A Saturation-based Image Fusion Method for Static Scenes

Size: px
Start display at page:

Download "A Saturation-based Image Fusion Method for Static Scenes"

Transcription

1 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES) A Saturation-based Image Fusion Method for Static Scenes Geley Peljor and Toshiaki Kondo Sirindhorn International Institute of Technology, Thammasat University, Thailand geley23@gmail.com, tkondo@siit.tu.ac.th Abstract In this paper, we present a saturation-based image fusion method for static scenes, which is aimed at generating high-dynamic range images. A set of images of the same stationary scene with different exposure levels, such as, overexposed and underexposed images is blended together into one. The weighting factors, for blending the images, are dependent on the saturation values of the images. Higher saturation indicates more vivid colors. Thus, we assign a heavier weight to the pixels with higher saturation while lighter weights are used for those pixels whose saturations are lower. Our experimental results show that the proposed method can produce satisfactory results without adjusting any parameters at a low computational cost. Moreover, the output images are fairly free from the halo effect problem. Index Terms Saturation, Image Fusion, Exposure Fusion, HDR, Tone mapping. I. INTRODUCTION Digital photographs are becoming hugely popular all over the world with the advancement in technology and communication, but it has a limited dynamic range. Thus, limits the computer vision potential. In order to provide for full dynamic range, one can take multiple images and fuse them together to create a single image retaining only the wellexposed regions. This process is known as image fusion. Image fusion is the process of combining relevant information from two or more images into a single image, where the resultant fused image will be more informative than any of the input images. High dynamic range (HDR) images can be obtained from the set of multi-exposure images [1, 2]. Debevec et al. presented a technique to recover the high dynamic range radiance maps from the photographs taken with conventional imaging equipment [1].Their method first identifies the response curve of the imaging device which is used to recover the high dynamic range radiance map and then used logarithmic mapping to display the high dynamic range radiance map on normal display devices. Goshtasby has used the block based approach to fuse multiexposure images [2]. Their method first partitions the image domain into uniform blocks and for each block selects the image that contains the most information within that block and the selected images are then blended together using monotonically decreasing blending functions. The entropy has been used as a measure for optimization when fusing the image. Most display devices have a limited dynamic range and cannot directly display HDR images. To this end, the process known as tone mapping [3, 4] is applied to HDR image which reduces the dynamic range of the image thus making it suitable for display. Apart from tone mapping, image fusion techniques have also been used for many years. For example, multimodal imaging [5] and video enhancement [6]. Burt et al. have used pyramid transform to perform fusion of multi-exposure images [5]. The other approach is, fusing the multiple exposures into a high quality, low dynamic range image, ready for display which is guided by simple quality measures like saturation, contrast and well exposedness [7]. Their technique consists of two main parts: 1. Computing Weight Map from metrics like Saturation, Contrast and Well Exposedness 2. Applying the Pyramidal Image Decomposition for multiresolution blending and for fusing the images. Malik et al. have extended the Merten et al. approach and used wavelet decomposition instead of pyramidal decomposition as wavelet offers more efficient and robust representation [8]. In the present work, our approach is similar to the Merten et al. approach of Computing Weight Map from metrics, but we compute weight map only to the saturation channel followed by a Gaussian low-pass filter and some post processing techniques to the final fused image. We compare our result with histogram equalization as histogram equalization is a method in image processing of contrast /15/$ IEEE

2 adjustment using the image s histogram [9], followed by MATLAB HDR built-in function since Image Processing Toolbox supports a diverse set of image types, including high dynamic range [10]. We require no information about camera or shutting conditions, such as shutter speed or aperture size. Similar to Merten et al. approach, our technique merely relies on simple quality measures, but we compute only saturation, which prove to be very effective. Our method generates fully automatically without adjusting any parameters, unlike commercially available software, such as, Photoshop. Thus, we do not compare our method with it. II. PROPOSED ALGORITHM Finally, the images are converted back to the RGB space (Fig.1 (f) ). Weighted averaging= w11 Io + w22 Iu, where, w11 w22 Io Iu a) RGB Overexposed input image (I o) RGB Underexposed input image (I u ) The procedure of the proposed method is summarized in several steps as follows: b) RGB -> HSV RGB -> HSV 1. We load a set of static input images, I o (overexposed) and I u (underexposed) ( Fig. 1 (a) ). 2. Input images I o and I u are converted from the RGB to the HSV color space, respectively ( Fig. 1 (b) ). 3. Then we extract the saturation channels from the HSV color space of the input images, respectively, as s1 (saturation of overexposed) and s2 (saturation of underexposed) ( Fig.1 (c) ). 4. Next, we take the sum of the two saturation images together as s=s1+s2. 5. The pixels whose saturation is equal to 1 are often underexposed and colorless. Hence, we replace the saturation value 1 with 0 to exclude those pixels from the image blending. Note that the pixels with saturation 0 are automatically disabled from the blending as well. 6. Then, we define the weighting factor on the overexposed image as w1= s1 and the weighting s1+s2 factor on the underexposed image as w2= s2 s1+s2 ( Fig.1 (d) ). In the case of s1+s2=0, we assign 0.5 to both w1 and w2. 7. We apply a Gaussian low-pass filter (LPF), G, to the weighting factor map ( w1 ) to smoothen it and stored as w11. w22 is obtained by w22=1 w11 (Fig. 1 (e) ). The size of the LPF is the one tenth of the vertical size of the input image. 8. We blend two input RGB full color images using the weighting factors w11 and w We apply post processing to the fused image. First, we sharpen the final fused image using the unsharp masking technique, though this is optional. Then we convert the final fused sharpened image to the HSV color space. We then apply the gamma transform to the image intensity and saturation values where we currently use the fixed gamma value 0.7 for both. This step helps to brighten the output images. c) Saturation channel d) Weight e) Gaussian low pass filter f) Fused image Saturation channel Weight Figure 1. Methodology flow chart III. EXPERIMENTAL RESULTS Gaussian low pass filter Figure 2 shows the result of the proposed method. We have obtained the sample images from the website [11]. (a) Overexposed image, (b) under-exposed image, (c) the saturation channel of the image (a), (d) the saturation channel of the image (b), (e) the weight for (a), (f) the weight for (b), (g) fused image, and (h) fused image after post processing. It is obvious that the final fused image, (h) looks pleasing, natural and realistic.

