System Considerations for Submillimeter Receiver

Size: px
Start display at page:

Download "System Considerations for Submillimeter Receiver"

Transcription

1 System Considerations for Submillimeter Receiver Junji INATANI Space Utilization Research Program National Space Development Agency of Japan (NASDA) March 12-13, Nanjing 1

2 Introduction 640 GHz SIS Receiver for SMILES Superconducting Submillimeter-wave Limb-emission Sounder System Considerations: System Noise Temperature Sideband Separation Main Beam Efficiency Standing Waves Gain Stability Spectral Resolution Electromagnetic Interference (EMI) March 12-13, Nanjing 2

3 March 12-13, Nanjing 3

4 Japanese Experiment Module KIBO SMILES March 12-13, Nanjing 4

5 Instruments SMILES: Superconducting Submillimeter-wave Limb-emission Sounder View inside the Cryostat March 12-13, Nanjing 5

6 Signal Flow March 12-13, Nanjing 6

7 640 GHz SIS Mixer Inside the SIS Mixer Mount Developed by NASDA in-house activity. 0.4 mm Nb/AlOx/Nb Mixer Device Fabricated at NAOJ, Nobeyama March 12-13, Nanjing 7

8 Cooled HEMT Amplifiers 20K-stage Amplifier Two HEMT Devices: FHX76LP Gain: March 12-13, Nanjing 8 Nitsuki Ltd. 100K-stage Amplifier Three HEMT Devices: FHX76LP Gain:

9 Cryostat Radiation Shield: Signal Input Window: Support for 100 K Stage: Support for 20 K Stage: Support for 4 K Stage: MLI (40 layers) IR Filters ( Zitex ) S2-GFRP Straps (12 pieces) GFRP Pipes (4 pieces) CFRP Pipes (4 pieces) March 12-13, Nanjing 9

10 4 K Mechanical Cooler Cooling Capacity: K K K Power Consumption: VDC Mass: Cooler Cryostat Electronics Total 40 kg 26 kg 24 kg 90 kg Cooling to 100 K & 20 K: Two-stage Stirling Cooler Cooling to 4.5 K: Joule-Thomson Cooler March 12-13, Nanjing 10

11 Mechanical Components of Coolers Cold-head and Compressor for Two-stage Stirling Cooler Two Compressors for Joule-Thomson Cooler March 12-13, Nanjing 11

12 Thermal Design of Cryostat Window: IF cables: Heat flow is reduced with two IR filters CuNi coaxial cables HEMT current: Circuit is optimized for a Starved Bias Condition JT load: Minimized by reducing the rate of GHe flow March 12-13, Nanjing 12

13 Sub-mm Receiver Subsystem Cryostat AOPT Ambient Temperature Optics To Antenna To Cold-Sky Terminator AAMP CREC He Compressor (ST) Single Sideband Filter He Compressor (JT) Sub-mm LO Source March 12-13, Nanjing 13

14 Acousto-Optical Spectrometer Bandwidth: 1200 MHz x 2 units IF: GHz / unit Focal Plane: 1728-ch. CCD array x 2 units Frequency Resolution: 1.8 MHz (FWHM) Channel Separation: 0.8 MHz / ch. AD Conversion: 12-bit, 2-CCD readouts in 4.9 msec Adder Output: 16 bits x 1728 ch. x 2 units in 500 msec AOS (Astrium & OPM) March 12-13, Nanjing 14

15 System Considerations System Noise Temperature Sideband Separation Main Beam Efficiency Standing Waves ( Gain Stability ) ( Spectral Resolution ) Electromagnetic Interference (EMI) March 12-13, Nanjing 15

16 System Noise Temperature Good mixer Good IF amplifier Low insertion loss in sub-mm optics Tsys for SSB mode T = T ( L 1) + LT sys amb rx T T = ( L 1) ( T + T ) sys rx amb rx ssb L s dsb Ls T = 1+ T + T Li Li sys rx ref March 12-13, Nanjing 16

17 Sideband Separation Martin-Pupplet Interferometer (RF filter) One mixer for one sideband, one polarization Two mixers for two sidebands, one polarization Narrow RF bandwidth: mech. tunable or fixed Phase Synthesis (Single-ended mixer) Two mixers for two sidebands, one polarization Broad RF bandwidth: no mech. tuner necessary Poor LO coupling Phase Synthesis (Balanced mixer) Four mixers for two sidebands, one polarization Broad RF bandwidth: no mech. tuner necessary Efficient LO coupling March 12-13, Nanjing 17

18 Single Sideband Filter FSP: Frequency Selective Polarizer ABSORBER LO SOURCE TO COLD SKY L1 U2 FSP TO ANTENNA U1 L2 ABSORBER U1 + L1 SIS MIXER 1 ABSORBER CRYOSTAT U2 + L2 SIS MIXER 2 Mechanically fixed filter No standing waves March 12-13, Nanjing 18

19 SSB Balanced Mixer March 12-13, Nanjing 19

20 Main Beam Efficiency Low Spill-over for Main and Sub- Reflectors Use of Primary Horn s Optical Image No electric field outside the horn s aperture It is the case for its optical image, ideally Field distribution is independent of frequency Relation of Horn Aperture and Its Optical Image March 12-13, Nanjing 20

21 Method of Optical Image W L G 1 W L 2 = 1 2 W = 1 = 2 R 1 R = + f L L 1 2 W R + L L R W 2 f R 2 March 12-13, Nanjing 21

22 Optical Image: characteristics Wavefront is frequency independent Broad-band design Wavefront is scaled from the original one High beam-efficiency March 12-13, Nanjing 22

