analysis: a comparison between Finite Element Analysis (FEA) and practical Laser Doppler Vibrometer (LDV) testing. 2017 UKSim-AMSS 19th International Conference on Modelling & Simulation Modal analysis: a comparison between Finite Element Analysis (FEA) and practical Laser Doppler Vibrometer (LDV) testing. Luca Pagano

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum The electromagnetic radiation covers a vast spectrum of frequencies and wavelengths. This includes the very energetic gamma-rays radiation with a wavelength range from 0.005 1.4

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

ULTRASONIC TRANSDUCER PEAK-TO-PEAK OPTICAL MEASUREMENT

ULTRASONIC TRANSDUCER PEAK-TO-PEAK OPTICAL MEASUREMENT ULTRASONIC TRANSDUCER PEAK-TO-PEAK OPTICAL MEASUREMENT Pavel SKARVADA 1, Pavel TOFEL 1, Pavel TOMANEK 1 1 Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of

More information

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry The Lecture Contains: Laser Doppler Vibrometry Basics of Laser Doppler Vibrometry Components of the LDV system Working with the LDV system file:///d /neha%20backup%20courses%2019-09-2011/structural_health/lecture36/36_1.html

More information

LTE. Tester of laser range finders. Integrator Target slider. Transmitter channel. Receiver channel. Target slider Attenuator 2

LTE. Tester of laser range finders. Integrator Target slider. Transmitter channel. Receiver channel. Target slider Attenuator 2 a) b) External Attenuators Transmitter LRF Receiver Transmitter channel Receiver channel Integrator Target slider Target slider Attenuator 2 Attenuator 1 Detector Light source Pulse gene rator Fiber attenuator

More information

Understanding How Frequency, Beam Patterns of Transducers, and Reflection Characteristics of Targets Affect the Performance of Ultrasonic Sensors

Understanding How Frequency, Beam Patterns of Transducers, and Reflection Characteristics of Targets Affect the Performance of Ultrasonic Sensors Characteristics of Targets Affect the Performance of Ultrasonic Sensors By Donald P. Massa, President and CTO of Massa Products Corporation Overview of How an Ultrasonic Sensor Functions Ultrasonic sensors

More information

Quantum frequency standard Priority: Filing: Grant: Publication: Description

Quantum frequency standard Priority: Filing: Grant: Publication: Description C Quantum frequency standard Inventors: A.K.Dmitriev, M.G.Gurov, S.M.Kobtsev, A.V.Ivanenko. Priority: 2010-01-11 Filing: 2010-01-11 Grant: 2011-08-10 Publication: 2011-08-10 Description The present invention

More information

XV International PhD Workshop OWD 2013, October 2013

XV International PhD Workshop OWD 2013, October 2013 XV International PhD Workshop OWD 2013, 19 22 October 2013 Controlled Polarization Converter C-range On MEMS Keys Antonenko Anton, National Technical University of Ukraine Kyiv Polytechnic University,

More information

Experiments with wave, using low-cost amplitude modulated ultrasonic techniques

Experiments with wave, using low-cost amplitude modulated ultrasonic techniques Experiments with wave, using low-cost amplitude modulated ultrasonic techniques 1 Low-cost ultrasonic devices Today the ultrasonic devices are in the home, industrial and medicinal applications. These

More information

MEASUREMENT OF SURFACE ACOUSTIC WAVE USING AIR COUPLED TRANSDUCER AND LASER DOPPLER VIBROMETER

MEASUREMENT OF SURFACE ACOUSTIC WAVE USING AIR COUPLED TRANSDUCER AND LASER DOPPLER VIBROMETER 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 MEASUREMENT OF SURFACE ACOUSTIC WAVE USING AIR COUPLED TRANSDUCER AND LASER DOPPLER VIBROMETER Weitao Yuan 1, Jinfeng Zhao

More information

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif Introduction In automation industry every mechatronic system has some sensors to measure the status of the process variables. The analogy between the human controlled system and a computer controlled system

More information

Waves are generated by an oscillator which has to be powered.

