Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel

Size: px
Start display at page:

Download "Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel"

Transcription

1 Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel Jin Wang 1, Chang Hao Piao 2, and Chong Ho Lee 1 1 Department of Information & Communication Engineering, Inha University, Incheon, Korea wangjin_liips@yahoo.com.cn 2 Department of Automation Engineering, ChongQing University of Posts and Telecommunications, Chongqing, China Abstract. To conquer the scalability issue of evolvable hardware, this paper proposes a multi-virtual reconfigurable circuit (VRC) cores-based evolvable system to evolve combinational logic circuits in parallel. The basic idea behind the proposed scheme is to divide a combinational logic circuit into several subcircuits, and each of them is evolved independently as a subcomponent by its corresponding VRC core. The virtual reconfigurable circuit architecture is designed for implementing real-world applications of evolvable hardware (EHW) in common FPGAs. In our approach, all the VRC cores are realized in a Xilinx Virtex xcv2000e FPGA as an evolvable system to achieve parallel evolution. The proposed method is evaluated on the evolutions of 3-bit multiplier and adder and compared to direct evolution and incremental evolution in the terms of computational effort and hardware implementation cost. Keywords: Intrinsic evolvable hardware, scalability, parallel evolutionary algorithm, incremental evolution. 1 Introduction As an alternative to conventional specification-based circuit design method, EHW has been introduced as an important paradigm for automatic circuit design in the last decade. However, there is still a long way to go before EHW become a real substitute to human designers. One of the problems appearing is that most of the evolved circuits are size limited [1, 2]. This is named as the scalability issue of EHW. In literature [2], Yao indicated that the existing evolvable systems were generally not scalable due to two reasons: (1) Chromosome string length of EHW, which increases with the target circuit size. A long chromosome string is required for representing a complex system. This often makes the search space too large that is difficult to explore even with evolutionary techniques. (2) Computational complexity of an evolutionary algorithm (EA), which is more pivotal factor than chromosome string length. Generally, the number of individual evaluations required to find a desired solution can increase drastically with the increased complexity of the target system. This paper focus on the investigation of scalability issues applied to the evolutionary design of combinational logic circuits. In our proposal, a combinational logic circuit will be decomposed as several sub-circuits. An evolvable system L. Kang, Y. Liu, and S. Zeng (Eds.): ICES 2007, LNCS 4684, pp , Springer-Verlag Berlin Heidelberg 2007

2 24 J. Wang, C.H. Piao, and C.H. Lee including several VRC cores is employed to evolve the separate sub-circuits in parallel. Finally, the evolved sub-circuits interact to perform the expected top level logic function. Our proposed method approaches the scalability issue of EHW by speeding up the EA computation, shortening the chromosome length, and reducing the computational complexity of the task. Experiments of evolving 3-bit multiplier and adder are conducted in this paper to compare the execution time and the hardware cost of proposed evolutionary strategy with direct evolution and incremental evolution [3, 4, 5]. The rest of this paper is organized as follows: Section 2 briefly introduces the existed approaches to the scalability issue of EHW. The proposed scheme implementing parallel evolution with multi-vrc cores is presented in Section 3. Section 4 describes the hardware realization of the proposed evolvable system. Experimental results are summarized in Section 5 and discussed in Section 6. Section 7 concludes our work. 2 Previous Scalable Approaches to EHW Various approaches have been proposed to solve the scalability issue of EHW. Murakawa et al. [6] tackled the problem of scale in the evolved circuits by using function level evolution. By employing higher level functions as building block rather than multi-input gates, an important property of function level approach is that the size of chromosome remains limited while the complexity of circuits can grow arbitrarily. This approach in itself is reasonable, and it has also been considered in the application of evolving spatial image operators [7, 8]. While higher level functions allowed the designer to reduce the EA search space and to make evolution easier, its disadvantage could be that the evolved solutions do not exhibit any innovation in their structure [9]. On the other hand, to identify the suitable function blocks and thus to evolve efficient electronic circuits is a difficult and time-consuming task. Parallel genetic algorithms as one of the most promising choices to improve the computational ability of EA have been presented in different types [10, 11]. Using parallelism to increase the speed of evolution seems to be an answer to combat the high computational cost. While parallel evolution does offer limited relief on the high computational cost problems, it does not provide any new capabilities from the standpoint of computational complexity theory. For example, the computational complexity of evolving combinational logic circuits which grow exponentially with the size of the circuit inputs on traditional genetic algorithm still grow exponentially with the size of circuit inputs on parallel genetic algorithm. When billions of candidate circuits are evaluated to evolve even small combinational logic circuits (e.g. 4-bit multiplier), relying too much on sheer speedup of the EA itself seems not a reasonable solution to the computational complexity issue of EHW. A possible way to reduce the computational complexity of EHW is incremental evolution which is based on the principle of divide-and-conquer. Incremental evolution was first introduced by Torresen [3] as a scalability approach to EHW. According to incremental evolution strategy, different non-trial circuits have been successfully evolved by using both extrinsic [3, 4] and intrinsic EHW [5]. In this approach, a circuit is evolved through its smaller components. This means the

3 Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel 25 evolution is first undertaken individually and serially on a set of sub-circuits, and then the evolved sub-circuits are employed as the building blocks which are used to further evolution or structure of the target circuit. A variation of incremental evolution, named Multiobjective genetic algorithm, has been suggested by Coello Coello et al. in [12]. In their case, each of the outputs of a combinational logic circuit is handled as an objective which is evolved in its corresponding subcomponent independently. Another scheme related to the idea of system partition is cooperative coevolution proposed by Potter and De Jong in literature [13]. It consists of serial evolution of coadapted subcomponents which interact to perform the function of the top system. 3 Description of the Proposed Approach Our proposed scheme approaches the scalability issue of EHW from three aspects: speeding up the EA, limiting the chromosome length, and decreasing the computational complexity of the problem. The main idea behind our proposed approach is to use parallel intrinsic evolution to handle subcomponents which are the decomposed versions of the top system. The circuit decomposition and assembly is inspired by the principle of divide-and-conquer which has been introduced in [3, 4, 5, 12, 14] to limit the computational complexity of EHW. A generalized hardware architecture for evolving decomposed subcomponents in parallel is introduced in this paper. This architecture, which we call multi-vrc cores, can realize parallel evolution in a single commercial FPGA. The feature of parallel intrinsic evolution of subcomponents is the most significant difference between our approach and the existing extrinsic EHW approaches [3, 4, 12, 13, 14], wherein subcomponents were evolved in a serial pattern by software simulation. 3.1 Decomposition of Logic Circuit There are commonly two strategies which have been introduced to decompose combinational logic circuits: Shannon decomposition and system output decomposition [4, 14]. In this paper, for the purpose of simplifying hardware implementation, only the second scheme-decomposition of system output is employed. Fig. 1 shows the system output decomposition approach for evolving a 2- bit multiplier which includes 4-bit input and 4-bit output. In this scenario, according to the system output decomposition strategy, the 4-bit output of multiplier is assigned into two groups as the vertical line in truth table indicates. Each partitioned 2-bit output is applied to evolve its corresponding subcomponents (subcomponent 1 and 2). Each of them is a 4-in/2-out circuit. Further, the evolved subcomponents can be assembled together (as shown in Fig. 1) to perform a correct multiplier function. Although this particular illustration shows 2 subcomponents, the actual number of subcomponents may be more. E.g. we can evolve a separate circuit for only 1-bit output, so four subcomponents with 4-bit input and 1-bit output would be required in this case.