3 Further, we compare our result with the MATLAB HDR built-in function and histogram equalization techniques. Since we require no information about camera or shutting conditions, such as shutter speed or aperture size, we compare our proposed result with the MATLAB HDR built-in function without adjusting any parameters. Figure 3 shows the comparison with the MATLAB HDR built-in function [10] and histogram equalization techniques [9]. We have obtained the sample images from the website [12]. (a) Over-exposed input image, (b) under-exposed input image, (c) the histogram equalized image of (a), (d) the histogram equalized image of (b), (e) output by the MATLAB function makehdr, and (f) output by the proposed method with post processing. As we can see that, (c) histogram equalization of the overexposed image produces lots of blocks and (d) produce good color contrast, but with less information in some parts of the region. On the other hand, (e) produce faded color, which lead to the unnatural look of the image. (f) strongly shows that our method can generate highdynamic range image with complete details. Figure 4 shows another comparison with the MATLAB HDR built-in function and histogram equalization techniques. We have obtained the sample images from the website [11]. (a) Over-exposed input image, (b) under-exposed input image, (c) the histogram equalized image of (a), (d) the histogram equalized image of (b), (e) output by the MATLAB function makehdr, and (f) output by the proposed method with post processing. As we can see that, (c) histogram equalization of the overexposed image also produces lots of blocks and (d) produce good color contrast, but with less information in some parts of the region. On the other hand, (e) produce faded color, which lead to the unnatural look of the image. (f) also shows that our method can generate high-dynamic range image with complete details. We assume that the stationary images are properly aligned and every part of the image is captured by at least one image having enough information stored in it. From our initial experimental results, we have found that, when we used a small Gaussian low-pass filter, which smoothen the images, the output image shows the vivid halo effect. Halo is appeared as a white glow around the subject when the darker pixels meet the lighter pixels. Thus, we have applied a large Gaussian low-pass filter to suppress the halo effect problem. Our method is limited to the objective method due to the fact that the traditional quality measure like Image Quality Index (IQI), measures the quality of the fused image based on how much details it has obtained from different images of the same scene [8]. In some cases of multi-image fusion, due to either overexposed or underexposed, some information from the sequence does not contribute towards the fusion. So we have compared our result subjectively with the existing method and, in general, our techniques can produce a satisfactory result. IV. CONCLUSION This paper presents a saturation-based image fusion method for static scenes, which is designed for generating highdynamic range images fully automatically at a low computational cost. The weighting factors, for blending the images, are dependent on the saturation values of the images. Higher saturation indicates more vivid colors. Thus, we assign a heavier weight to the pixels with higher saturation, while lighter weights are used for those pixels whose saturations are lower. Experimental results show that the proposed method can produce realistic high-dynamic range image automatically. Moreover, since we used a large low-pass filter, which smoothen the images, the output images are fairly free from the halo effect problem. One limitation of the proposed method is that, it has a difficulty in blending images when they have a common region that has little image details because of overexposure or underexposure. In this case, a use of more than two images may be necessary. As a future work, we plan to deal with image registration. ACKNOWLEDGMENT This Research is financially supported by EFS (Excellent Foreign Student) Scholarships, Sirindhorn International Institute of Technology (SIIT), Thammasat University (TU) and National Research University Project, (NRU), Thailand Office of the Higher Education Commission. REFERENCES [1] Debevec, P.E. and J. Malik. Recovering high dynamic range radiance maps from photographs. in ACM SIGGRAPH 2008 classes ACM. [2] Goshtasby, A.A., Fusion of multi-exposure images. Image and Vision Computing, (6): p [3] Reinhard, E., et al. Photographic tone reproduction for digital images. in ACM Transactions on Graphics (TOG) ACM. [4] Reinhard, E., et al., High dynamic range imaging: acquisition, display, and image-based lighting. 2010: Morgan Kaufmann. [5] Burt, P.J. and R.J. Kolczynski. Enhanced image capture through fusion. in Computer Vision, Proceedings., Fourth International Conference on IEEE. [6] Raskar, R., A. Ilie, and J. Yu. Image fusion for context enhancement and video surrealism. in ACM SIGGRAPH 2005 Courses ACM. [7] Mertens, T., J. Kautz, and F. Van Reeth. Exposure fusion. in Computer Graphics and Applications, PG'07. 15th Pacific Conference on IEEE. [8] Malik, M.H., S. Asif, and M. Gilani, Wavelet based exposure fusion. Proceedings of The World Congress on Engineering 2008, pp [9] Gonzalez, R.C. and R.E. Woods, Digital image processing. 2002, Prentice hall Upper Saddle River, NJ:. [10] Mathworks. Image Processing Toolbox. Available at [11] [12]

4 (a) (b) (c) (d) (e) (f) (g) (h) Figure 2. (a) Over-exposed image, (b) under-exposed image, (c) the saturation channel of the image (a), (d) the saturation channel of the image (b), (e) the weight for (a), (f) the weight for (b), (g) fused image, and (h) fused image after post processing.

5 (a) (b) (c) (d) (e) (f) Figure 3. (a) Over-exposed input image, (b) under-exposed input image, (c) the histogram equalized image of (a), (d) the histogram equalized image of (b), (e) output by the MATLAB function makehdr, and (f) output by the proposed method with post processing.