Waves are generated by an oscillator which has to be powered. Traveling wave is a moving disturbance. Can transfer energy and momentum from one place to another. Oscillations occur simultaneously in space and time. Waves are characterized by 1. their velocity 2.

More information

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection ECNDT - Poster 39 Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection Yago GÓMEZ-ULLATE, Instituto de Acústica CSIC, Madrid, Spain Francisco MONTERO DE ESPINOSA, Instituto de Acústica

More information

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8)

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8) Waves & Energy Transfer Physics 11 Introduction to Waves Chapter 11 ( 11-1, 11-7, 11-8) Waves are all about Periodic Motion. Periodic motion is motion that repeats after a certain period of time. This

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

1818. Evaluation of arbitrary waveform acoustic signal generation techniques in dispersive waveguides

1818. Evaluation of arbitrary waveform acoustic signal generation techniques in dispersive waveguides 1818. Evaluation of arbitrary waveform acoustic signal generation techniques in dispersive waveguides V. Augutis 1, D. Gailius 2, E. Vastakas 3, P. Kuzas 4 Kaunas University of Technology, Institute of

More information

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient Alex ZINOVIEV 1 ; David W. BARTEL 2 1,2 Defence Science and Technology Organisation, Australia ABSTRACT

More information

Method of Determining Effect of Heat on Mortar by Using Aerial Ultrasonic Waves with Finite Amplitude

Method of Determining Effect of Heat on Mortar by Using Aerial Ultrasonic Waves with Finite Amplitude Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia Method of Determining Effect of Heat on Mortar by Using Aerial Ultrasonic Waves with Finite Amplitude

More information

INFORMATION-CARRYING SYSTEM

INFORMATION-CARRYING SYSTEM INFORMATION-CARRYING SYSTEM Patent 2163419 (54) INFORMATION-CARRYING SYSTEM The invention relates to communication engineering and can be used in the systems of wireless transmission of information. The

More information

Applicability of Ultrasonic Pulsed Doppler for Fast Flow-Metering

Applicability of Ultrasonic Pulsed Doppler for Fast Flow-Metering Applicability of Ultrasonic Pulsed Doppler for Fast Flow-Metering Stéphane Fischer (1), Claude Rebattet (2) and Damien Dufour (1), (1) UBERTONE SAS, 4 rue Boussingault Strasbourg, France, www.ubertone.com

More information

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no 1 Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no medium required to transfer wave energy 2 Mechanical

More information

Multi-spectral acoustical imaging

Multi-spectral acoustical imaging Multi-spectral acoustical imaging Kentaro NAKAMURA 1 ; Xinhua GUO 2 1 Tokyo Institute of Technology, Japan 2 University of Technology, China ABSTRACT Visualization of object through acoustic waves is generally

More information

Directivity Controllable Parametric Loudspeaker using Array Control System with High Speed 1-bit Signal Processing

Directivity Controllable Parametric Loudspeaker using Array Control System with High Speed 1-bit Signal Processing Directivity Controllable Parametric Loudspeaker using Array Control System with High Speed 1-bit Signal Processing Shigeto Takeoka 1 1 Faculty of Science and Technology, Shizuoka Institute of Science and

More information

Ultrasonic Level Detection Technology. ultra-wave

Ultrasonic Level Detection Technology. ultra-wave Ultrasonic Level Detection Technology ultra-wave 1 Definitions Sound - The propagation of pressure waves through air or other media Medium - A material through which sound can travel Vacuum - The absence

More information

Finite Element Analysis and Test of an Ultrasonic Compound Horn

Finite Element Analysis and Test of an Ultrasonic Compound Horn World Journal of Engineering and Technology, 2017, 5, 351-357 http://www.scirp.org/journal/wjet ISSN Online: 2331-4249 ISSN Print: 2331-4222 Finite Element Analysis and Test of an Ultrasonic Compound Horn