23 Standing Waves: a simple model V = G T ( on) Mobs( on) + T on on a sys V = G T ( off) Mobs( off ) + T off off a sys V = G T ( hot) M hot + T hot hot a sys M M obs hot = 1+ r exp( j 2 kl ) obs obs = 1+ r exp( j 2 kl ) + r exp( j 2 kl ) obs obs Von Vo ff Ta( on) = Ta( hot) T V V hot off 2 hot [ off ] a ( ) + T ( off ) a hot 2 March 12-13, Nanjing 23

24 Comparison of Three Absorbers 625 GHz Return 625 GHz A. Murk (Univ. Bern) & R. Wylde (TK) March 12-13, Nanjing 24

25 Standing Waves: sensitivity limit (SMILES) March 12-13, Nanjing 25

26 Expected Sensitivity March 12-13, Nanjing 26

27 Accuracy of Absolute Brightness Temp. March 12-13, Nanjing 27

28 ISS Environmental Fields March 12-13, Nanjing 28

29 Cutoff Filter March 12-13, Nanjing 29

30 Reflection of BBH RX BBH 625 GHz A. Murk, Univ. Bern R. Wylde, TK March 12-13, Nanjing 30

31 Conclusions 640 GHz SIS Receiver for SMILES Superconducting Submillimeter-wave Limb-emission Sounder System Considerations: System Noise Temperature Sideband Separation Main Beam Efficiency Standing Waves Gain Stability Spectral Resolution Electromagnetic Interference (EMI) March 12-13, Nanjing 31

Characterization of Various Quasi-Optical Components for the Submillimeter Limb-Sounder SMILES

Characterization of Various Quasi-Optical Components for the Submillimeter Limb-Sounder SMILES Characterization of Various Quasi-Optical Components for the Submillimeter Limb-Sounder SMILES A. Murk, N. Kämpfer, R. Wylde, J. Inatani, T. Manabe and M. Seta E-mail: axel.murk@mw.iap.unibe.ch University

More information

A SUBMILLIMETER SIS RECEIVER COOLED BY A COMPACT STIRLING-YT REFRIGERATOR

A SUBMILLIMETER SIS RECEIVER COOLED BY A COMPACT STIRLING-YT REFRIGERATOR Eighth International Symposium on Space Terahertz Technology. Harvard Universit y. March 1997 A SUBMILLIMETER SIS RECEIVER COOLED BY A COMPACT STIRLING-YT REFRIGERATOR J.Inatani, T.Noguchi, S.C.Shi, and

More information

Terahertz Limb Sounder TELIS. Axel Murk M. Birk, R. Hoogeveen, P. Yagoubov, B. Ellison

Terahertz Limb Sounder TELIS. Axel Murk M. Birk, R. Hoogeveen, P. Yagoubov, B. Ellison Terahertz Limb Sounder TELIS Axel Murk M. Birk, R. Hoogeveen, P. Yagoubov, B. Ellison Overview THz Limbsounder with three cryogenic receivers: 1.8 THz HEB mixer with solid state LO (DLR) 500-650 GHz superconducting

More information

ALMA Memo # 453 An Integrated Sideband-Separating SIS mixer Based on Waveguide Split Block for 100 GHz Band

ALMA Memo # 453 An Integrated Sideband-Separating SIS mixer Based on Waveguide Split Block for 100 GHz Band ALMA Memo # 453 An Integrated Sideband-Separating SIS mixer Based on Waveguide Split Block for 100 GHz Band Shin ichiro Asayama, Hideo Ogawa, Takashi Noguchi, Kazuji Suzuki, Hiroya Andoh, and Akira Mizuno

More information

Anne-Laure Fontana, Catherine Boucher, Yves Bortolotti, Florence Cope, Bastien Lefranc, Alessandro Navarrini, Doris Maier, Karl-F.

Anne-Laure Fontana, Catherine Boucher, Yves Bortolotti, Florence Cope, Bastien Lefranc, Alessandro Navarrini, Doris Maier, Karl-F. Multi-beam SIS Receiver Development Anne-Laure Fontana, Catherine Boucher, Yves Bortolotti, Florence Cope, Bastien Lefranc, Alessandro Navarrini, Doris Maier, Karl-F. Schuster & Irvin Still Institut t

More information

Ninth International Symposium on Space Terahertz Technology. Pasadena. March S

Ninth International Symposium on Space Terahertz Technology. Pasadena. March S Ninth International Symposium on Space Terahertz Technology. Pasadena. March 17-19. 199S SINGLE SIDEBAND MIXING AT SUBMILLIMETER WAVELENGTHS Junji Inatani (1), Sheng-Cai Shi (2), Yutaro Sekimoto (3), Harunobu

More information

ALMA Interferometer and Band 7 Cartridge

ALMA Interferometer and Band 7 Cartridge ALMA Interferometer and Band 7 Cartridge B7 Cartridge designed, assembled and tested by: S. Mahieu, D. Maier (mixer team lead), B. Lazareff (now at IPAG) G. Celestin, J. Chalain, D. Geoffroy, F. Laslaz,

More information

ALMA Memo 553. First Astronomical Observations with an ALMA Band 6 ( GHz) Sideband-Separating SIS Mixer-Preamp

ALMA Memo 553. First Astronomical Observations with an ALMA Band 6 ( GHz) Sideband-Separating SIS Mixer-Preamp Presented at the 17 th International Symposium on Space Terahertz Technology, Paris, May 2006. http://www.alma.nrao.edu/memos/ ALMA Memo 553 15 August 2006 First Astronomical Observations with an ALMA

More information

ABSTRACT SYSTEM. 15th International Symposium on Space Terahertz Technology

ABSTRACT SYSTEM. 15th International Symposium on Space Terahertz Technology 1024 15th International Symposium on Space Terahertz Technology Integrated submillimeter system Dr. Anders Emrich, Omnisys Instruments AB Gruvgatan 8, 41230 Vastra FrOlunda, Sweden ae@orrinisys.se, Tel,

More information

JEM/SMILES AOPT EM, Part 2 Bandpass Characteristic and Beam Pattern after Thermal Cycling

JEM/SMILES AOPT EM, Part 2 Bandpass Characteristic and Beam Pattern after Thermal Cycling JEM/SMILES AOPT EM, Part 2 Bandpass Characteristic and Beam Pattern after Thermal Cycling Axel Murk Research Report No. 02-4 March 2001 Institute of Applied Physics Dept. of Microwave Physics Sidlerstr.