4 26 J. Wang, C.H. Piao, and C.H. Lee 3.2 Evolutionary Algorithm Fig. 1. Partitioning output function of 2-bit multiplier In this work, a kind of intrinsic EHW which is built on the multi-vrc cores structure is used to evolve the partitioned subcomponents in parallel. Virtual reconfigurable circuit architecture was first proposed by Sekanina [8] for the purpose of implementing real-world applications of EHW in common FPGAs. The structure of the VRC is flexible, which can be designed for a given problem to fit the application requirements. For the application of evolving combinational logic circuits, Cartesian genetic programming (CGP)-based geometric structure has been implemented by Sekanina on VRC [15]. CGP was first introduced by Miller et al in [16], whose phenotype is a two-dimensional array of logic cells. In our approach, to reduce the chromosome length, a revised two-dimensional gates array which introduces more connection restrictions than standard CGP is employed. Compared with CGP in which each cell can get its inputs from the external inputs of cells array or the cell output in its previous layers, each gate in our proposed array is limited to connect to the gate outputs in its previous one layer. Some very similar gates array structures have been reported by Torresen [3] and Coello Coello [12] for learning combinational logic circuits in different literatures. The basic frame of the parallel evolutionary algorithm employed in our evolvable system is illustrated in Fig. 2. Though this particular illustration shows a parallel evolutionary algorithm designed for evolving two subcomponents, the actual number of subcomponents can be more. In this model, the population is divided into two subpopulations to maintain two decomposed subcomponents. The evolution of each subcomponent is performed according to the 1+ λ evolutionary strategy, where λ =2. Evolutionary operations are only based on selection and mutation operators. At the beginning phase, each subpopulation including λ individuals is created at random. Once the fitness of each individual is evaluated, the fittest individual is selected as the parent chromosome. The next generation of subpopulation is generated by using the fittest individual and its λ mutants. This process will repeat until the stop criteria of each subpopulation are achieved, which are defined as: (1) EA finds the expected solution for its corresponding subcomponent; (2) Predefined generation number is exhausted. In the evolutionary process, each VRC core maintains the evolution of its corresponding subpopulation independently.

5 Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel 27 Fig. 2. Flow diagram of proposed parallel evolutionary algorithm for evolving two subcomponents Each subcomponent processes different decomposed system output function, so the fitness value of each individual in different subpopulation is calculated by comparing the subcomponent output with its corresponding partitioned desired system output as follows: Fitness = x ; where vector output 1 x = 0 output = expect output expect For each partitioned output vector, each processed single bit output is compared with its corresponding system expected output (which is labeled as expect). If they are equal, the variable x will be presented as 1 and be added to the fitness function. Fitness is the sum values for the compared results of all outputs (output) in the processed partitioned output vectors (vector) set with the truth table. (1) 4 Hardware Implementation Celoxica RC1000 PCI board [17] equipped with a Xilinx Virtex xcv2000e FPGA [18] (see Fig. 3) which has been successfully applied as a high performance, flexible and low cost FPGA-based hardware platform for different computationally intensive applications [19, 20] is employed as our experimental platform for the implementation and verification of the proposed multi-vrc cores architecture. The proposed evolvable system is composed of two main components (as shown in Fig. 3): Control and interface and several VRC cores. In the evolvable system, all operations of VRC cores are controlled by the control and interface which executes the commands from host PC and connects with the on board 8Mbytes SRAM. Each VRC core in the proposed evolvable system corresponds to a decomposed subcomponent which is defined in previous section. A VRC core consists of a Virtual reconfigurable circuit unit, an EA unit, and a Fitness unit. The EA unit implements the genetic operations and generates configuration bits string (chromosomes) to

6 28 J. Wang, C.H. Piao, and C.H. Lee configure the virtual reconfigurable circuit unit. The virtual reconfigurable circuit unit, whose function is virtual reconfigurable, processes the input data from four memory banks. Fitness unit calculates individual fitness by comparing the output from the virtual reconfigurable circuit unit with its corresponding partitioned output in truth table. Fig. 3. Organization of the proposed evolvable system with multi-vrc cores Every virtual reconfigurable circuit unit in one VRC core can be considered as a digital circuit which acts as a decomposed subcomponent of the top system. Fig. 4 presents a virtual reconfigurable circuit unit designed for evolving a 6-input/3-output subcomponent as an example. It consists of 43 uniform function elements (FE) allocated in an array of 6 columns and 8 rows. In the last column of FE array, the amount of FEs is equal to the number of system outputs, and each FE corresponds to one system output. Every FE has two inputs and can be configured to perform one of 8 logic functions listed in Fig. 4. The input connections of each FE are selected by its two equipped multiplexers. An input of the FE in column 2 (3, 4, 5 or 6) can be connected to any one output of FE in its previous one column. In column 1, each input of FE can be connected to any one of the system inputs or defined as a bias of value 1 or 0. Each FE is equipped with a Flip-flop to support pipeline processing. A column of FEs is considered as a single stage of the pipeline. Each FE needs 9 bits to determine its input connections (3+3 bits) and function (3 bits). Although the number of configuration bits required in column 6 is lower than 72 bits, the configuration memory still employs 72 bits per column in our implementation to simplify hardware design. Hence, the configuration memory process 72 6=432 bits. In our approach, eight FEs in the same column are configured simultaneously, so the 432-bit data in the configuration memory is divided and stored in 6 configuration banks (cnfbank) of 72 bits.

7 Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel 29 Fig. 4. Virtual reconfigurable circuit unit for the evolution of the 6-in/3-out subcomponent Fig. 5. Architecture of EA unit Fig. 5 describes the architecture of the EA unit designed for the evolution of a 6- input/3-output subcomponent. When the EA is activated, the population memory is filled by two chromosomes, which are the mutated versions of two 6 72 bits random numbers generated by the Random Number Generator (RNG) with linear cellular automata [21]. The mutation unit processes 6 72 bits data in 6 clocks per 72 bits. Only randomly selected bits are inverted and the number of mutated bits is decided by the predefined mutation rate (which is 0.8% in this work). After all chromosomes of the initial population have been evaluated, the best chromosome is chosen as the parent chromosome to be stored in the best chromosome memory. The new population is generated using the parent chromosome and its 2 mutants. If the fitness

8 30 J. Wang, C.H. Piao, and C.H. Lee of the offspring chromosome is better than that of the parent, the parent chromosome that is stored in the best chromosome memory will be replaced. Fitness calculation is realized in the Fitness unit. The input training vectors set is loaded from onboard SRAM and processed as the input of the VRC unit. The output vectors of the VRC unit are sent to the Fitness unit and compared with the partitioned expected output set specified in a truth table (that are also stored in onboard SRAM). The fitness value is increased for every output bit match. Therefore, the maximal fitness value is 64 3 (the size of the decomposed system output in this scenario is 3-bit). 5 Experimental Results Our proposed multi-vrc cores-based evolvable system was designed by using VHDL and synthesized into Virtex xcv2000e FPGA using Xilinx ISE 8.1. According to our synthesis report, in all cases, the proposed evolvable system can be operated more than 90MHz. However, the actual hardware experiment was run at 30MHz because of easier synchronization with PCI interface which can operate correctly with PCI bus clocks from zero to 33MHz. In this paper, 3-bit multiplier and 3-bit adder were employed as evolutionary targets to illustrate our proposed scheme. Three different evolutionary strategies were used in the experiments: (1) direct evolution which was employed in [15, 22]; (2) incremental evolution proposed by Torresen [4] with partitioned training vector strategy only; (3) our proposed multi- VRC cores-based scheme. The maximum number of generations of one EA run was set to 2 27 in all evolutionary strategies. To achieve the reasonable hardware cost and performance, a uniform 8 6 FE array was employed to evolve all the decomposed subcomponents in incremental evolution and our proposed strategy. A 12 6 FE array was selected for the direct evolution of 3-bit multiplier, which was depended on our previous experiments. No feasible 3-bit multiplier solution can be evolved using smaller size FE arrays (e.g. 10 6, 8 8). To simplify hardware design, this 12 6 FE array was also employed to directly evolve 3-bit adder. In the evolution of 3-bit multiplier, with the proposed scheme, two and three subcomponents-based system partitions were implemented individually. To achieve more symmetrical computational complexity in each decomposed subcomponent, the system output partitions were executed as follows: (1,3,5), (2,4,6) for 2 subcomponents and (1,4), (2,5), (3,6) for 3 subcomponents. The same system decomposition rule was also employed in incremental evolution. The comparisons of the device cost, the chromosome length in each subcomponents, the times of successful EA runs to find feasible logic circuits (times of success), the average and standard deviation values of the number of generations, and the average total evolution time produced by direct evolution, incremental evolution, and multi-vrc cores-based approach are shown in table 1. We performed 100 runs for each case. The evolvable 3-bit adder includes 6-input and 4-output, wherein input carry is not considered in this work. Only two subcomponents-based system decomposition was implemented in our experiment. Table 2 summarizes all results for evolving 3-bit adder under different settings. All average experimental results are from 100 independent EA runs for each case.