More information

Technical Explanation for Displacement Sensors and Measurement Sensors

Technical Explanation for Displacement Sensors and Measurement Sensors Technical Explanation for Sensors and Measurement Sensors CSM_e_LineWidth_TG_E_2_1 Introduction What Is a Sensor? A Sensor is a device that measures the distance between the sensor and an object by detecting

More information

ECE137b Third Design Project Option

ECE137b Third Design Project Option ECE137b Third Design Project Option You must purchase lead-free solder from the electronics shop. Do not purchase solder elsewhere, as it will likely be tin/lead solder, which is toxic. "Solder-sucker"

More information

The electric field for the wave sketched in Fig. 3-1 can be written as

The electric field for the wave sketched in Fig. 3-1 can be written as ELECTROMAGNETIC WAVES Light consists of an electric field and a magnetic field that oscillate at very high rates, of the order of 10 14 Hz. These fields travel in wavelike fashion at very high speeds.

More information

Ultrasonic. Advantages

Ultrasonic. Advantages Ultrasonic Advantages Non-Contact: Nothing touches the target object Measures Distance: The distance to the target is measured, not just its presence Long and Short Range: Objects can be sensed from 2

More information

648. Measurement of trajectories of piezoelectric actuators with laser Doppler vibrometer

648. Measurement of trajectories of piezoelectric actuators with laser Doppler vibrometer 648. Measurement of trajectories of piezoelectric actuators with laser Doppler vibrometer V. Grigaliūnas, G. Balčiūnas, A.Vilkauskas Kaunas University of Technology, Kaunas, Lithuania E-mail: valdas.grigaliunas@ktu.lt

More information

COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES

COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES Paper presented at the 23rd Acoustical Imaging Symposium, Boston, Massachusetts, USA, April 13-16, 1997: COMPUTER PHANTOMS FOR SIMULATING ULTRASOUND B-MODE AND CFM IMAGES Jørgen Arendt Jensen and Peter

More information

Introduction to Measurement Systems

Introduction to Measurement Systems MFE 3004 Mechatronics I Measurement Systems Dr Conrad Pace Page 4.1 Introduction to Measurement Systems Role of Measurement Systems Detection receive an external stimulus (ex. Displacement) Selection measurement

More information

(Refer Slide Time: 00:03:22)

(Refer Slide Time: 00:03:22) Analog ICs Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 27 Phase Locked Loop (Continued) Digital to Analog Converters So we were discussing

More information

Light diffraction by large amplitude ultrasonic waves in liquids

Light diffraction by large amplitude ultrasonic waves in liquids PROCEEDINGS of the 22 nd International Congress on Acoustics Ultrasound: Paper ICA2016-29 Light diffraction by large amplitude ultrasonic waves in liquids Laszlo Adler (a), John H. Cantrell (b), William

More information

Stability of a Fiber-Fed Heterodyne Interferometer

Stability of a Fiber-Fed Heterodyne Interferometer Stability of a Fiber-Fed Heterodyne Interferometer Christoph Weichert, Jens Flügge, Paul Köchert, Rainer Köning, Physikalisch Technische Bundesanstalt, Braunschweig, Germany; Rainer Tutsch, Technische

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

Resonance Mode Acoustic Displacement Transducer

Resonance Mode Acoustic Displacement Transducer Sensors & Transducers, Vol. 172, Issue 6, June 214, pp. 34-38 214 by IFSA Publishing, S. L. http://www.sensorsportal.com Resonance Mode Acoustic Displacement Transducer Tariq Younes, Mohammad Al Khawaldah,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Physical Acoustics Session 2pPA: Material Characterization 2pPA9. Experimental

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c)

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c) Waves Q1. (a) v = 5 cm (b) λ = 18 cm (c) a = 0.04 cm (d) f = 50 Hz Q2. The velocity of sound in any gas depends upon [1988] (a) wavelength of sound only (b) density and elasticity of gas (c) intensity