More information

Guide to observation planning with GREAT

Guide to observation planning with GREAT Guide to observation planning with GREAT G. Sandell GREAT is a heterodyne receiver designed to observe spectral lines in the THz region with high spectral resolution and sensitivity. Heterodyne receivers

More information

Eighth International Symposium on Space Terahertz Technology, Harvard University, March 1997

Eighth International Symposium on Space Terahertz Technology, Harvard University, March 1997 A Superconducting Sub-millimeter Wave Limb Emission Sounder (SMILES) on the Japanese Experimental Module (JEM) of the Space Station for Observing Trace Gases in the Middle Atmosphere Harunobu Masuko, Satoshi

More information

MMA Memo 143: Report of the Receiver Committee for the MMA

MMA Memo 143: Report of the Receiver Committee for the MMA MMA Memo 143: Report of the Receiver Committee for the MMA 25 September, 1995 John Carlstrom Darrel Emerson Phil Jewell Tony Kerr Steve Padin John Payne Dick Plambeck Marian Pospieszalski Jack Welch, chair

More information

Multibeam Heterodyne Receiver For ALMA

Multibeam Heterodyne Receiver For ALMA Multibeam Heterodyne Receiver For ALMA 2013/07/09 National Astronomical Observatory of Japan Advanced Technology Centor Takafumi KOJIMA, Yoshinori Uzawa and Band- Question discussed in this talk and outline

More information

Etude d un récepteur SIS hétérodyne multi-pixels double polarisation à 3mm de longueur d onde pour le télescope de Pico Veleta

Etude d un récepteur SIS hétérodyne multi-pixels double polarisation à 3mm de longueur d onde pour le télescope de Pico Veleta Etude d un récepteur SIS hétérodyne multi-pixels double polarisation à 3mm de longueur d onde pour le télescope de Pico Veleta Study of a dual polarization SIS heterodyne receiver array for the 3mm band

More information

THE ARO 1.3mm IMAGE-SEPARATING MIXER RECEIVER SYSTEM. Revision 1.0

THE ARO 1.3mm IMAGE-SEPARATING MIXER RECEIVER SYSTEM. Revision 1.0 THE ARO 1.3mm IMAGE-SEPARATING MIXER RECEIVER SYSTEM Revision 1.0 September, 2006 Table of Contents 1 System Overview... 3 1.1 Front-End Block Diagram... 5 1.2 IF System... 6 2 OPERATING PROCEDURES...

More information

HIFAS: Wide-band spectrometer ASIC

HIFAS: Wide-band spectrometer ASIC HIFAS: Wide-band spectrometer ASIC Anders Emrich, Stefan Andersson, Johan Dahlberg, Magnus Hjorth, Omnisys Instruments AB Torgil Kjellberg, Chalmers University Of Technology Microelectronics Presentation

More information

Recent progress and future development of Nobeyama 45-m Telescope

Recent progress and future development of Nobeyama 45-m Telescope Recent progress and future development of Nobeyama 45-m Telescope Masao Saito: Director of Nobeyama Radio Observatory Tetsuhiro Minamidani: Nobeyama Radio Observatory Outline Nobeyama 45-m Telescope Recent

More information

SUPERCONDUCTING NANOTECHNOLOGY

SUPERCONDUCTING NANOTECHNOLOGY SUPERCONDUCTING NANOTECHNOLOGY Detect everything you want I.TECHNICAL SPECIFICATION OF TERAHERTZ DETECTION SYSTEMS Product description: The Terahertz detection systems are optimized for three frequency

More information

: MAMBO/MPO 018/02 : 1 : 26-AVRIL-02 MAMBO : A : 1 NOTE INTERNE

: MAMBO/MPO 018/02 : 1 : 26-AVRIL-02 MAMBO : A : 1 NOTE INTERNE Rév. : A Page : 1 NOTE INTERNE Project Office Emetteur: LERMA B.THOMAS Destinataire(s): LERMA B.GERMAIN A.DESCHAMPS G.BEAUDIN M.GHEUDIN Copie(s): LERMA A.RAISANEN Objet: Front-end Design Préparé par: B.THOMAS

More information

Progress Towards Coherent Multibeam Arrays

Progress Towards Coherent Multibeam Arrays Progress Towards Coherent Multibeam Arrays Doug Henke NRC Herzberg Astronomy and Astrophysics, Victoria, Canada August 2016 ALMA Band 3 Receiver (84 116 GHz) Dual linear, 2SB Feed horn OMT (two linear

More information

Sideband-Separating SIS Mixer at 100GHz Band for Astronomical Observation

Sideband-Separating SIS Mixer at 100GHz Band for Astronomical Observation Sideband-Separating SIS Mixer at 100GHz Band for Astronomical Observation S. Asayama l, K. Kimura 2, H. Iwashita 3, N. Sato l, T. Takahashi3, M. Saito', B. Ikenoue l, H. Ishizaki l, N. Ukital 1 National