9 Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel 31 Table 1. The results of evolving 3-bit multiplier with different evolution strategies EA type Direct evolution Chromosome Number of generations (bits) avg. std. dev. Incremental evolution Multi- VRC cores Divided outputs Device cost (slices) Total evolution time (avg.) Times of success sec 50 1,3,5 2,4,6 1,4 2,5 3,6 1,3,5 2,4,6 1,4 2,5 3, sec 4.400sec sec sec 57 Table 2. The results of evolving 3-bit adder with different evolution strategies EA type Direct evolution Incremental evolution Multi-VRC cores Divided outputs Device cost (slices) Chromosome Number of generations (bits) avg. std. dev. Total evolution time (avg.) Times of success sec 47 1,3 2,4 1,3 2, sec sec Discussion We have presented the results of our initial experiments on the multi-vrc coresbased evolvable system. The analysis is conducted on the two examples presented in this paper. In all cases, the times of successful EA runs to find feasible logic circuits in direct evolution, incremental evolution, and our proposed approach are comparable. Since our main motive of the approach proposed in this paper is to develop an efficient evolvable system for conquering the scalability issue of EHW, we need to perform another comparison wherein we analyze the computational cost required by the three mentioned approaches. The computational costs of different types of evolutionary strategies can be evaluated by using the average total system evolution time. It can be clearly appreciated that the multi-vrc cores-based EHW outperforms other approaches in all cases. All results indicated the execution time for EA learning significantly depends on the levels of the system decomposition selected. For the evolution of 3-bit multiplier, the speedup obtained by means of multi-vrc cores with two decomposed subcomponents is 7.4 (against direct evolution) and 1.5 (against incremental evolution with two subcomponents). With three subcomponents-based

10 32 J. Wang, C.H. Piao, and C.H. Lee decomposition, the speedup of multi-vrc cores-based EHW is 29.6 (against direct evolution) and 1.7 (against incremental evolution with three subcomponents). Similar compared results can be obtained in the evolutions of 3-bit adder. We can consider the proposed multi-vrc cores-based EHW is a hybridization of parallel intrinsic evolution and divide-and-conquer approach-based incremental evolution. The better performance related to computational costs obtained by our approach is mainly due to two new features of our proposed evolvable system: (1) Parallel implemented multi-vrc cores with powerful computational ability. In our approach, all the RC cores are implemented in a FPGA, which executes the evolution of subcomponents (e.g. fitness evaluation and genetic operations) in parallel. The most obvious advantage of this implementation is that the evolution of each subcomponent is completely pipelined and parallel. The proposed hardware implementation gives us a promise to conquer the overhead introduced by slow inter processor communications, setup time issues in general multi-processors based parallel evolution. (2) System decomposition strategy. The main advantage of decomposition system output is that evolution is performed in some smaller subcomponents with less output than top system. The number of gates required for implementation each subcomponent can be reduced for the smaller size of system output. A shorter chromosome can be employed to present each subcomponent. For example, in our experiments, the chromosome length in each subcomponent was reduced from 792 to 432. On the other hand, decomposed output function also reduces the computational complexity of the problems to be solved. Therefore, by partitioning system output, a simpler and smaller EA search space can be achieved in the evolution of each subcomponent. Another interesting observation is the hardware implementation cost. With the introduction of system decomposition strategy, the device cost is larger than that needed for traditional direct evolution approach. More VRC cores are required in our proposed approach than in direct evolution (which employed only one VRC). However, the increase of device cost is not very significant in multi-vrc cores-based EHW. From our synthesis results, the hardware cost in two-vrc cores-based approach is very close to the result in direct evolution. In three-vrc cores-based approach, the device cost increase is 1.5 times as compared to direct evolution. This feature is due to smaller inputs/outputs combination is employed in the decomposed subcomponents. Corresponding to the Shannon s effect [15], we can employ smaller size of FE array and chromosome memory to implement each partitioned subcomponents. On the other hand, we need to remind that our original motive is to conquer the existed scalability issue of EHW. Device cost is not considered as a serious issue in our work, because the number of transistors becoming available in circuits increases according to Moore s Law. 7 Conclusion In this paper, we have presented a novel scalable evolvable hardware, known as multi-vrc cores architecture, for synthesizing combinational logic circuits. The proposed approach uses a divide-and-conquer-based technique to decompose the top system into several subcomponents. Then, all subcomponents are independently evolved by their corresponding VRC cores in parallel. The experimental results show

11 Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel 33 that our proposed scheme performs significantly better than direct evolution and incremental evolution in term of the EA execution time. Both of 3-bit multiplier and adder are able to be evolved in less than 3 seconds, which is untouchable by any other reported evolvable systems. Future work will be devoted to apply this scheme to other more complex real-world applications. Acknowledgments. This work was supported by the Korean MOCIE under research project 'Super Intelligent Chip Design'. References 1. Torresen, J.: Possibilities and Limitations of Applying Evolvable Hardware to Real-world Application. In: Proc. of the 10th International Conference on Field Programmable Logic and Applications, FPL-2000, Villach, Austria, pp (2000) 2. Yao, X., Higuchi, T.: Promises and Challenges of Evolvable Hardware. IEEE Transactions on Systems, Man, and Cybernetics 29(1), (1999) 3. Torresen, J.: A Divide-and-Conquer Approach to Evolvable Hardware. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES LNCS, vol. 1478, pp Springer, Heidelberg (1998) 4. Torresen, J.: Evolving Multiplier Circuits by Training Set and Training Vector Partitioning. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES LNCS, vol. 2606, pp Springer, Heidelberg (2003) 5. Wang, J., et al.: Using Reconfigurable Architecture-Based Intrinsic Incremental Evolution to Evolve a Character Classification System. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS LNCS (LNAI), vol. 3801, pp Springer, Heidelberg (2005) 6. Murakawa, M., et al.: Hardware Evolution at Function Level. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN IV LNCS, vol. 1141, pp Springer, Heidelberg (1996) 7. Zhang, Y., et al.: Digital Circuit Design Using Intrinsic Evolvable Hardware. In: Proc. Of the 2004 NASA/DoD Conference on the Evolvable Hardware, pp IEEE Computer Society Press, Los Alamitos (2004) 8. Sekanina, L.: Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES LNCS, vol. 2606, pp Springer, Heidelberg (2003) 9. Sekanina, L.: Evolutionary Design of Digital Circuits: Where Are Current Limits? In: Proc. of the First NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2006, pp IEEE Computer Society Press, Los Alamitos (2006) 10. Gordon, V.S., Whitley, D.: Serial and Parallel Genetic Algorithms as Function Optimizers. In: Proc. of the Fifth International Conference on Genetic Algorithms, pp Morgan Kaufmann, San Mateo, CA (1993) 11. Cantu-Paz, E.: A Survey of Parallel Genetic Algorithms. Calculateurs Parallels 10(2), (1998) 12. Coello Coello, C.A., Aguirre, A.H.: Design of Combinational Logic Circuits Through an Evolutionary Multiobjective Optimization Approach. Artificial Intelligence for Engineering, Design, Analysis and Manufacture 16(1), (2002) 13. Potter, M.A., De Jong, K.A.: Cooperative Co-evolution: An Architecture for Evolving Coadapted Subcomponents. Evolutionary Computation 8(1), 1 29 (2000)