More information

Microscopic Laser Doppler Vibrometer

Microscopic Laser Doppler Vibrometer Microscopic Laser Doppler Vibrometer System Configuration - 1 PC Controller (APU-Analog processing unit, DPU-Digital processing unit) Optic Head (MEMS Type, XS Type) Function Generator Power Supply Testing

More information

Reference wavelets used for deconvolution of ultrasonic time-of-flight diffraction (ToFD) signals

Reference wavelets used for deconvolution of ultrasonic time-of-flight diffraction (ToFD) signals 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Reference wavelets used for deconvolution of ultrasonic time-of-flight diffraction (ToFD) signals Farhang HONARVAR 1, Amin

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

DACON INSPECTION SERVICES. Phased Array Ultrasonic Testing

DACON INSPECTION SERVICES. Phased Array Ultrasonic Testing Phased Array Ultrasonic Testing Who we are Conventional and Advanced NDT and Inspection Services Oil and Gas, Refinery, Petrochemical, Heavy Industry, Mining Over 400 personnel including more than 300

More information

Recent developments in nonlinear ultrasonic NDE. Thomas Grimsley Ritec, Inc., Warwick, RI USA

Recent developments in nonlinear ultrasonic NDE. Thomas Grimsley Ritec, Inc., Warwick, RI USA Recent developments in nonlinear ultrasonic NDE Thomas Grimsley Ritec, Inc., Warwick, RI USA Material nonlinearity as a proxy for damage Sources of non-linearity: -kinematical : equations of elasticity

More information

Synthesis and Study of Digital Frequency Modulator-Demodulator

Synthesis and Study of Digital Frequency Modulator-Demodulator Journal of Communications Technology, Electronics and Computer Science, Issue, 7 ISSN 47-9X Synthesis and Study of Digital Frequency Modulator-Demodulator Boyan Karapenev Department of the Communication

More information

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative

More information

Experiments with wave, using low-cost amplitude modulated ultrasonic techniques

Experiments with wave, using low-cost amplitude modulated ultrasonic techniques Experiments with wave, using low-cost amplitude modulated ultrasonic techniques Motivation: It is usually difficult to demonstrate the wave nature of light. The wavelength of visible light is pretty small,

More information

AC/Synchro/Resolver/Phase Definitions

AC/Synchro/Resolver/Phase Definitions Instruments Apex Signal Logitek Astrosystems 110 Wilbur Place, Bohemia, NY 11716-2416 Phone 631-567-1100 Fax 631-567-1823 AC/Synchro/Resolver/Phase Definitions We are required to be familiar with a wide

More information

Acoustic emission signal attenuation in the waveguides used in underwater AE testing.

Acoustic emission signal attenuation in the waveguides used in underwater AE testing. 1 Acoustic emission signal attenuation in the waveguides used in underwater AE testing. Zakharov D.A., Ptichkov S.N., Shemyakin V.V. OAO «ОКBM Afrikantov», «Diapac» Ltd. In the paper presented are the

More information

Skoog Chapter 1 Introduction

Skoog Chapter 1 Introduction Skoog Chapter 1 Introduction Basics of Instrumental Analysis Properties Employed in Instrumental Methods Numerical Criteria Figures of Merit Skip the following chapters Chapter 2 Electrical Components

More information

The diffraction of light

The diffraction of light 7 The diffraction of light 7.1 Introduction As introduced in Chapter 6, the reciprocal lattice is the basis upon which the geometry of X-ray and electron diffraction patterns can be most easily understood

More information

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

9/28/2010. Chapter , The McGraw-Hill Companies, Inc. Chapter 4 Sensors are are used to detect, and often to measure, the magnitude of something. They basically operate by converting mechanical, magnetic, thermal, optical, and chemical variations into electric