More information

ALMA Band 9 technology for CCAT. Andrey Baryshev

ALMA Band 9 technology for CCAT. Andrey Baryshev ALMA Band 9 technology for CCAT Andrey Baryshev ALMA band 9 group SRON A. Baryshev B. Jackson R. Hesper J. Adema F.P. Mena J. Barkhoff M. Bekema K. Keizer G. Gerlofsma A. Koops J. Panman W. Wild TUDelft

More information

A 492 GHz Cooled Schottky Receiver for Radio-Astronomy

A 492 GHz Cooled Schottky Receiver for Radio-Astronomy Page 724 Third International Symposium on Space Terahertz Technology A 492 GHz Cooled Schottky Receiver for Radio-Astronomy J. Hernichel, R. Schieder, J. Stutzki, B. Vowinkel, G. Winnewisser, P. Zimmermann

More information

Phonon-cooled NbN HEB Mixers for Submillimeter Wavelengths

Phonon-cooled NbN HEB Mixers for Submillimeter Wavelengths Phonon-cooled NbN HEB Mixers for Submillimeter Wavelengths J. Kawamura, R. Blundell, C.-Y. E. Tong Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, Massachusetts 02138 G. Gortsman,

More information

Millimetre Wave Technology for Earth Observation and Inter-Planetary Missions

Millimetre Wave Technology for Earth Observation and Inter-Planetary Missions Millimetre Wave Technology for Earth Observation and Inter-Planetary Missions Dr Simon Rea, simon.rea@stfc.ac.uk Millimetre Technology Group STFC RAL Space, Didcot, UK, OX11 0QX Outline Introduction to

More information

Multiplying Interferometers

Multiplying Interferometers Multiplying Interferometers L1 * L2 T + iv R1 * R2 T - iv L1 * R2 Q + iu R1 * L2 Q - iu Since each antenna can output both L and R polarization, all 4 Stokes parameters are simultaneously measured without

More information

suppose we observed a 10 Jy calibrator with CARMA for 1 year, 24 hrs/day how much energy would we collect? S ηa Δν t

suppose we observed a 10 Jy calibrator with CARMA for 1 year, 24 hrs/day how much energy would we collect? S ηa Δν t 3 hardware lectures 1. receivers - SIS mixers, amplifiers, cryogenics, dewars, calibration; followed by antenna tour; later, take apart a 6-m dewar 2. correlator (James Lamb) 3. local oscillator system

More information

Focal Plane Receiver Architecture for ASTE and Total Power Array of ALMA. Jung-Won Lee

Focal Plane Receiver Architecture for ASTE and Total Power Array of ALMA. Jung-Won Lee Focal Plane Receiver Architecture for ASTE and Total Power Array of ALMA Jung-Won Lee Korea Astronomy and Space Science Institute ASTE-ALMA Development Workshop, June 17, 2014 Focal Plane Array: Sampling

More information

The ALMA Front End. Hans Rudolf

The ALMA Front End. Hans Rudolf The ALMA Front End Hans Rudolf European Southern Observatory, ALMA, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany, +49-89-3200 6397, hrudolf@eso.org Abstract The Atacama Large Millimeter Array (ALMA)

More information

SUBMILLIMETER RECEIVER DEVELOPMENT AT THE UNIVERSITY OF COLOGNE

SUBMILLIMETER RECEIVER DEVELOPMENT AT THE UNIVERSITY OF COLOGNE Second International Symposium on Space Terahertz Technology Page 641 SUBMILLIMETER RECEIVER DEVELOPMENT AT THE UNIVERSITY OF COLOGNE J.Hernichel, F.Lewen, K.Matthes, M.Klumb T.Rose, G.Winnewisser, P.Zimmermann

More information

Holography Transmitter Design Bill Shillue 2000-Oct-03

Holography Transmitter Design Bill Shillue 2000-Oct-03 Holography Transmitter Design Bill Shillue 2000-Oct-03 Planned Photonic Reference Distribution for Test Interferometer The transmitter for the holography receiver is made up mostly of parts that are already

More information

Introduction to Radio Astronomy!

Introduction to Radio Astronomy! Introduction to Radio Astronomy! Sources of radio emission! Radio telescopes - collecting the radiation! Processing the radio signal! Radio telescope characteristics! Observing radio sources Sources of

More information

Preliminary Tests of Waveguide Type Sideband-Separating SIS Mixer for Astronomical Observation

Preliminary Tests of Waveguide Type Sideband-Separating SIS Mixer for Astronomical Observation ALMA MEMO #481 Preliminary Tests of Waveguide Type Sideband-Separating SIS Mixer for Astronomical Observation Shin ichiro Asayama 1,2, Kimihiro Kimura 1, Hiroyuki Iwashita 2, Naohisa Sato 3, Toshikazu

More information

More Radio Astronomy

More Radio Astronomy More Radio Astronomy Radio Telescopes - Basic Design A radio telescope is composed of: - a radio reflector (the dish) - an antenna referred to as the feed on to which the radiation is focused - a radio

More information

A Planar SIS Receiver with Logperiodic Antenna for Submillimeter Wavelengths. F. Schdfer *, E. Kreysa* T. Lehnert **, and K.H.