12 34 J. Wang, C.H. Piao, and C.H. Lee 14. Kalganova, T.: Bidirectional Incremental Evolution in Extrinsic Evolvable Hardware. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp IEEE Computer Society Press, Los Alamitos (2000) 15. Sekanina, L., et al.: An Evolvable Combinational Unit for FPGAs. Computing and Informatics 23(5), (2004) 16. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP LNCS, vol. 1802, pp Springer, Heidelberg (2000) 17. Celoxica Inc., RC1000 Hardware Reference Manual V2.3 (2001) Martin, P.: A Hardware Implementation of a Genetic Programming System Using FPGAs and Handel-C. Genetic Programming and Evolvable Machines 2(4), (2001) 20. Bensaali, F., et al.: Accelerating Matrix Product on Reconfigurable Hardware for Image Processing Applications. IEE proceedings-circuits, Devices and Systems 152(3), (2005) 21. Wolfram, S.: Universality and Complexity in Cellular Automata. Physica 10D, 1 35 (1984) 22. Miller, J.F., et al.: Principles in the Evolutionary Design of Digital Circuits Part I. Journal of Genetic Programming and Evolvable Machines 1(1), 7 35 (2000)

On Evolution of Relatively Large Combinational Logic Circuits

On Evolution of Relatively Large Combinational Logic Circuits On Evolution of Relatively Large Combinational Logic Circuits E. Stomeo 1, T. Kalganova 1, C. Lambert 1, N. Lipnitsakya 2, Y. Yatskevich 2 Brunel University UK 1, Belarusian State University 2 emanuele.stomeo@brunel.ac.uk

More information

A Divide-and-Conquer Approach to Evolvable Hardware

A Divide-and-Conquer Approach to Evolvable Hardware A Divide-and-Conquer Approach to Evolvable Hardware Jim Torresen Department of Informatics, University of Oslo, PO Box 1080 Blindern N-0316 Oslo, Norway E-mail: jimtoer@idi.ntnu.no Abstract. Evolvable

More information

An Evolutionary Approach to the Synthesis of Combinational Circuits

An Evolutionary Approach to the Synthesis of Combinational Circuits An Evolutionary Approach to the Synthesis of Combinational Circuits Cecília Reis Institute of Engineering of Porto Polytechnic Institute of Porto Rua Dr. António Bernardino de Almeida, 4200-072 Porto Portugal

More information

The Input Pattern Order Problem II: Evolution of Multiple-Output Circuits in Hardware

The Input Pattern Order Problem II: Evolution of Multiple-Output Circuits in Hardware The Input Pattern Order Problem II: Evolution of Multiple-Output Circuits in Hardware Martin A. Trefzer, Tüze Kuyucu, Julian F. Miller and Andy M. Tyrrell Abstract It has been shown in previous work that

More information

Gate-Level Optimization of Polymorphic Circuits Using Cartesian Genetic Programming

Gate-Level Optimization of Polymorphic Circuits Using Cartesian Genetic Programming Gate-Level Optimization of Polymorphic Circuits Using Cartesian Genetic Programming Zbysek Gajda and Lukas Sekanina Abstract Polymorphic digital circuits contain ordinary and polymorphic gates. In the

More information

Using Genetic Algorithm in the Evolutionary Design of Sequential Logic Circuits

Using Genetic Algorithm in the Evolutionary Design of Sequential Logic Circuits IJCSI International Journal of Computer Science Issues, Vol. 8, Issue, May 0 ISSN (Online): 694-084 www.ijcsi.org Using Genetic Algorithm in the Evolutionary Design of Sequential Logic Circuits Parisa

More information

Image Filter Design with Evolvable Hardware

Image Filter Design with Evolvable Hardware Image Filter Design with Evolvable Hardware Lukáš Sekanina Faculty of Information Technology Brno University of Technology Božetěchova 2, 612 66 Brno, Czech Republic sekanina@fit.vutbr.cz Abstract. The

More information

Design Methods for Polymorphic Digital Circuits

Design Methods for Polymorphic Digital Circuits Design Methods for Polymorphic Digital Circuits Lukáš Sekanina Faculty of Information Technology, Brno University of Technology Božetěchova 2, 612 66 Brno, Czech Republic sekanina@fit.vutbr.cz Abstract.

More information

Incremental evolution of a signal classification hardware architecture for prosthetic hand control

Incremental evolution of a signal classification hardware architecture for prosthetic hand control International Journal of Knowledge-based and Intelligent Engineering Systems 12 (2008) 187 199 187 IOS Press Incremental evolution of a signal classification hardware architecture for prosthetic hand control

More information

EHW Architecture for Design of FIR Filters for Adaptive Noise Cancellation

EHW Architecture for Design of FIR Filters for Adaptive Noise Cancellation IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 41 EHW Architecture for Design of FIR Filters for Adaptive Noise Cancellation Uma Rajaram, Raja Paul Perinbam,

More information

Evolving and Analysing Useful Redundant Logic

Evolving and Analysing Useful Redundant Logic Evolving and Analysing Useful Redundant Logic Asbjoern Djupdal and Pauline C. Haddow CRAB Lab Department of Computer and Information Science Norwegian University of Science and Technology {djupdal,pauline}@idi.ntnu.no

More information

Evolving Digital Logic Circuits on Xilinx 6000 Family FPGAs

Evolving Digital Logic Circuits on Xilinx 6000 Family FPGAs Evolving Digital Logic Circuits on Xilinx 6000 Family FPGAs T. C. Fogarty 1, J. F. Miller 1, P. Thomson 1 1 Department of Computer Studies Napier University, 219 Colinton Road, Edinburgh t.fogarty@dcs.napier.ac.uk

More information

Intrinsic Evolution of Analog Circuits on a Programmable Analog Multiplexer Array

Intrinsic Evolution of Analog Circuits on a Programmable Analog Multiplexer Array Intrinsic Evolution of Analog Circuits on a Programmable Analog Multiplexer Array José Franco M. Amaral 1, Jorge Luís M. Amaral 1, Cristina C. Santini 2, Marco A.C. Pacheco 2, Ricardo Tanscheit 2, and

More information

Vol. 5, No. 6 June 2014 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

Vol. 5, No. 6 June 2014 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Optimal Synthesis of Finite State Machines with Universal Gates using Evolutionary Algorithm 1 Noor Ullah, 2 Khawaja M.Yahya, 3 Irfan Ahmed 1, 2, 3 Department of Electrical Engineering University of Engineering