6 (a) (b) (c) (d) (e) (f) Figure 4. (a) Over-exposed input image, (b) under-exposed input image, (c) the histogram equalized image of (a), (d) the histogram equalized image of (b), (e) output by the MATLAB function makehdr, and (f) output by the proposed method with post processing.

A Real Time Algorithm for Exposure Fusion of Digital Images

A Real Time Algorithm for Exposure Fusion of Digital Images A Real Time Algorithm for Exposure Fusion of Digital Images Tomislav Kartalov #1, Aleksandar Petrov *2, Zoran Ivanovski #3, Ljupcho Panovski #4 # Faculty of Electrical Engineering Skopje, Karpoš II bb,

More information

A Multi-resolution Image Fusion Algorithm Based on Multi-factor Weights

A Multi-resolution Image Fusion Algorithm Based on Multi-factor Weights A Multi-resolution Image Fusion Algorithm Based on Multi-factor Weights Zhengfang FU 1,, Hong ZHU 1 1 School of Automation and Information Engineering Xi an University of Technology, Xi an, China Department

More information

arxiv: v1 [cs.cv] 29 May 2018

arxiv: v1 [cs.cv] 29 May 2018 AUTOMATIC EXPOSURE COMPENSATION FOR MULTI-EXPOSURE IMAGE FUSION Yuma Kinoshita Sayaka Shiota Hitoshi Kiya Tokyo Metropolitan University, Tokyo, Japan arxiv:1805.11211v1 [cs.cv] 29 May 2018 ABSTRACT This

More information

A Novel Hybrid Exposure Fusion Using Boosting Laplacian Pyramid

A Novel Hybrid Exposure Fusion Using Boosting Laplacian Pyramid A Novel Hybrid Exposure Fusion Using Boosting Laplacian Pyramid S.Abdulrahaman M.Tech (DECS) G.Pullaiah College of Engineering & Technology, Nandikotkur Road, Kurnool, A.P-518452. Abstract: THE DYNAMIC

More information

Continuous Flash. October 1, Technical Report MSR-TR Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052

Continuous Flash. October 1, Technical Report MSR-TR Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 Continuous Flash Hugues Hoppe Kentaro Toyama October 1, 2003 Technical Report MSR-TR-2003-63 Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 Page 1 of 7 Abstract To take a

More information

Denoising and Effective Contrast Enhancement for Dynamic Range Mapping

Denoising and Effective Contrast Enhancement for Dynamic Range Mapping Denoising and Effective Contrast Enhancement for Dynamic Range Mapping G. Kiruthiga Department of Electronics and Communication Adithya Institute of Technology Coimbatore B. Hakkem Department of Electronics

More information

High Dynamic Range (HDR) Photography in Photoshop CS2

High Dynamic Range (HDR) Photography in Photoshop CS2 Page 1 of 7 High dynamic range (HDR) images enable photographers to record a greater range of tonal detail than a given camera could capture in a single photo. This opens up a whole new set of lighting

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging 1 2 Lecture Topic Discuss the limits of the dynamic range in current imaging and display technology Solutions 1. High Dynamic Range (HDR) Imaging Able to image a larger dynamic

More information

Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach

Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach 2014 IEEE International Conference on Systems, Man, and Cybernetics October 5-8, 2014, San Diego, CA, USA Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach Huei-Yung Lin and Jui-Wen Huang

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis - HDR Capture & Tone Mapping - Philipp Slusallek Karol Myszkowski Gurprit Singh Karol Myszkowski LDR vs HDR Comparison Various Dynamic Ranges (1) 10-6 10-4 10-2 100 102 104 106

More information

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at:

More information

International Journal of Innovative Research in Engineering Science and Technology APRIL 2018 ISSN X

International Journal of Innovative Research in Engineering Science and Technology APRIL 2018 ISSN X HIGH DYNAMIC RANGE OF MULTISPECTRAL ACQUISITION USING SPATIAL IMAGES 1 M.Kavitha, M.Tech., 2 N.Kannan, M.E., and 3 S.Dharanya, M.E., 1 Assistant Professor/ CSE, Dhirajlal Gandhi College of Technology,

More information

High dynamic range imaging and tonemapping

High dynamic range imaging and tonemapping High dynamic range imaging and tonemapping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 12 Course announcements Homework 3 is out. - Due

More information

HIGH DYNAMIC RANGE IMAGING Nancy Clements Beasley, March 22, 2011

HIGH DYNAMIC RANGE IMAGING Nancy Clements Beasley, March 22, 2011 HIGH DYNAMIC RANGE IMAGING Nancy Clements Beasley, March 22, 2011 First - What Is Dynamic Range? Dynamic range is essentially about Luminance the range of brightness levels in a scene o From the darkest

More information

MODIFICATION OF ADAPTIVE LOGARITHMIC METHOD FOR DISPLAYING HIGH CONTRAST SCENES BY AUTOMATING THE BIAS VALUE PARAMETER

MODIFICATION OF ADAPTIVE LOGARITHMIC METHOD FOR DISPLAYING HIGH CONTRAST SCENES BY AUTOMATING THE BIAS VALUE PARAMETER International Journal of Information Technology and Knowledge Management January-June 2012, Volume 5, No. 1, pp. 73-77 MODIFICATION OF ADAPTIVE LOGARITHMIC METHOD FOR DISPLAYING HIGH CONTRAST SCENES BY

More information

HDR is a process for increasing the range of tonal values beyond what a single frame (either film or digital) can produce.

HDR is a process for increasing the range of tonal values beyond what a single frame (either film or digital) can produce. HDR HDR is a process for increasing the range of tonal values beyond what a single frame (either film or digital) can produce. It can be used to create more realistic views, or wild extravagant ones What

More information

Automatic Selection of Brackets for HDR Image Creation

Automatic Selection of Brackets for HDR Image Creation Automatic Selection of Brackets for HDR Image Creation Michel VIDAL-NAQUET, Wei MING Abstract High Dynamic Range imaging (HDR) is now readily available on mobile devices such as smart phones and compact

More information

Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University!

Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University! Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University! Motivation! wikipedia! exposure sequence! -4 stops! Motivation!

More information

A Short History of Using Cameras for Weld Monitoring

A Short History of Using Cameras for Weld Monitoring A Short History of Using Cameras for Weld Monitoring 2 Background Ever since the development of automated welding, operators have needed to be able to monitor the process to ensure that all parameters

More information

Title: DCT-based HDR Exposure Fusion Using Multi-exposed Image Sensors. - Affiliation: School of Electronics Engineering,

Title: DCT-based HDR Exposure Fusion Using Multi-exposed Image Sensors. - Affiliation: School of Electronics Engineering, Title: DCT-based HDR Exposure Fusion Using Multi-exposed Image Sensors Author: Geun-Young Lee, Sung-Hak Lee, and Hyuk-Ju Kwon - Affiliation: School of Electronics Engineering, Kyungpook National University,

More information

Efficient Image Retargeting for High Dynamic Range Scenes

Efficient Image Retargeting for High Dynamic Range Scenes 1 Efficient Image Retargeting for High Dynamic Range Scenes arxiv:1305.4544v1 [cs.cv] 20 May 2013 Govind Salvi, Puneet Sharma, and Shanmuganathan Raman Abstract Most of the real world scenes have a very

More information

This histogram represents the +½ stop exposure from the bracket illustrated on the first page.

This histogram represents the +½ stop exposure from the bracket illustrated on the first page. Washtenaw Community College Digital M edia Arts Photo http://courses.wccnet.edu/~donw Don W erthm ann GM300BB 973-3586 donw@wccnet.edu Exposure Strategies for Digital Capture Regardless of the media choice

More information

HDR imaging Automatic Exposure Time Estimation A novel approach

HDR imaging Automatic Exposure Time Estimation A novel approach HDR imaging Automatic Exposure Time Estimation A novel approach Miguel A. MARTÍNEZ,1 Eva M. VALERO,1 Javier HERNÁNDEZ-ANDRÉS,1 Javier ROMERO,1 1 Color Imaging Laboratory, University of Granada, Spain.

More information

Problem Set 3. Assigned: March 9, 2006 Due: March 23, (Optional) Multiple-Exposure HDR Images

Problem Set 3. Assigned: March 9, 2006 Due: March 23, (Optional) Multiple-Exposure HDR Images 6.098/6.882 Computational Photography 1 Problem Set 3 Assigned: March 9, 2006 Due: March 23, 2006 Problem 1 (Optional) Multiple-Exposure HDR Images Even though this problem is optional, we recommend you

More information

Reading The Histogram

Reading The Histogram Reading The Histogram Here we explain the use of the Histogram, helping you to spot whether your photographs are under or over exposed. Task Take 3 photographs of the same thing, one at an EV of -2, one

More information

Concealed Weapon Detection Using Color Image Fusion

Concealed Weapon Detection Using Color Image Fusion Concealed Weapon Detection Using Color Image Fusion Zhiyun Xue, Rick S. Blum Electrical and Computer Engineering Department Lehigh University Bethlehem, PA, U.S.A. rblum@eecs.lehigh.edu Abstract Image

More information

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images Fast Bilateral Filtering for the Display of High-Dynamic-Range Images Frédo Durand & Julie Dorsey Laboratory for Computer Science Massachusetts Institute of Technology Contributions Contrast reduction

More information

A Novel Approach for Detail-Enhanced Exposure Fusion Using Guided Filter

A Novel Approach for Detail-Enhanced Exposure Fusion Using Guided Filter A Novel Approach for Detail-Enhanced Exposure Fusion Using Guided Filter Harbinder Singh, Vinay Kumar, Sunil Bhooshan To cite this version: Harbinder Singh, Vinay Kumar, Sunil Bhooshan. A Novel Approach

More information

icam06, HDR, and Image Appearance

icam06, HDR, and Image Appearance icam06, HDR, and Image Appearance Jiangtao Kuang, Mark D. Fairchild, Rochester Institute of Technology, Rochester, New York Abstract A new image appearance model, designated as icam06, has been developed

More information

GHOSTING-FREE MULTI-EXPOSURE IMAGE FUSION IN GRADIENT DOMAIN. K. Ram Prabhakar, R. Venkatesh Babu

GHOSTING-FREE MULTI-EXPOSURE IMAGE FUSION IN GRADIENT DOMAIN. K. Ram Prabhakar, R. Venkatesh Babu GHOSTING-FREE MULTI-EXPOSURE IMAGE FUSION IN GRADIENT DOMAIN K. Ram Prabhakar, R. Venkatesh Babu Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India. ABSTRACT This

More information

High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem

High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem High Dynamic Range Images 15-463: Rendering and Image Processing Alexei Efros The Grandma Problem 1 Problem: Dynamic Range 1 1500 The real world is high dynamic range. 25,000 400,000 2,000,000,000 Image

More information

PERCEPTUAL EVALUATION OF MULTI-EXPOSURE IMAGE FUSION ALGORITHMS. Kai Zeng, Kede Ma, Rania Hassen and Zhou Wang

PERCEPTUAL EVALUATION OF MULTI-EXPOSURE IMAGE FUSION ALGORITHMS. Kai Zeng, Kede Ma, Rania Hassen and Zhou Wang PERCEPTUAL EVALUATION OF MULTI-EXPOSURE IMAGE FUSION ALGORITHMS Kai Zeng, Kede Ma, Rania Hassen and Zhou Wang Dept. of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada Email:

More information

A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications

A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications IEEE Transactions on Image Processing, Vol. 21, No. 2, 2012 Eric Dedrick and Daniel Lau, Presented by Ran Shu School

More information

Real-time ghost free HDR video stream generation using weight adaptation based method