A Planar SIS Receiver with Logperiodic Antenna for Submillimeter Wavelengths. F. Schdfer *, E. Kreysa* T. Lehnert **, and K.H. Fourth International Symposium on Space Terahertz Technology Page 661 A Planar SIS Receiver with Logperiodic Antenna for Submillimeter Wavelengths F. Schdfer *, E. Kreysa* T. Lehnert **, and K.H. Gundlach**

More information

Development of SIS mixers for future receivers at NAOJ

Development of SIS mixers for future receivers at NAOJ Development of SIS mixers for future receivers at NAOJ 2016/05/25 Takafumi Kojima On behalf of NAOJ future development team ALMA Developer s workshop Summary of ALMA Cartridge Receivers at NAOJ Developed

More information

MPIfR KOSMA MPS DLR-PF

MPIfR KOSMA MPS DLR-PF ATM 1-5 THz, 14 km altitude S. Heyminck Max-Planck-Institute for Radio Astronomy Ringberg Workshop 2015 Page 1 GREAT - the Consortium GREAT: German REceiver for Astronomy at Terahertz frequencies Principle

More information

AGRON / E E / MTEOR 518 Laboratory

AGRON / E E / MTEOR 518 Laboratory AGRON / E E / MTEOR 518 Laboratory Brian Hornbuckle, Nolan Jessen, and John Basart April 5, 2018 1 Objectives In this laboratory you will: 1. identify the main components of a ground based microwave radiometer

More information

Chapter 3. Instrumentation. 3.1 Telescope Site Layout. 3.2 Telescope Optics

Chapter 3. Instrumentation. 3.1 Telescope Site Layout. 3.2 Telescope Optics Chapter 3 Instrumentation 3.1 Telescope Site Layout The 12m is located on the southwest ridge of Kitt Peak, about two miles below the top of the mountain. Other telescopes on the southwest ridge are the

More information

High Resolution Spectrometers

High Resolution Spectrometers (Heterodyne Receiver Development) Very strong effort at JPL/CIT SIS mixers up to 1.2 THz (limit ~ 1.6 THz) Solid-state LO s beyond 1.5 THz (JPL) Herschel / HIFI 1.2 THz SIS SOFIA / CASIMIR CSO facility

More information

Sideband Smear: Sideband Separation with the ALMA 2SB and DSB Total Power Receivers

Sideband Smear: Sideband Separation with the ALMA 2SB and DSB Total Power Receivers and DSB Total Power Receivers SCI-00.00.00.00-001-A-PLA Version: A 2007-06-11 Prepared By: Organization Date Anthony J. Remijan NRAO A. Wootten T. Hunter J.M. Payne D.T. Emerson P.R. Jewell R.N. Martin

More information

Array noise temperature measurements at the Parkes PAF Test-bed Facility

Array noise temperature measurements at the Parkes PAF Test-bed Facility Array noise temperature measurements at the Parkes PAF Test-bed Facility Douglas B. Hayman, Aaron P. Chippendale, Robert D. Shaw and Stuart G. Hay MIDPREP 1 April 2014 COMPUTATIONAL INFORMATICS ASTRONOMY

More information

Receiver Design for Passive Millimeter Wave (PMMW) Imaging

Receiver Design for Passive Millimeter Wave (PMMW) Imaging Introduction Receiver Design for Passive Millimeter Wave (PMMW) Imaging Millimeter Wave Systems, LLC Passive Millimeter Wave (PMMW) sensors are used for remote sensing and security applications. They rely

More information

GHz Single Ended Rx ( Barney ) March 12, 2006 Jacob Kooi, Chip Sumner, Riley Ceria

GHz Single Ended Rx ( Barney ) March 12, 2006 Jacob Kooi, Chip Sumner, Riley Ceria 280-420 GHz Single Ended Rx ( Barney ) March 12, 2006 Jacob Kooi, Chip Sumner, Riley Ceria Attached is some information about the new tunerless 345 GHz receiver, nicknamed Barney. Barney has now been installed

More information

Submillimeter (continued)

Submillimeter (continued) Submillimeter (continued) Dual Polarization, Sideband Separating Receiver Dual Mixer Unit The 12-m Receiver Here is where the receiver lives, at the telescope focus Receiver Performance T N (noise temperature)

More information

Table 5.1 Specifications for The Evaluation Receivers (33-45?) GHz HFET amplifier GHz SIS mixer GHz (HFET amp covers GHz)

Table 5.1 Specifications for The Evaluation Receivers (33-45?) GHz HFET amplifier GHz SIS mixer GHz (HFET amp covers GHz) MMA Project Book, Chapter 5 Section 1 Evaluation Receivers John Payne Graham Moorey Last changed 1999-May-2 Revision History: 1998-11-18: Major revision 1999-05-02: Minor specification changes in Table

More information

Heterodyne Receivers

Heterodyne Receivers Heterodyne Receivers Introduction to heterodyne receivers for mm-wave radio astronomy 7 th 30-m Summer School September 15 th, 2013 Alessandro Navarrini IRAM, Grenoble, France Outline Introduction to Heterodyne

More information

Submillimeter-Wave Spectrometer for Small Satellites VAST: Venus Atmospheric Sounder with Terahertz

Submillimeter-Wave Spectrometer for Small Satellites VAST: Venus Atmospheric Sounder with Terahertz Submillimeter-Wave Spectrometer for Small Satellites VAST: Venus Atmospheric Sounder with Terahertz Theodore Reck, Brian Drouin, Adrian Tang, Cecile Jung-Kubiak, Imran Mehdi Vesper Goddard managed Venus

More information

Sub-millimeter Wave Planar Near-field Antenna Testing

Sub-millimeter Wave Planar Near-field Antenna Testing Sub-millimeter Wave Planar Near-field Antenna Testing Daniёl Janse van Rensburg 1, Greg Hindman 2 # Nearfield Systems Inc, 1973 Magellan Drive, Torrance, CA, 952-114, USA 1 drensburg@nearfield.com 2 ghindman@nearfield.com

More information

Noise temperature measurements of NbN phonon-cooled Hot Electron Bolometer mixer at 2.5 and 3.8 THz.