More information

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING H. Gao, M. J. Guers, J.L. Rose, G. (Xiaoliang) Zhao 2, and C. Kwan 2 Department of Engineering Science and Mechanics, The

More information

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS Alexander A.KARABUTOV 1, Elena V.SAVATEEVA 2, Alexei N. ZHARINOV 1, Alexander A.KARABUTOV 1 Jr. 1 International Laser Center of M.V.Lomonosov

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

THEORETICAL AND EXPERIMENTAL RESEARCH OF A HORN ANTENNA NEAR FIELD

THEORETICAL AND EXPERIMENTAL RESEARCH OF A HORN ANTENNA NEAR FIELD Session 8. Intelligent Transport Systems (Electronics) Proceedings of the 11 th International Conference Reliability and Statistics in Transportation and Communication (RelStat 11), 19 22 October 2011,

More information

1813. Two-way collinear interaction of longitudinal waves in an elastic medium with quadratic nonlinearity

1813. Two-way collinear interaction of longitudinal waves in an elastic medium with quadratic nonlinearity 83. Two-way collinear interaction of longitudinal waves in an elastic medium with quadratic nonlinearity Zhenghao Sun, Fucai Li 2, Hongguang Li 3 State Key Laboratory of Mechanical System and Vibration,

More information

GRADE 11A: Physics 4. UNIT 11AP.4 9 hours. Properties of waves. Resources. About this unit. Previous learning. Expectations

GRADE 11A: Physics 4. UNIT 11AP.4 9 hours. Properties of waves. Resources. About this unit. Previous learning. Expectations GRADE 11A: Physics 4 Properties of waves UNIT 11AP.4 9 hours About this unit This unit is the fourth of seven units on physics for Grade 11 advanced. The unit is designed to guide your planning and teaching

More information

Laser Telemetric System (Metrology)

Laser Telemetric System (Metrology) Laser Telemetric System (Metrology) Laser telemetric system is a non-contact gauge that measures with a collimated laser beam (Refer Fig. 10.26). It measure at the rate of 150 scans per second. It basically

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Module 2 WAVE PROPAGATION (Lectures 7 to 9) Lecture 9 Topics 2.4 WAVES IN A LAYERED BODY 2.4.1 One-dimensional case: material boundary in an infinite rod 2.4.2 Three dimensional case: inclined waves 2.5

More information

Air Coupled Ultrasonic Inspection of Steel Rubber Interface

Air Coupled Ultrasonic Inspection of Steel Rubber Interface Air Coupled Ultrasonic Inspection of Steel Rubber Interface More Info at Open Access Database www.ndt.net/?id=15204 Bikash Ghose 1, a, Krishnan Balasubramaniam 2, b 1 High Energy Materials Research Laboratory,

More information

AN AUTOMATED ALGORITHM FOR SIMULTANEOUSLY DETERMINING ULTRASONIC VELOCITY AND ATTENUATION

AN AUTOMATED ALGORITHM FOR SIMULTANEOUSLY DETERMINING ULTRASONIC VELOCITY AND ATTENUATION MECHANICS. ULTRASONICS AN AUTOMATED ALGORITHM FOR SIMULTANEOUSLY DETERMINING ULTRASONIC VELOCITY AND ATTENUATION P. PETCULESCU, G. PRODAN, R. ZAGAN Ovidius University, Dept. of Physics, 124 Mamaia Ave.,

More information

Thickness Measurement with Laser Displacement Sensors

Thickness Measurement with Laser Displacement Sensors Thickness Measurement with Laser Displacement Sensors Laser displacement sensors are often used for measuring distance, movement and dimensions. If the measured values from two sensors are evaluated together,

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

DATA SHEET. FLEXIMARK Stainless Steel Character Strips & Holders. Stainless steel according to EN (SS2348, AISI-316L)

DATA SHEET. FLEXIMARK Stainless Steel Character Strips & Holders. Stainless steel according to EN (SS2348, AISI-316L) Standard stainless steel marking on site. FLEXIMARK NM holders for cable, pipe and component marking. FLEXIMARK M holders for component marking. Stainless steel high quality material (SS2348, AISI-316L).