More information

Evolvable Hardware in Xilinx Spartan-3 FPGA

Evolvable Hardware in Xilinx Spartan-3 FPGA 5 WSEAS Int. Conf. on YNAMICAL SYSTEMS and CONTROL, Venice, Italy, November -4, 5 (pp66-7) Evolvable Hardware in Xilinx Spartan-3 FPGA RUSTEM POPA, OREL AIORĂCHIOAIE, GABRIEL SÎRBU epartment of Electronics

More information

Co-evolution for Communication: An EHW Approach

Co-evolution for Communication: An EHW Approach Journal of Universal Computer Science, vol. 13, no. 9 (2007), 1300-1308 submitted: 12/6/06, accepted: 24/10/06, appeared: 28/9/07 J.UCS Co-evolution for Communication: An EHW Approach Yasser Baleghi Damavandi,

More information

Acceleration of Transistor-Level Evolution using Xilinx Zynq Platform

Acceleration of Transistor-Level Evolution using Xilinx Zynq Platform Acceleration of Transistor-Level Evolution using Xilinx Zynq Platform Vojtech Mrazek and Zdenek Vasicek Brno University of Technology Faculty of Information Technology Brno, Czech Republic Email: imrazek@fit.vutbr.cz,

More information

Abstract of PhD Thesis

Abstract of PhD Thesis FACULTY OF ELECTRONICS, TELECOMMUNICATION AND INFORMATION TECHNOLOGY Irina DORNEAN, Eng. Abstract of PhD Thesis Contribution to the Design and Implementation of Adaptive Algorithms Using Multirate Signal

More information

STIMULATIVE MECHANISM FOR CREATIVE THINKING

STIMULATIVE MECHANISM FOR CREATIVE THINKING STIMULATIVE MECHANISM FOR CREATIVE THINKING Chang, Ming-Luen¹ and Lee, Ji-Hyun 2 ¹Graduate School of Computational Design, National Yunlin University of Science and Technology, Taiwan, R.O.C., g9434703@yuntech.edu.tw

More information

Preface. Julian Francis Miller

Preface. Julian Francis Miller Preface Julian Francis Miller This book is a tribute to Julian Francis Miller s breadth of ideas and achievements in computer science, evolutionary algorithms and genetic programming, electronics, unconventional

More information

Evolutionary Electronics

Evolutionary Electronics Evolutionary Electronics 1 Introduction Evolutionary Electronics (EE) is defined as the application of evolutionary techniques to the design (synthesis) of electronic circuits Evolutionary algorithm (schematic)

More information

Artificial Neural Network Engine: Parallel and Parameterized Architecture Implemented in FPGA

Artificial Neural Network Engine: Parallel and Parameterized Architecture Implemented in FPGA Artificial Neural Network Engine: Parallel and Parameterized Architecture Implemented in FPGA Milene Barbosa Carvalho 1, Alexandre Marques Amaral 1, Luiz Eduardo da Silva Ramos 1,2, Carlos Augusto Paiva

More information

Evolutionary Approach to Approximate Digital Circuits Design

Evolutionary Approach to Approximate Digital Circuits Design The final version of record is available at http://dx.doi.org/1.119/tevc.21.233175 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Evolutionary Approach to Approximate Digital Circuits Design Zdenek Vasicek

More information

Analog Electric Circuits Synthesis using a Genetic Algorithm Approach

Analog Electric Circuits Synthesis using a Genetic Algorithm Approach International Journal of omputer Applications (975 8887) Analog Electric ircuits Synthesis using a Genetic Algorithm Approach Walid Mohamed Aly ollege of omputing and Information Technology Arab Academy

More information

Vesselin K. Vassilev South Bank University London Dominic Job Napier University Edinburgh Julian F. Miller The University of Birmingham Birmingham

Vesselin K. Vassilev South Bank University London Dominic Job Napier University Edinburgh Julian F. Miller The University of Birmingham Birmingham Towards the Automatic Design of More Efficient Digital Circuits Vesselin K. Vassilev South Bank University London Dominic Job Napier University Edinburgh Julian F. Miller The University of Birmingham Birmingham

More information

Evolvable Hardware: From On-Chip Circuit Synthesis to Evolvable Space Systems

Evolvable Hardware: From On-Chip Circuit Synthesis to Evolvable Space Systems Evolvable Hardware: From On-Chip Circuit Synthesis to Evolvable Space Systems Adrian Stoica Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109 818-354-2190

More information

Easily Testable Image Operators: The Class of Circuits Where Evolution Beats Engineers

Easily Testable Image Operators: The Class of Circuits Where Evolution Beats Engineers Easily Testable Image Operators: The Class of Circuits Where Evolution Beats Engineers Lukáš Sekanina and Richard Růžička Faculty of Information Technology, Brno University of Technology Božetěchova 2,

More information

Mehrdad Amirghasemi a* Reza Zamani a

Mehrdad Amirghasemi a* Reza Zamani a The roles of evolutionary computation, fitness landscape, constructive methods and local searches in the development of adaptive systems for infrastructure planning Mehrdad Amirghasemi a* Reza Zamani a

More information

Wave Pipelined Circuit with Self Tuning for Clock Skew and Clock Period Using BIST Approach

Wave Pipelined Circuit with Self Tuning for Clock Skew and Clock Period Using BIST Approach Technology Volume 1, Issue 1, July-September, 2013, pp. 41-46, IASTER 2013 www.iaster.com, Online: 2347-6109, Print: 2348-0017 Wave Pipelined Circuit with Self Tuning for Clock Skew and Clock Period Using

More information

Bridging the Gap Between Evolvable Hardware and Industry Using Cartesian Genetic Programming

Bridging the Gap Between Evolvable Hardware and Industry Using Cartesian Genetic Programming Bridging the Gap Between Evolvable Hardware and Industry Using Cartesian Genetic Programming Zdenek Vasicek Abstract Advancements in technology developed in the early nineties have enabled researchers

More information

A Flexible Model of a CMOS Field Programmable Transistor Array Targeted for Hardware Evolution

A Flexible Model of a CMOS Field Programmable Transistor Array Targeted for Hardware Evolution A Flexible Model of a CMOS Field Programmable Transistor Array Targeted for Hardware Evolution Ricardo Salem Zebulum Adrian Stoica Didier Keymeulen Jet Propulsion Laboratory California Institute of Technology

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder using Parallel Processing

VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder using Parallel Processing IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 01 July 2016 ISSN (online): 2349-784X VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder

More information

Hardware Evolution. What is Hardware Evolution? Where is Hardware Evolution? 4C57/GI06 Evolutionary Systems. Tim Gordon

Hardware Evolution. What is Hardware Evolution? Where is Hardware Evolution? 4C57/GI06 Evolutionary Systems. Tim Gordon Hardware Evolution 4C57/GI6 Evolutionary Systems Tim Gordon What is Hardware Evolution? The application of evolutionary techniques to hardware design and synthesis It is NOT just hardware implementation

More information

SYNTHESIS OF ADDER CIRCUIT USING CARTESIAN GENETIC PROGRAMMING

SYNTHESIS OF ADDER CIRCUIT USING CARTESIAN GENETIC PROGRAMMING SYNTHESIS OF ADDER CIRCUIT USING CARTESIAN GENETIC PROGRAMMING S.ASHA 1, DR.R.RANI HEMAMALINI 2 Department Electronics and Communication Engineering St.Peter s University Avadi, Chennai INDIA sivajiasha14@gmail.com

More information

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 98 CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 5.1 INTRODUCTION This chapter deals with the design and development of FPGA based PWM generation with the focus on to improve the

More information

Using a Hardware Simulation within a Genetic Algorithm to Evolve Robotic Controllers