Noise temperature measurements of NbN phonon-cooled Hot Electron Bolometer mixer at 2.5 and 3.8 THz. Noise temperature measurements of NbN phonon-cooled Hot Electron Bolometer mixer at 2.5 and 3.8 THz. ABSTRACT Yu. B. Vachtomin, S. V. Antipov, S. N. Maslennikov, K. V. Smirnov, S. L. Polyakov, N. S. Kaurova,

More information

Wideband 760GHz Planar Integrated Schottky Receiver

Wideband 760GHz Planar Integrated Schottky Receiver Page 516 Fourth International Symposium on Space Terahertz Technology This is a review paper. The material presented below has been submitted for publication in IEEE Microwave and Guided Wave Letters.

More information

of-the-art Terahertz astronomy detectors Dr. Ir. Gert de Lange

of-the-art Terahertz astronomy detectors Dr. Ir. Gert de Lange State-of of-the-art Terahertz astronomy detectors Dr. Ir. Gert de Lange Outline Introduction SRON Origin, interest and challenges in (space) THz radiation Technology Heterodyne mixers Local oscillators

More information

German Receiver for Astronomy at THz Frequencies

German Receiver for Astronomy at THz Frequencies German Receiver for Astronomy at THz Frequencies ATM 1-5 THz, 14 km altitude German SOFIA workshop 28,02.2011 Page 1 GREAT - the Consortium GREAT, L#1 & L#2 channels PI-Instrument funded and developed

More information

Electronics Division Technical Note No Modular Analysis Software for the ALMA Front End Test and Measurement System

Electronics Division Technical Note No Modular Analysis Software for the ALMA Front End Test and Measurement System Electronics Division Technical Note No. 221 Modular Analysis Software for the ALMA Front End Test and Measurement System Aaron Beaudoin- NRAO Technology Center Summer Intern Abstract: A new software library

More information

345 GHz Single Ended barney Rx, Data analyses Jacob W. Kooi 6/23/2006

345 GHz Single Ended barney Rx, Data analyses Jacob W. Kooi 6/23/2006 345 GHz Single Ended barney Rx, Data analyses Jacob W. Kooi 6/23/2006 Fig. 1 Instrument sensitivity in Hilo and the CSO. The red dot data is at the CSO. Fig. 2 IV, Y-factor and Phot/Pcold curves. Optimal

More information

Signal Flow & Radiometer Equation. Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO

Signal Flow & Radiometer Equation. Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO Signal Flow & Radiometer Equation Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO Understanding Radio Waves The meaning of radio waves How radio waves are created -

More information

Design, fabrication and measurement of a membrane based quasi-optical THz HEB mixer

Design, fabrication and measurement of a membrane based quasi-optical THz HEB mixer 116 Design, fabrication and measurement of a membrane based quasi-optical THz HEB mixer G. Gay, Y. Delorme, R. Lefèvre, A. Féret, F. Defrance, T. Vacelet, F. Dauplay, M. Ba-Trung, L.Pelay and J.-M. Krieg

More information

ALMA cartridge-type receiver system for Band 4

ALMA cartridge-type receiver system for Band 4 15th International Symposium on Space Terahert: Technology ALMA cartridge-type receiver system for Band 4 K.Kimural, S.Asayama4, T.Nakajimal, N.Nakashimal, J.Korogil, Y.Yonekural,H.Ogawal, N.Mizuno2, K.Suzuki2,

More information

North American Front End Integration Center Test and Measurement System Design

North American Front End Integration Center Test and Measurement System Design Center Test and Measurement System FEND-40.09.03.00-002-A-DSN 2007-09-07 Prepared By: Name(s) and Signature(s) Organization Date G.A.Ediss NRAO 2007-09-07 Approved By FE IPT Name and Signature Organization

More information

MEASUREMENTS OF THE SINGLE SIDEBAND SUPPRESSION FOR A 650 GHZ HETERODYNE RECEIVER

MEASUREMENTS OF THE SINGLE SIDEBAND SUPPRESSION FOR A 650 GHZ HETERODYNE RECEIVER Page 654 Third International Symposium oil Space Terahertz Technology MEASUREMENTS OF THE SINGLE SIDEBAND SUPPRESSION FOR A 650 GHZ HETERODYNE RECEIVER S. Crewel H.Nett Institute of Remote Sensing University

More information

over what has been envisaged up to this point (see MMA Memo. 142). Here, we do not

over what has been envisaged up to this point (see MMA Memo. 142). Here, we do not MMA Memo 168: Relative Sensitivities of Single and Double Sideband Receivers for the MMA A. R. Thompson and A. R. Kerr April 21, 1997 Development of sideband separating SIS mixers (Kerr and Pan 1996, MMA

More information

KULLIYYAH OF ENGINEERING

KULLIYYAH OF ENGINEERING KULLIYYAH OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ANTENNA AND WAVE PROPAGATION LABORATORY (ECE 4103) EXPERIMENT NO 3 RADIATION PATTERN AND GAIN CHARACTERISTICS OF THE DISH (PARABOLIC)

More information

DEVELOPMENT OF SECOND GENERATION SIS RECEIVERS FOR ALMA

DEVELOPMENT OF SECOND GENERATION SIS RECEIVERS FOR ALMA DEVELOPMENT OF SECOND GENERATION SIS RECEIVERS FOR ALMA A. R. Kerr 24 August 2016 ALMA Future Science Workshop 2016 ARK04.pptx 1 Summary o Shortcomings of the current Band 6 receivers. o Potential improvements

More information

Millimeter and Submillimeter SIS Mixers with the Noise Temperature Close to the Quantum Limit

Millimeter and Submillimeter SIS Mixers with the Noise Temperature Close to the Quantum Limit Fifth International Symposium on Space Terahertz Technology Page 73 Millimeter and Submillimeter SIS Mixers with the Noise Temperature Close to the Quantum Limit A. Karpov*, J. Blonder, B. Lazarefr, K.