Real-time ghost free HDR video stream generation using weight adaptation based method Real-time ghost free HDR video stream generation using weight adaptation based method Mustapha Bouderbane, Pierre-Jean Lapray, Julien Dubois, Barthélémy Heyrman, Dominique Ginhac Le2i UMR 6306, CNRS, Arts

More information

Bristol Photographic Society Introduction to Digital Imaging

Bristol Photographic Society Introduction to Digital Imaging Bristol Photographic Society Introduction to Digital Imaging Part 16 HDR an Introduction HDR stands for High Dynamic Range and is a method for capturing a scene that has a light range (light to dark) that

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging IMAGE BASED RENDERING, PART 1 Mihai Aldén mihal915@student.liu.se Fredrik Salomonsson fresa516@student.liu.se Tuesday 7th September, 2010 Abstract This report describes the implementation

More information

Contrast Image Correction Method

Contrast Image Correction Method Contrast Image Correction Method Journal of Electronic Imaging, Vol. 19, No. 2, 2010 Raimondo Schettini, Francesca Gasparini, Silvia Corchs, Fabrizio Marini, Alessandro Capra, and Alfio Castorina Presented

More information

Photo-Consistent Motion Blur Modeling for Realistic Image Synthesis

Photo-Consistent Motion Blur Modeling for Realistic Image Synthesis Photo-Consistent Motion Blur Modeling for Realistic Image Synthesis Huei-Yung Lin and Chia-Hong Chang Department of Electrical Engineering, National Chung Cheng University, 168 University Rd., Min-Hsiung

More information

Distributed Algorithms. Image and Video Processing

Distributed Algorithms. Image and Video Processing Chapter 7 High Dynamic Range (HDR) Distributed Algorithms for Introduction to HDR (I) Source: wikipedia.org 2 1 Introduction to HDR (II) High dynamic range classifies a very high contrast ratio in images

More information

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al.

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. Capturing Light in man and machine Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Image Formation Digital

More information

Improving digital images with the GNU Image Manipulation Program PHOTO FIX

Improving digital images with the GNU Image Manipulation Program PHOTO FIX Improving digital images with the GNU Image Manipulation Program PHOTO FIX is great for fixing digital images. We ll show you how to correct washed-out or underexposed images and white balance. BY GAURAV

More information

Camera Exposure Modes

Camera Exposure Modes What is Exposure? Exposure refers to how bright or dark your photo is. This is affected by the amount of light that is recorded by your camera s sensor. A properly exposed photo should typically resemble

More information

ONE OF THE MOST IMPORTANT SETTINGS ON YOUR CAMERA!

ONE OF THE MOST IMPORTANT SETTINGS ON YOUR CAMERA! Chapter 4-Exposure ONE OF THE MOST IMPORTANT SETTINGS ON YOUR CAMERA! Exposure Basics The amount of light reaching the film or digital sensor. Each digital image requires a specific amount of light to

More information

Dynamic Range. H. David Stein

Dynamic Range. H. David Stein Dynamic Range H. David Stein Dynamic Range What is dynamic range? What is low or limited dynamic range (LDR)? What is high dynamic range (HDR)? What s the difference? Since we normally work in LDR Why

More information

Admin Deblurring & Deconvolution Different types of blur

Admin Deblurring & Deconvolution Different types of blur Admin Assignment 3 due Deblurring & Deconvolution Lecture 10 Last lecture Move to Friday? Projects Come and see me Different types of blur Camera shake User moving hands Scene motion Objects in the scene

More information

ISSN Vol.03,Issue.29 October-2014, Pages:

ISSN Vol.03,Issue.29 October-2014, Pages: ISSN 2319-8885 Vol.03,Issue.29 October-2014, Pages:5768-5772 www.ijsetr.com Quality Index Assessment for Toned Mapped Images Based on SSIM and NSS Approaches SAMEED SHAIK 1, M. CHAKRAPANI 2 1 PG Scholar,

More information

MY ASTROPHOTOGRAPHY WORKFLOW Scott J. Davis June 21, 2012

MY ASTROPHOTOGRAPHY WORKFLOW Scott J. Davis June 21, 2012 Table of Contents Image Acquisition Types 2 Image Acquisition Exposure 3 Image Acquisition Some Extra Notes 4 Stacking Setup 5 Stacking 7 Preparing for Post Processing 8 Preparing your Photoshop File 9

More information

Color Preserving HDR Fusion for Dynamic Scenes

Color Preserving HDR Fusion for Dynamic Scenes Color Preserving HDR Fusion for Dynamic Scenes Gökdeniz Karadağ Middle East Technical University, Turkey gokdeniz@ceng.metu.edu.tr Ahmet Oğuz Akyüz Middle East Technical University, Turkey akyuz@ceng.metu.edu.tr

More information

How to correct a contrast rejection. how to understand a histogram. Ver. 1.0 jetphoto.net

How to correct a contrast rejection. how to understand a histogram. Ver. 1.0 jetphoto.net How to correct a contrast rejection or how to understand a histogram Ver. 1.0 jetphoto.net Contrast Rejection or how to understand the histogram 1. What is a histogram? A histogram is a graphical representation

More information

Probabilistic motion pixel detection for the reduction of ghost artifacts in high dynamic range images from multiple exposures

Probabilistic motion pixel detection for the reduction of ghost artifacts in high dynamic range images from multiple exposures RESEARCH Open Access Probabilistic motion pixel detection for the reduction of ghost artifacts in high dynamic range images from multiple exposures Jaehyun An 1, Seong Jong Ha 2 and Nam Ik Cho 1* Abstract

More information

A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques

A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques Zia-ur Rahman, Glenn A. Woodell and Daniel J. Jobson College of William & Mary, NASA Langley Research Center Abstract The