Using a Hardware Simulation within a Genetic Algorithm to Evolve Robotic Controllers , October 19-21, 2011, San Francisco, USA Using a Hardware Simulation within a Genetic Algorithm to Evolve Robotic Controllers M. Beckerleg, J. Collins Abstract This paper uses a novel method of implementing

More information

Automated FSM Error Correction for Single Event Upsets

Automated FSM Error Correction for Single Event Upsets Automated FSM Error Correction for Single Event Upsets Nand Kumar and Darren Zacher Mentor Graphics Corporation nand_kumar{darren_zacher}@mentor.com Abstract This paper presents a technique for automatic

More information

SECTOR SYNTHESIS OF ANTENNA ARRAY USING GENETIC ALGORITHM

SECTOR SYNTHESIS OF ANTENNA ARRAY USING GENETIC ALGORITHM 2005-2008 JATIT. All rights reserved. SECTOR SYNTHESIS OF ANTENNA ARRAY USING GENETIC ALGORITHM 1 Abdelaziz A. Abdelaziz and 2 Hanan A. Kamal 1 Assoc. Prof., Department of Electrical Engineering, Faculty

More information

A High Definition Motion JPEG Encoder Based on Epuma Platform

A High Definition Motion JPEG Encoder Based on Epuma Platform Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 2371 2375 2012 International Workshop on Information and Electronics Engineering (IWIEE) A High Definition Motion JPEG Encoder Based

More information

Globally Asynchronous Locally Synchronous (GALS) Microprogrammed Parallel FIR Filter

Globally Asynchronous Locally Synchronous (GALS) Microprogrammed Parallel FIR Filter IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 5, Ver. II (Sep. - Oct. 2016), PP 15-21 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Globally Asynchronous Locally

More information

A Survey on Power Reduction Techniques in FIR Filter

A Survey on Power Reduction Techniques in FIR Filter A Survey on Power Reduction Techniques in FIR Filter 1 Pooja Madhumatke, 2 Shubhangi Borkar, 3 Dinesh Katole 1, 2 Department of Computer Science & Engineering, RTMNU, Nagpur Institute of Technology Nagpur,

More information

Understanding Coevolution

Understanding Coevolution Understanding Coevolution Theory and Analysis of Coevolutionary Algorithms R. Paul Wiegand Kenneth A. De Jong paul@tesseract.org kdejong@.gmu.edu ECLab Department of Computer Science George Mason University

More information

UNIT-II LOW POWER VLSI DESIGN APPROACHES

UNIT-II LOW POWER VLSI DESIGN APPROACHES UNIT-II LOW POWER VLSI DESIGN APPROACHES Low power Design through Voltage Scaling: The switching power dissipation in CMOS digital integrated circuits is a strong function of the power supply voltage.

More information

Video Enhancement Algorithms on System on Chip

Video Enhancement Algorithms on System on Chip International Journal of Scientific and Research Publications, Volume 2, Issue 4, April 2012 1 Video Enhancement Algorithms on System on Chip Dr.Ch. Ravikumar, Dr. S.K. Srivatsa Abstract- This paper presents

More information

Implementation of Face Detection System Based on ZYNQ FPGA Jing Feng1, a, Busheng Zheng1, b* and Hao Xiao1, c

Implementation of Face Detection System Based on ZYNQ FPGA Jing Feng1, a, Busheng Zheng1, b* and Hao Xiao1, c 6th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2016) Implementation of Face Detection System Based on ZYNQ FPGA Jing Feng1, a, Busheng Zheng1, b* and Hao

More information

The Behavior Evolving Model and Application of Virtual Robots

The Behavior Evolving Model and Application of Virtual Robots The Behavior Evolving Model and Application of Virtual Robots Suchul Hwang Kyungdal Cho V. Scott Gordon Inha Tech. College Inha Tech College CSUS, Sacramento 253 Yonghyundong Namku 253 Yonghyundong Namku

More information

Design of a High Throughput 128-bit AES (Rijndael Block Cipher)

Design of a High Throughput 128-bit AES (Rijndael Block Cipher) Design of a High Throughput 128-bit AES (Rijndael Block Cipher Tanzilur Rahman, Shengyi Pan, Qi Zhang Abstract In this paper a hardware implementation of a high throughput 128- bits Advanced Encryption

More information

Fault-Tolerant Evolvable Hardware Using Field-Programmable Transistor Arrays

Fault-Tolerant Evolvable Hardware Using Field-Programmable Transistor Arrays IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 3, SEPTEMBER 2000 305 Fault-Tolerant Evolvable Hardware Using Field-Programmable Transistor Arrays Didier Keymeulen, Member, IEEE, Ricardo Salem Zebulum,

More information

International Journal of Scientific and Technical Advancements ISSN:

International Journal of Scientific and Technical Advancements ISSN: FPGA Implementation and Hardware Analysis of LMS Algorithm Derivatives: A Case Study on Performance Evaluation Aditya Bali 1#, Rasmeet kour 2, Sumreti Gupta 3, Sameru Sharma 4 1 Department of Electronics

More information

Pareto Evolution and Co-Evolution in Cognitive Neural Agents Synthesis for Tic-Tac-Toe

Pareto Evolution and Co-Evolution in Cognitive Neural Agents Synthesis for Tic-Tac-Toe Proceedings of the 27 IEEE Symposium on Computational Intelligence and Games (CIG 27) Pareto Evolution and Co-Evolution in Cognitive Neural Agents Synthesis for Tic-Tac-Toe Yi Jack Yau, Jason Teo and Patricia

More information

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS GARY B. PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu IVO I. PARASHKEVOV, CONNECTICUT COLLEGE, USA, iipar@conncoll.edu H. JOSEPH

More information

Implementation of FPGA based Decision Making Engine and Genetic Algorithm (GA) for Control of Wireless Parameters

Implementation of FPGA based Decision Making Engine and Genetic Algorithm (GA) for Control of Wireless Parameters Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 11, Number 1 (2018) pp. 15-21 Research India Publications http://www.ripublication.com Implementation of FPGA based Decision Making

More information

On Built-In Self-Test for Adders

On Built-In Self-Test for Adders On Built-In Self-Test for s Mary D. Pulukuri and Charles E. Stroud Dept. of Electrical and Computer Engineering, Auburn University, Alabama Abstract - We evaluate some previously proposed test approaches

More information

TAC Reconfiguration for Paging Optimization in LTE-Based Mobile Communication Systems

TAC Reconfiguration for Paging Optimization in LTE-Based Mobile Communication Systems TAC Reconfiguration for Paging Optimization in LTE-Based Mobile Communication Systems Hyung-Woo Kang 1, Seok-Joo Koh 1,*, Sang-Kyu Lim 2, and Tae-Gyu Kang 2 1 School of Computer Science and Engineering,

More information

Real-Time License Plate Localisation on FPGA

Real-Time License Plate Localisation on FPGA Real-Time License Plate Localisation on FPGA X. Zhai, F. Bensaali and S. Ramalingam School of Engineering & Technology University of Hertfordshire Hatfield, UK {x.zhai, f.bensaali, s.ramalingam}@herts.ac.uk

More information

Reconfigurable Hardware Implementation and Analysis of Mesh Routing for the Matrix Step of the Number Field Sieve Factorization

Reconfigurable Hardware Implementation and Analysis of Mesh Routing for the Matrix Step of the Number Field Sieve Factorization Reconfigurable Hardware Implementation and Analysis of Mesh Routing for the Matrix Step of the Number Field Sieve Factorization Sashisu Bajracharya MS CpE Candidate Master s Thesis Defense Advisor: Dr