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

ULTRA BROADBAND RF over FIBER Transceiver OZ1606 Series Premium Grade 6 GHz

ULTRA BROADBAND RF over FIBER Transceiver OZ1606 Series Premium Grade 6 GHz FEATURES 30 MHz 6.0 GHz Bandwidth Rugged Dust tight Cast Metal housing, 3 x 5 x 1.25 @ ¾ lb 20 C to +65 C T OP Range LD Bias, LD Power and PD Monitoring and Alarms High SFDR Typically 113 (db/hz) 2/3 at

More information

A Low Noise GHz Amplifier

A Low Noise GHz Amplifier A Low Noise 3.4-4.6 GHz Amplifier C. Risacher*, M. Dahlgren*, V. Belitsky* * GARD, Radio & Space Science Department with Onsala Space Observatory, Microtechnology Centre at Chalmers (MC2), Chalmers University

More information

Phased Array Feeds & Primary Beams

Phased Array Feeds & Primary Beams Phased Array Feeds & Primary Beams Aidan Hotan ASKAP Deputy Project Scientist 3 rd October 2014 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of parabolic (dish) antennas. Focal plane response to a

More information

Hyperspectral goes to UAV and thermal

Hyperspectral goes to UAV and thermal Hyperspectral goes to UAV and thermal Timo Hyvärinen, Hannu Holma and Esko Herrala SPECIM, Spectral Imaging Ltd, Finland www.specim.fi Outline Roadmap to more compact, higher performance hyperspectral

More information

The Future: Ultra Wide Band Feeds and Focal Plane Arrays

The Future: Ultra Wide Band Feeds and Focal Plane Arrays The Future: Ultra Wide Band Feeds and Focal Plane Arrays Germán Cortés-Medellín NAIC Cornell University 1-1 Overview Chalmers Feed Characterization of Chalmers Feed at Arecibo Focal Plane Arrays for Arecibo

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2017 Astronomy 423 at UNM Radio Astronomy Outline 2 Fourier Transforms Interferometer block diagram Antenna fundamentals Types of antennas Antenna performance

More information

REMARKS The customer has ordered two measurements mentioned above according to the standard EN

REMARKS The customer has ordered two measurements mentioned above according to the standard EN Type: Alignment range: Switching range: SATELLINE-3ASm/250/LC 380,000-470,000 MHz One channel Equipment 1 and 2 Equipment Equipment Measurement Serial no. 033322036 and 033322037 Serial no. Serial no.

More information

What does reciprocity mean

What does reciprocity mean Antennas Definition of antenna: A device for converting electromagnetic radiation in space into electrical currents in conductors or vice-versa. Radio telescopes are antennas Reciprocity says we can treat

More information

and GHz. ECE Radiometer. Technical Description and User Manual

and GHz. ECE Radiometer. Technical Description and User Manual E-mail: sales@elva-1.com http://www.elva-1.com 26.5-40 and 76.5-90 GHz ECE Radiometer Technical Description and User Manual November 2008 Contents 1. Introduction... 3 2. Parameters and specifications...

More information

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS: Microwave section consists of Basic Microwave Training Bench, Advance Microwave Training Bench and Microwave Communication Training System. Microwave Training System is used to study all the concepts of

More information

1.0 Job Description 1.1 Client Information This EUT has been tested at the request of: Company: Spectronic Denmark A/S Contact: John Herlev Telephone: 011 45 863-87-222 Fax: 011 45 863-87-704 Email: jhe@spectronic-denmark.com

More information

STEAMR Focal Plane Array Optics: Executive Summary

STEAMR Focal Plane Array Optics: Executive Summary STEAMR Focal Plane Array Optics: Executive Summary Axel Murk, Mark Whale, Matthias Renker 2013-05-MW 19.09.2013 Institute of Applied Physics Microwave Physics Division Sidlerstr. 5 Tel. : +41 31 631 89

More information

ER55 EMI TEST RECEIVER Family of automatic test receivers for measurement of electromagnetic interference from 9kHz to 2.8GHz.

ER55 EMI TEST RECEIVER Family of automatic test receivers for measurement of electromagnetic interference from 9kHz to 2.8GHz. ER55 EMI TEST RECEIVER Family of automatic test receivers for measurement of electromagnetic interference from 9kHz to 2.8GHz. Compact designed and manufactured in compliance with CISPR 16-1-1 For Measurements

More information

The Heterodyne Instrument for the Far-Infrared (HIFI) and its data

The Heterodyne Instrument for the Far-Infrared (HIFI) and its data The Heterodyne Instrument for the Far-Infrared (HIFI) and its data D. Teyssier ESAC 28/10/2016 Outline 1. What was HIFI and how did it work 2. What was HIFI good for science cases 3. The HIFI calibration

More information

Microwave Imaging in the Large Helical Device

Microwave Imaging in the Large Helical Device Microwave Imaging in the Large Helical Device T. Yoshinaga 1), D. Kuwahara 2), K. Akaki 3), Z.B. Shi 4), H. Tsuchiya 1), S. Yamaguchi 5), Y. Kogi 6), S. Tsuji-Iio 2), Y. Nagayama 1), A. Mase 3), H. Hojo

More information

EMC Evaluation at Green Bank: Emissions and Shield Effectiveness

EMC Evaluation at Green Bank: Emissions and Shield Effectiveness EMC Evaluation at Green Bank: Emissions and Shield Effectiveness National Radio Astronomy Observatory Carla Beaudet Green Bank RFI Group Leader Emissions Evaluation: Standards ITU-R RA.769 specifies (typical)