More information

Maine Day in May. 54 Chapter 2: Painterly Techniques for Non-Painters

Maine Day in May. 54 Chapter 2: Painterly Techniques for Non-Painters Maine Day in May 54 Chapter 2: Painterly Techniques for Non-Painters Simplifying a Photograph to Achieve a Hand-Rendered Result Excerpted from Beyond Digital Photography: Transforming Photos into Fine

More information

HDR Images (High Dynamic Range)

HDR Images (High Dynamic Range) HDR Images (High Dynamic Range) 1995-2016 Josef Pelikán & Alexander Wilkie CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Dynamic Range of Images bright part (short exposure)

More information

Multiscale model of Adaptation, Spatial Vision and Color Appearance

Multiscale model of Adaptation, Spatial Vision and Color Appearance Multiscale model of Adaptation, Spatial Vision and Color Appearance Sumanta N. Pattanaik 1 Mark D. Fairchild 2 James A. Ferwerda 1 Donald P. Greenberg 1 1 Program of Computer Graphics, Cornell University,

More information

Tone Adjustment of Underexposed Images Using Dynamic Range Remapping

Tone Adjustment of Underexposed Images Using Dynamic Range Remapping Tone Adjustment of Underexposed Images Using Dynamic Range Remapping Yanwen Guo and Xiaodong Xu National Key Lab for Novel Software Technology, Nanjing University Nanjing 210093, P. R. China {ywguo,xdxu}@nju.edu.cn

More information

Tonemapping and bilateral filtering

Tonemapping and bilateral filtering Tonemapping and bilateral filtering http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 6 Course announcements Homework 2 is out. - Due September

More information

HIGH DYNAMIC RANGE IMAGE ACQUISITION USING FLASH IMAGE

HIGH DYNAMIC RANGE IMAGE ACQUISITION USING FLASH IMAGE HIGH DYNAMIC RANGE IMAGE ACQUISITION USING FLASH IMAGE Ryo Matsuoka, Tatsuya Baba, Masahiro Okuda Univ. of Kitakyushu, Faculty of Environmental Engineering, JAPAN Keiichiro Shirai Shinshu University Faculty

More information

Applications of Flash and No-Flash Image Pairs in Mobile Phone Photography

Applications of Flash and No-Flash Image Pairs in Mobile Phone Photography Applications of Flash and No-Flash Image Pairs in Mobile Phone Photography Xi Luo Stanford University 450 Serra Mall, Stanford, CA 94305 xluo2@stanford.edu Abstract The project explores various application

More information

Photomatix Pro 3.1 User Manual

Photomatix Pro 3.1 User Manual Introduction Photomatix Pro 3.1 User Manual Photomatix Pro User Manual Introduction Table of Contents Section 1: Taking photos for HDR... 1 1.1 Camera set up... 1 1.2 Selecting the exposures... 3 1.3 Taking

More information

Photomatix Light 1.0 User Manual

Photomatix Light 1.0 User Manual Photomatix Light 1.0 User Manual Table of Contents Introduction... iii Section 1: HDR...1 1.1 Taking Photos for HDR...2 1.1.1 Setting Up Your Camera...2 1.1.2 Taking the Photos...3 Section 2: Using Photomatix

More information

Tone mapping. Digital Visual Effects, Spring 2009 Yung-Yu Chuang. with slides by Fredo Durand, and Alexei Efros

Tone mapping. Digital Visual Effects, Spring 2009 Yung-Yu Chuang. with slides by Fredo Durand, and Alexei Efros Tone mapping Digital Visual Effects, Spring 2009 Yung-Yu Chuang 2009/3/5 with slides by Fredo Durand, and Alexei Efros Tone mapping How should we map scene luminances (up to 1:100,000) 000) to display

More information

Kent Messamore 3/6/2010

Kent Messamore 3/6/2010 Post Processing Kent Messamore 3/6/2010 What we will cover Post Processing Photoshop, Lightroom, Elements, and others JPEG or RAW Photoshop Elements Workflow Organization, Create, share Photoshop Elements

More information

arxiv: v1 [cs.cv] 20 Dec 2017 Abstract

arxiv: v1 [cs.cv] 20 Dec 2017 Abstract DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs K. Ram Prabhakar, V Sai Srikar, and R. Venkatesh Babu Video Analytics Lab, Department of Computational and Data

More information

Saliency Based Boosting Laplacian Pyramid Image Fusion for Multi Exposure Photography

Saliency Based Boosting Laplacian Pyramid Image Fusion for Multi Exposure Photography Saliency Based Boosting Laplacian Pyramid Image Fusion for Multi Exposure Photography Rama Nangavath ME Student, Stanely College of Engineering and Technology for Women, Hyderabad, India. Abstract: THE

More information

Selective Detail Enhanced Fusion with Photocropping

Selective Detail Enhanced Fusion with Photocropping IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Selective Detail Enhanced Fusion with Photocropping Roopa Teena Johnson

More information

Histograms& Light Meters HOW THEY WORK TOGETHER

Histograms& Light Meters HOW THEY WORK TOGETHER Histograms& Light Meters HOW THEY WORK TOGETHER WHAT IS A HISTOGRAM? Frequency* 0 Darker to Lighter Steps 255 Shadow Midtones Highlights Figure 1 Anatomy of a Photographic Histogram *Frequency indicates

More information

Page 1 of 9. Blending Multiple Exposures The Manual Way to HDR (High Dynamic Range) TJ Avery 7-Feb-2008

Page 1 of 9. Blending Multiple Exposures The Manual Way to HDR (High Dynamic Range) TJ Avery 7-Feb-2008 Page 1 of 9 Blending Multiple Exposures The Manual Way to HDR (High Dynamic Range) TJ Avery 7-Feb-2008 The Problem Many natural landscape photographs will contain a range of light that exceeds what can

More information

Image Processing by Bilateral Filtering Method

Image Processing by Bilateral Filtering Method ABHIYANTRIKI An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 4 (April, 2016) http://www.aijet.in/ eissn: 2394-627X Image Processing by Bilateral Image

More information

Learning Photo Retouching techniques the simple way

Learning Photo Retouching techniques the simple way Learning Photo Retouching techniques the simple way Table of Contents About the Workshop... i Workshop Objectives... i Getting Started... 1 Photoshop Workspace... 1 Setting up the Preferences... 2 Retouching

More information

Select your Image in Bridge. Make sure you are opening the RAW version of your image file!