More information

New Genetic Operators to Facilitate Understanding of Evolved Transistor Circuits

New Genetic Operators to Facilitate Understanding of Evolved Transistor Circuits New Genetic Operators to Facilitate Understanding of Evolved Transistor Circuits Martin Trefzer, Jörg Langeheine, Johannes Schemmel, Karlheinz Meier University of Heidelberg Kirchhoff-Institute for Physics

More information

A HIGH PERFORMANCE HARDWARE ARCHITECTURE FOR HALF-PIXEL ACCURATE H.264 MOTION ESTIMATION

A HIGH PERFORMANCE HARDWARE ARCHITECTURE FOR HALF-PIXEL ACCURATE H.264 MOTION ESTIMATION A HIGH PERFORMANCE HARDWARE ARCHITECTURE FOR HALF-PIXEL ACCURATE H.264 MOTION ESTIMATION Sinan Yalcin and Ilker Hamzaoglu Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla,

More information

Computer Architecture Laboratory

Computer Architecture Laboratory 304-487 Computer rchitecture Laboratory ssignment #2: Harmonic Frequency ynthesizer and FK Modulator Introduction In this assignment, you are going to implement two designs in VHDL. The first design involves

More information

Performance Analysis of Multipliers in VLSI Design

Performance Analysis of Multipliers in VLSI Design Performance Analysis of Multipliers in VLSI Design Lunius Hepsiba P 1, Thangam T 2 P.G. Student (ME - VLSI Design), PSNA College of, Dindigul, Tamilnadu, India 1 Associate Professor, Dept. of ECE, PSNA

More information

Body articulation Obstacle sensor00

Body articulation Obstacle sensor00 Leonardo and Discipulus Simplex: An Autonomous, Evolvable Six-Legged Walking Robot Gilles Ritter, Jean-Michel Puiatti, and Eduardo Sanchez Logic Systems Laboratory, Swiss Federal Institute of Technology,

More information

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System Evolutionary Programg Optimization Technique for Solving Reactive Power Planning in Power System ISMAIL MUSIRIN, TITIK KHAWA ABDUL RAHMAN Faculty of Electrical Engineering MARA University of Technology

More information

A Genetic Algorithm-Based Controller for Decentralized Multi-Agent Robotic Systems

A Genetic Algorithm-Based Controller for Decentralized Multi-Agent Robotic Systems A Genetic Algorithm-Based Controller for Decentralized Multi-Agent Robotic Systems Arvin Agah Bio-Robotics Division Mechanical Engineering Laboratory, AIST-MITI 1-2 Namiki, Tsukuba 305, JAPAN agah@melcy.mel.go.jp

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 Introduction There are many possible facts because of which the power efficiency is becoming important consideration. The most portable systems used in recent era, which are

More information

Performance Enhancement of the RSA Algorithm by Optimize Partial Product of Booth Multiplier

Performance Enhancement of the RSA Algorithm by Optimize Partial Product of Booth Multiplier International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 8 (2017) pp. 1329-1338 Research India Publications http://www.ripublication.com Performance Enhancement of the

More information

Evolutionary Optimization for the Channel Assignment Problem in Wireless Mobile Network

Evolutionary Optimization for the Channel Assignment Problem in Wireless Mobile Network (649 -- 917) Evolutionary Optimization for the Channel Assignment Problem in Wireless Mobile Network Y.S. Chia, Z.W. Siew, S.S. Yang, H.T. Yew, K.T.K. Teo Modelling, Simulation and Computing Laboratory

More information

The Application of System Generator in Digital Quadrature Direct Up-Conversion

The Application of System Generator in Digital Quadrature Direct Up-Conversion Communications in Information Science and Management Engineering Apr. 2013, Vol. 3 Iss. 4, PP. 192-19 The Application of System Generator in Digital Quadrature Direct Up-Conversion Zhi Chai 1, Jun Shen

More information

Mixed Synchronous/Asynchronous State Memory for Low Power FSM Design

Mixed Synchronous/Asynchronous State Memory for Low Power FSM Design Mixed Synchronous/Asynchronous State Memory for Low Power FSM Design Cao Cao and Bengt Oelmann Department of Information Technology and Media, Mid-Sweden University S-851 70 Sundsvall, Sweden {cao.cao@mh.se}

More information

Applying Mechanism of Crowd in Evolutionary MAS for Multiobjective Optimisation

Applying Mechanism of Crowd in Evolutionary MAS for Multiobjective Optimisation Applying Mechanism of Crowd in Evolutionary MAS for Multiobjective Optimisation Marek Kisiel-Dorohinicki Λ Krzysztof Socha y Adam Gagatek z Abstract This work introduces a new evolutionary approach to

More information

Hardware Implementation of BCH Error-Correcting Codes on a FPGA

Hardware Implementation of BCH Error-Correcting Codes on a FPGA Hardware Implementation of BCH Error-Correcting Codes on a FPGA Laurenţiu Mihai Ionescu Constantin Anton Ion Tutănescu University of Piteşti University of Piteşti University of Piteşti Alin Mazăre University

More information

Field Programmable Gate Arrays based Design, Implementation and Delay Study of Braun s Multipliers

Field Programmable Gate Arrays based Design, Implementation and Delay Study of Braun s Multipliers Journal of Computer Science 7 (12): 1894-1899, 2011 ISSN 1549-3636 2011 Science Publications Field Programmable Gate Arrays based Design, Implementation and Delay Study of Braun s Multipliers Muhammad

More information

Scope. Evolution of digital circuits. Digital Circuits - Combinational. Agenda

Scope. Evolution of digital circuits. Digital Circuits - Combinational. Agenda The Genetic and Evolutionary Computation Conference Evolution of digital circuits Lukáš Sekanina Brno University of Technology Faculty of Information Technology Brno, Czech Republic sekanina@fit.vutbr.cz

More information

A WiMAX/LTE Compliant FPGA Implementation of a High-Throughput Low-Complexity 4x4 64-QAM Soft MIMO Receiver

A WiMAX/LTE Compliant FPGA Implementation of a High-Throughput Low-Complexity 4x4 64-QAM Soft MIMO Receiver A WiMAX/LTE Compliant FPGA Implementation of a High-Throughput Low-Complexity 4x4 64-QAM Soft MIMO Receiver Vadim Smolyakov 1, Dimpesh Patel 1, Mahdi Shabany 1,2, P. Glenn Gulak 1 The Edward S. Rogers

More information

A-B NODES CLASSIFICATION FOR POWER ESTIMATION. Elías Todorovich and Eduardo Boemo *

A-B NODES CLASSIFICATION FOR POWER ESTIMATION. Elías Todorovich and Eduardo Boemo * A-B NODES CLASSIFICATION FOR POWER ESTIMATION Elías Todorovich and Eduardo Boemo * School of Engineering Universidad Autónoma de Madrid Ctra. Colmenar km. 15, (28049) Madrid, Spain email: etodorov@uam.es,

More information

Design of an optimized multiplier based on approximation logic

Design of an optimized multiplier based on approximation logic ISSN:2348-2079 Volume-6 Issue-1 International Journal of Intellectual Advancements and Research in Engineering Computations Design of an optimized multiplier based on approximation logic Dhivya Bharathi

More information

Optimizing the State Evaluation Heuristic of Abalone using Evolutionary Algorithms

Optimizing the State Evaluation Heuristic of Abalone using Evolutionary Algorithms Optimizing the State Evaluation Heuristic of Abalone using Evolutionary Algorithms Benjamin Rhew December 1, 2005 1 Introduction Heuristics are used in many applications today, from speech recognition