More information

Optics for the 90 GHz GBT array

Optics for the 90 GHz GBT array Optics for the 90 GHz GBT array Introduction The 90 GHz array will have 64 TES bolometers arranged in an 8 8 square, read out using 8 SQUID multiplexers. It is designed as a facility instrument for the

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2011 Astronomy 423 at UNM Radio Astronomy Radio Window 2 spans a wide range of λ and ν from λ ~ 0.33 mm to ~ 20 m! (ν = 1300 GHz to 15 MHz ) Outline

More information

mmw Products Millimeter Wave Systems

mmw Products Millimeter Wave Systems mmw Products 2015.01.12 Millimeter Wave Systems 1 Extended Interaction Klystrons EIK Technology Based on Klystrons Rugged Reliable Enhanced Power Bandwidth Efficiency GHz and THz frequencies Moderate voltages

More information

The Wide-Band Spectrometer (WBS) for the HIFI instrument of Herschel

The Wide-Band Spectrometer (WBS) for the HIFI instrument of Herschel The Wide-Band Spectrometer (WBS) for the HIFI instrument of Herschel 1 2 O.Siebertz 1, F.Schmülling 1, C.Gal 1, F.Schloeder 1, P.Hartogh 2, V.Natale 3, R.Schieder 1 KOSMA, I. Physikalisches Institut, Univ.

More information

Double-Ridged Waveguide Horn

Double-Ridged Waveguide Horn Model 3106 200 MHz 2 GHz Uniform Gain Power Handling up to 1.6 kw Model 3115 1 GHz 18 GHz Low VSWR Model 3116 18 GHz 40 GHz Quality Construction M O D E L 3 1 0 6 Double-Ridged Waveguide Horn PROVIDING

More information

Antenna Fundamentals. Microwave Engineering EE 172. Dr. Ray Kwok

Antenna Fundamentals. Microwave Engineering EE 172. Dr. Ray Kwok Antenna Fundamentals Microwave Engineering EE 172 Dr. Ray Kwok Reference Antenna Theory and Design Warran Stutzman, Gary Thiele, Wiley & Sons (1981) Microstrip Antennas Bahl & Bhartia, Artech House (1980)

More information

Near-field Beam and Cross-polarization Pattern Measurement of ALMA Band 8 Cartridges

Near-field Beam and Cross-polarization Pattern Measurement of ALMA Band 8 Cartridges 19th International Symposium on Space Terahertz Technology, Groningen, 28-3 April 28 Near-field Beam and Cross-polarization Pattern Measurement of ALMA Band 8 Cartridges Masato Naruse 1,2,*, Mamoru Kamikura

More information

MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS

MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS Second International Symposium on Space Terahertz Technology Page 523 MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS by D.V. Plant, H.R. Fetterman,

More information

ALMA Technology and. N.D. Whyborn ALMA AIV Lead Engineer

ALMA Technology and. N.D. Whyborn ALMA AIV Lead Engineer ALMA Technology and RFI Mitigation Strategies N.D. Whyborn ALMA AIV Lead Engineer nwhyborn@alma.cl CORF meeting, Santiago, 10-11 August 2009 CORF meeting, Santiago, 10-11 August 2009 ALMA System Block

More information

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads John Buonocore 12 th Annual Developer s Workshop 22 April 2015 Cal Poly San Luis Obispo High Speed Data Downlink The need for wider bandwidth

More information

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes)

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes) GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes) Points to Note: Wider bandwidths than were used on 140 Foot Cleaner antenna so other effects show up Larger

More information

THE MICROWAVE RADIOMETER PAYLOAD

THE MICROWAVE RADIOMETER PAYLOAD University of L Aquila and University La Sapienza of Rome THE MICROWAVE RADIOMETER PAYLOAD 9th ILEWG International Conference on Exploration and Utilisation of the Moon (ICEUM9/ILC007) -6 October, 007,

More information

The HIFI Focal Plane Unit

The HIFI Focal Plane Unit Thirteenth International Symposium on Space Terahertz Technology, Harvard University, March 2002. ABSTRACT The HIFI Focal Plane Unit B.D. Jackson, K.J. Wildeman, and N.D. Whyborn on behalf of the HIFI

More information

Heterodyne Receivers and Arrays

Heterodyne Receivers and Arrays Heterodyne Receivers and Arrays Gopal Narayanan gopal@astro.umass.edu Types of Detectors Incoherent Detection Bolometers Total Power Detection No phase information used primarily on single-dish antennas

More information

Design of a Sideband-Separating Balanced SIS Mixer Based on Waveguide Hybrids

Design of a Sideband-Separating Balanced SIS Mixer Based on Waveguide Hybrids ALMA Memo 316 20 September 2000 Design of a Sideband-Separating Balanced SIS Mixer Based on Waveguide Hybrids S. M. X. Claude 1 and C. T. Cunningham 1, A. R. Kerr 2 and S.-K. Pan 2 1 Herzberg Institute

More information

RPG-FMCW-94-SP Cloud Radar

RPG-FMCW-94-SP Cloud Radar Latest Results from the RPG-FMCW-94-SP Cloud Radar (or, to stay in line with WG-3: a few slides on a 89 GHz radiometer with some active 94 GHz extensions to give the radiometer-derived LWP a bit more vertical

More information

Microwave-Radiometer

Microwave-Radiometer Microwave-Radiometer Figure 1: History of cosmic background radiation measurements. Left: microwave instruments, right: background radiation as seen by the corresponding instrument. Picture: NASA/WMAP

More information

Micro-manipulated Cryogenic & Vacuum Probe Systems

Micro-manipulated Cryogenic & Vacuum Probe Systems Janis micro-manipulated probe stations are designed for non-destructive electrical testing using DC, RF, and fiber-optic probes. They are useful in a variety of fields including semiconductors, MEMS, superconductivity,

More information