Select your Image in Bridge. Make sure you are opening the RAW version of your image file! CO 3403: Photographic Communication Steps for Non-Destructive Image Adjustments in Photoshop Use the application Bridge to preview your images and open your files with Camera Raw Review the information

More information

Single Scale image Dehazing by Multi Scale Fusion

Single Scale image Dehazing by Multi Scale Fusion Single Scale image Dehazing by Multi Scale Fusion Mrs.A.Dyanaa #1, Ms.Srruthi Thiagarajan Visvanathan *2, Ms.Varsha Chandran #3 #1 Assistant Professor, * 2 #3 UG Scholar Department of Information Technology,

More information

A Locally Tuned Nonlinear Technique for Color Image Enhancement

A Locally Tuned Nonlinear Technique for Color Image Enhancement A Locally Tuned Nonlinear Technique for Color Image Enhancement Electrical and Computer Engineering Department Old Dominion University Norfolk, VA 3508, USA sarig00@odu.edu, vasari@odu.edu http://www.eng.odu.edu/visionlab

More information

High Dynamic Range (HDR) photography is a combination of a specialized image capture technique and image processing.

High Dynamic Range (HDR) photography is a combination of a specialized image capture technique and image processing. Introduction High Dynamic Range (HDR) photography is a combination of a specialized image capture technique and image processing. Photomatix Pro's HDR imaging processes combine several Low Dynamic Range

More information

Research Article Anisotropic Diffusion for Details Enhancement in Multiexposure Image Fusion

Research Article Anisotropic Diffusion for Details Enhancement in Multiexposure Image Fusion Hindawi Publishing Corporation ISRN Signal Processing Volume 213, Article ID 928971, 18 pages http://dx.doi.org/1.1155/213/928971 Research Article Anisotropic Diffusion for Details Enhancement in Multiexposure

More information

Image Enhancement for Astronomical Scenes. Jacob Lucas The Boeing Company Brandoch Calef The Boeing Company Keith Knox Air Force Research Laboratory

Image Enhancement for Astronomical Scenes. Jacob Lucas The Boeing Company Brandoch Calef The Boeing Company Keith Knox Air Force Research Laboratory Image Enhancement for Astronomical Scenes Jacob Lucas The Boeing Company Brandoch Calef The Boeing Company Keith Knox Air Force Research Laboratory ABSTRACT Telescope images of astronomical objects and

More information

Colour correction for panoramic imaging

Colour correction for panoramic imaging Colour correction for panoramic imaging Gui Yun Tian Duke Gledhill Dave Taylor The University of Huddersfield David Clarke Rotography Ltd Abstract: This paper reports the problem of colour distortion in

More information

High Dynamic Range image capturing by Spatial Varying Exposed Color Filter Array with specific Demosaicking Algorithm

High Dynamic Range image capturing by Spatial Varying Exposed Color Filter Array with specific Demosaicking Algorithm High Dynamic ange image capturing by Spatial Varying Exposed Color Filter Array with specific Demosaicking Algorithm Cheuk-Hong CHEN, Oscar C. AU, Ngai-Man CHEUN, Chun-Hung LIU, Ka-Yue YIP Department of

More information

HDR IMAGING FOR FEATURE DETECTION ON DETAILED ARCHITECTURAL SCENES

HDR IMAGING FOR FEATURE DETECTION ON DETAILED ARCHITECTURAL SCENES HDR IMAGING FOR FEATURE DETECTION ON DETAILED ARCHITECTURAL SCENES G. Kontogianni, E. K. Stathopoulou*, A. Georgopoulos, A. Doulamis Laboratory of Photogrammetry, School of Rural and Surveying Engineering,

More information

Raw Material Assignment #4. Due 5:30PM on Monday, November 30, 2009.

Raw Material Assignment #4. Due 5:30PM on Monday, November 30, 2009. Raw Material Assignment #4. Due 5:30PM on Monday, November 30, 2009. Part I. Pick Your Brain! (40 points) Type your answers for the following questions in a word processor; we will accept Word Documents

More information

Digital Radiography using High Dynamic Range Technique

Digital Radiography using High Dynamic Range Technique Digital Radiography using High Dynamic Range Technique DAN CIURESCU 1, SORIN BARABAS 2, LIVIA SANGEORZAN 3, LIGIA NEICA 1 1 Department of Medicine, 2 Department of Materials Science, 3 Department of Computer

More information

The Unique Role of Lucis Differential Hysteresis Processing (DHP) in Digital Image Enhancement

The Unique Role of Lucis Differential Hysteresis Processing (DHP) in Digital Image Enhancement The Unique Role of Lucis Differential Hysteresis Processing (DHP) in Digital Image Enhancement Brian Matsumoto, Ph.D. Irene L. Hale, Ph.D. Imaging Resource Consultants and Research Biologists, University

More information

Automatic High Dynamic Range Image Generation for Dynamic Scenes

Automatic High Dynamic Range Image Generation for Dynamic Scenes Automatic High Dynamic Range Image Generation for Dynamic Scenes IEEE Computer Graphics and Applications Vol. 28, Issue. 2, April 2008 Katrien Jacobs, Celine Loscos, and Greg Ward Presented by Yuan Xi

More information

High Dynamic Range Images

High Dynamic Range Images High Dynamic Range Images TNM078 Image Based Rendering Jonas Unger 2004, V1.2 1 Introduction When examining the world around us, it becomes apparent that the lighting conditions in many scenes cover a