More information

An Optimized Design for Parallel MAC based on Radix-4 MBA

An Optimized Design for Parallel MAC based on Radix-4 MBA An Optimized Design for Parallel MAC based on Radix-4 MBA R.M.N.M.Varaprasad, M.Satyanarayana Dept. of ECE, MVGR College of Engineering, Andhra Pradesh, India Abstract In this paper a novel architecture

More information

USING EMBEDDED PROCESSORS IN HARDWARE MODELS OF ARTIFICIAL NEURAL NETWORKS

USING EMBEDDED PROCESSORS IN HARDWARE MODELS OF ARTIFICIAL NEURAL NETWORKS USING EMBEDDED PROCESSORS IN HARDWARE MODELS OF ARTIFICIAL NEURAL NETWORKS DENIS F. WOLF, ROSELI A. F. ROMERO, EDUARDO MARQUES Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

More information

Signal Processing and Display of LFMCW Radar on a Chip

Signal Processing and Display of LFMCW Radar on a Chip Signal Processing and Display of LFMCW Radar on a Chip Abstract The tremendous progress in embedded systems helped in the design and implementation of complex compact equipment. This progress may help

More information

A Survey on A High Performance Approximate Adder And Two High Performance Approximate Multipliers

A Survey on A High Performance Approximate Adder And Two High Performance Approximate Multipliers IOSR Journal of Business and Management (IOSR-JBM) e-issn: 2278-487X, p-issn: 2319-7668 PP 43-50 www.iosrjournals.org A Survey on A High Performance Approximate Adder And Two High Performance Approximate

More information

The Application of Multi-Level Genetic Algorithms in Assembly Planning

The Application of Multi-Level Genetic Algorithms in Assembly Planning Volume 17, Number 4 - August 2001 to October 2001 The Application of Multi-Level Genetic Algorithms in Assembly Planning By Dr. Shana Shiang-Fong Smith (Shiang-Fong Chen) and Mr. Yong-Jin Liu KEYWORD SEARCH

More information

Systolic array for computing the pixel purity index (PPI) algorithm on hyper spectral images

Systolic array for computing the pixel purity index (PPI) algorithm on hyper spectral images Systolic array for computing the pixel purity index (PPI) algorithm on hyper spectral images Dominique Lavenier, Erwan Fabiani, Steven Derrien, Charles Wagner IRISA, Campus de Beaulieu, 35042 Rennes cedex,

More information

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Ch. Mohammad Arif 1, J. Syamuel John 2 M. Tech student, Department of Electronics Engineering, VR Siddhartha Engineering College,

More information

High Speed Speculative Multiplier Using 3 Step Speculative Carry Save Reduction Tree

High Speed Speculative Multiplier Using 3 Step Speculative Carry Save Reduction Tree High Speed Speculative Multiplier Using 3 Step Speculative Carry Save Reduction Tree Alfiya V M, Meera Thampy Student, Dept. of ECE, Sree Narayana Gurukulam College of Engineering, Kadayiruppu, Ernakulam,

More information

DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE

DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE 1 S. DARWIN, 2 A. BENO, 3 L. VIJAYA LAKSHMI 1 & 2 Assistant Professor Electronics & Communication Engineering Department, Dr. Sivanthi

More information

32-Bit CMOS Comparator Using a Zero Detector

32-Bit CMOS Comparator Using a Zero Detector 32-Bit CMOS Comparator Using a Zero Detector M Premkumar¹, P Madhukumar 2 ¹M.Tech (VLSI) Student, Sree Vidyanikethan Engineering College (Autonomous), Tirupati, India 2 Sr.Assistant Professor, Department

More information

An Optimized Performance Amplifier

An Optimized Performance Amplifier Electrical and Electronic Engineering 217, 7(3): 85-89 DOI: 1.5923/j.eee.21773.3 An Optimized Performance Amplifier Amir Ashtari Gargari *, Neginsadat Tabatabaei, Ghazal Mirzaei School of Electrical and

More information

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 90 CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 5.1 INTRODUCTION A combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination

More information

2. Simulated Based Evolutionary Heuristic Methodology

2. Simulated Based Evolutionary Heuristic Methodology XXVII SIM - South Symposium on Microelectronics 1 Simulation-Based Evolutionary Heuristic to Sizing Analog Integrated Circuits Lucas Compassi Severo, Alessandro Girardi {lucassevero, alessandro.girardi}@unipampa.edu.br

More information

Decision Based Median Filter Algorithm Using Resource Optimized FPGA to Extract Impulse Noise

Decision Based Median Filter Algorithm Using Resource Optimized FPGA to Extract Impulse Noise Journal of Embedded Systems, 2014, Vol. 2, No. 1, 18-22 Available online at http://pubs.sciepub.com/jes/2/1/4 Science and Education Publishing DOI:10.12691/jes-2-1-4 Decision Based Median Filter Algorithm

More information

Implementing Logic with the Embedded Array

Implementing Logic with the Embedded Array Implementing Logic with the Embedded Array in FLEX 10K Devices May 2001, ver. 2.1 Product Information Bulletin 21 Introduction Altera s FLEX 10K devices are the first programmable logic devices (PLDs)

More information

High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL

High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL E.Sangeetha 1 ASP and D.Tharaliga 2 Department of Electronics and Communication Engineering, Tagore College of Engineering and Technology,

More information

Neuromazes: 3-Dimensional Spiketrain Processors

Neuromazes: 3-Dimensional Spiketrain Processors Neuromazes: 3-Dimensional Spiketrain Processors ANDRZEJ BULLER, MICHAL JOACHIMCZAK, JUAN LIU & ADAM STEFANSKI 2 Human Information Science Laboratories Advanced Telecommunications Research Institute International

More information

Creating a Dominion AI Using Genetic Algorithms

Creating a Dominion AI Using Genetic Algorithms Creating a Dominion AI Using Genetic Algorithms Abstract Mok Ming Foong Dominion is a deck-building card game. It allows for complex strategies, has an aspect of randomness in card drawing, and no obvious

More information

Implementation of Space Time Block Codes for Wimax Applications

Implementation of Space Time Block Codes for Wimax Applications Implementation of Space Time Block Codes for Wimax Applications M Ravi 1, A Madhusudhan 2 1 M.Tech Student, CVSR College of Engineering Department of Electronics and Communication Engineering Hyderabad,

More information

Design of Multiplier Less 32 Tap FIR Filter using VHDL

Design of Multiplier Less 32 Tap FIR Filter using VHDL International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Design of Multiplier Less 32 Tap FIR Filter using VHDL Abul Fazal Reyas Sarwar 1, Saifur Rahman 2 1 (ECE, Integral University, India)

More information

A New network multiplier using modified high order encoder and optimized hybrid adder in CMOS technology

A New network multiplier using modified high order encoder and optimized hybrid adder in CMOS technology Inf. Sci. Lett. 2, No. 3, 159-164 (2013) 159 Information Sciences Letters An International Journal http://dx.doi.org/10.12785/isl/020305 A New network multiplier using modified high order encoder and optimized

More information

An Efficient Baugh-WooleyArchitecture forbothsigned & Unsigned Multiplication

An Efficient Baugh-WooleyArchitecture forbothsigned & Unsigned Multiplication An Efficient Baugh-WooleyArchitecture forbothsigned & Unsigned Multiplication PramodiniMohanty VLSIDesign, Department of Electrical &Electronics Engineering Noida Institute of Engineering & Technology

More information

Performance Analysis of an Efficient Reconfigurable Multiplier for Multirate Systems

Performance Analysis of an Efficient Reconfigurable Multiplier for Multirate Systems Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information