More information

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope PAGE 1/14 Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission

More information

Use of Back Scattered Ionizing Radiation for Measurement of Thickness of the Catalytic Agent Active Material

Use of Back Scattered Ionizing Radiation for Measurement of Thickness of the Catalytic Agent Active Material 18th World Conference on Nondestructive Testing, 16- April 1, Durban, South Africa Use of Back Scattered Ionizing Radiation for Measurement of Thickness of the Catalytic Agent Active Material Boris V.

More information

Experimental Competition

Experimental Competition 37 th International Physics Olympiad Singapore 8 17 July 2006 Experimental Competition Wed 12 July 2006 Experimental Competition Page 2 List of apparatus and materials Label Component Quantity Label Component

More information

DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea

DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea Abstract: The initiation and growth of short fatigue cracks in a simulated

More information

CHAPTER 3 ACOUSTIC EMISSION TECHNIQUE FOR DETECTION AND LOCATION OF PD

CHAPTER 3 ACOUSTIC EMISSION TECHNIQUE FOR DETECTION AND LOCATION OF PD 63 CHAPTER 3 ACOUSTIC EMISSION TECHNIQUE FOR DETECTION AND LOCATION OF PD 3.1 INTRODUCTION PD measurements on high-voltage equipment, e.g. transformers, could be grouped into two major tasks. First, evidence

More information

SonaFlex. Set of Portable Multifunctional Equipment for Non-contact Ultrasonic Examination of Materials

SonaFlex. Set of Portable Multifunctional Equipment for Non-contact Ultrasonic Examination of Materials SonaFlex Set of Portable Multifunctional Equipment for Non-contact Ultrasonic Examination of Materials General Overview of the Testing Equipment SonaFlex is a unique intelligent ultrasonic testing system

More information

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements Inka Buethe *1 and Claus-Peter Fritzen 1 1 University of Siegen, Institute of Mechanics

More information

ULTRASONIC TESTER OF BUILDING MATERIALS STRENGTH NOVOTEST IPSM-U

ULTRASONIC TESTER OF BUILDING MATERIALS STRENGTH NOVOTEST IPSM-U ULTRASONIC TESTER OF BUILDING MATERIALS STRENGTH NOVOTEST IPSM-U Operating Manual 2015 CONTENTS 1. Introduction 2 2. Appointment 2 3. Specifications 3 4. Packing list 4 5. Labeling and packaging 5 6. Principle

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2002 Closed Book and Notes 1. Be sure to fill in your

More information

UNIT Write notes on broadening of pulse in the fiber dispersion?

UNIT Write notes on broadening of pulse in the fiber dispersion? UNIT 3 1. Write notes on broadening of pulse in the fiber dispersion? Ans: The dispersion of the transmitted optical signal causes distortion for both digital and analog transmission along optical fibers.

More information

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine A description is given of one way to implement an earthquake test where the test severities are specified by the sine-beat method. The test is done by using a biaxial computer aided servohydraulic test

More information

point at zero displacement string 80 scale / cm Fig. 4.1

point at zero displacement string 80 scale / cm Fig. 4.1 1 (a) Fig. 4.1 shows a section of a uniform string under tension at one instant of time. A progressive wave of wavelength 80 cm is moving along the string from left to right. At the instant shown, the

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Sources classification

Sources classification Sources classification Radiometry relates to the measurement of the energy radiated by one or more sources in any region of the electromagnetic spectrum. As an antenna, a source, whose largest dimension

More information

SPRAY DROPLET SIZE MEASUREMENT

SPRAY DROPLET SIZE MEASUREMENT SPRAY DROPLET SIZE MEASUREMENT In this study, the PDA was used to characterize diesel and different blends of palm biofuel spray. The PDA is state of the art apparatus that needs no calibration. It is

More information