More information

AN INFORMATION-THEORETIC APPROACH TO MULTI-EXPOSURE FUSION VIA STATISTICAL FILTERING USING LOCAL ENTROPY

AN INFORMATION-THEORETIC APPROACH TO MULTI-EXPOSURE FUSION VIA STATISTICAL FILTERING USING LOCAL ENTROPY AN INFORMATION-THEORETIC APPROACH TO MULTI-EXPOSURE FUSION VIA STATISTICAL FILTERING USING LOCAL ENTROPY Johannes Herwig and Josef Pauli Intelligent Systems Group University of Duisburg-Essen Duisburg,

More information

HDR Recovery under Rolling Shutter Distortions

HDR Recovery under Rolling Shutter Distortions HDR Recovery under Rolling Shutter Distortions Sheetal B Gupta, A N Rajagopalan Department of Electrical Engineering Indian Institute of Technology Madras, Chennai, India {ee13s063,raju}@ee.iitm.ac.in

More information

! High&Dynamic!Range!Imaging! Slides!from!Marc!Pollefeys,!Gabriel! Brostow!(and!Alyosha!Efros!and! others)!!

! High&Dynamic!Range!Imaging! Slides!from!Marc!Pollefeys,!Gabriel! Brostow!(and!Alyosha!Efros!and! others)!! ! High&Dynamic!Range!Imaging! Slides!from!Marc!Pollefeys,!Gabriel! Brostow!(and!Alyosha!Efros!and! others)!! Today! High!Dynamic!Range!Imaging!(LDR&>HDR)! Tone!mapping!(HDR&>LDR!display)! The!Problem!

More information

Raymond Klass Photography Newsletter

Raymond Klass Photography Newsletter Raymond Klass Photography Newsletter The Next Step: Realistic HDR Techniques by Photographer Raymond Klass High Dynamic Range or HDR images, as they are often called, compensate for the limitations of

More information

Supplementary Material of

Supplementary Material of Supplementary Material of Efficient and Robust Color Consistency for Community Photo Collections Jaesik Park Intel Labs Yu-Wing Tai SenseTime Sudipta N. Sinha Microsoft Research In So Kweon KAIST In the

More information

Figure 1. Mr Bean cartoon

Figure 1. Mr Bean cartoon Dan Diggins MSc Computer Animation 2005 Major Animation Assignment Live Footage Tooning using FilterMan 1 Introduction This report discusses the processes and techniques used to convert live action footage

More information

Computer Graphics Fundamentals

Computer Graphics Fundamentals Computer Graphics Fundamentals Jacek Kęsik, PhD Simple converts Rotations Translations Flips Resizing Geometry Rotation n * 90 degrees other Geometry Rotation n * 90 degrees other Geometry Translations

More information

Recovering highlight detail in over exposed NEF images

Recovering highlight detail in over exposed NEF images Recovering highlight detail in over exposed NEF images Request I would like to compensate tones in overexposed RAW image, exhibiting a loss of detail in highlight portions. Response Highlight tones can

More information

Movie 3. Basic Camera Raw workflow

Movie 3. Basic Camera Raw workflow Movie 3 Basic Camera Raw workflow 1 The tone adjustment controls The tone adjustment controls allow you to make adjustments to the highlight and shadow clipping points as well as the overall tone balance

More information

Visualizing High Dynamic Range Images in a Web Browser

Visualizing High Dynamic Range Images in a Web Browser jgt 29/4/2 5:45 page # Vol. [VOL], No. [ISS]: Visualizing High Dynamic Range Images in a Web Browser Rafal Mantiuk and Wolfgang Heidrich The University of British Columbia Abstract. We present a technique

More information

Color and More. Color basics

Color and More. Color basics Color and More In this lesson, you'll evaluate an image in terms of its overall tonal range (lightness, darkness, and contrast), its overall balance of color, and its overall appearance for areas that

More information

CSE 332/564: Visualization. Fundamentals of Color. Perception of Light Intensity. Computer Science Department Stony Brook University

CSE 332/564: Visualization. Fundamentals of Color. Perception of Light Intensity. Computer Science Department Stony Brook University Perception of Light Intensity CSE 332/564: Visualization Fundamentals of Color Klaus Mueller Computer Science Department Stony Brook University How Many Intensity Levels Do We Need? Dynamic Intensity Range

More information

When you first open the dialog box you only see two sliders.

When you first open the dialog box you only see two sliders. Shadow/Highlight Of course there will still be the times when you do not either remember to make two exposures or you have older images that are already exposed you can give Shadow/Highlight a try. I find

More information

COMPUTATIONAL PHOTOGRAPHY. Chapter 10

COMPUTATIONAL PHOTOGRAPHY. Chapter 10 1 COMPUTATIONAL PHOTOGRAPHY Chapter 10 Computa;onal photography Computa;onal photography: image analysis and processing algorithms are applied to one or more photographs to create images that go beyond

More information

IMAGE ENHANCEMENT - POINT PROCESSING

IMAGE ENHANCEMENT - POINT PROCESSING 1 IMAGE ENHANCEMENT - POINT PROCESSING KOM3212 Image Processing in Industrial Systems Some of the contents are adopted from R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd edition, Prentice

More information

FOG REMOVAL ALGORITHM USING ANISOTROPIC DIFFUSION AND HISTOGRAM STRETCHING

FOG REMOVAL ALGORITHM USING ANISOTROPIC DIFFUSION AND HISTOGRAM STRETCHING FOG REMOVAL ALGORITHM USING DIFFUSION AND HISTOGRAM STRETCHING 1 G SAILAJA, 2 M SREEDHAR 1 PG STUDENT, 2 LECTURER 1 DEPARTMENT OF ECE 1 JNTU COLLEGE OF ENGINEERING (Autonomous), ANANTHAPURAMU-5152, ANDRAPRADESH,

More information

Automatic High Dynamic Range Image Generation for Dynamic Scenes

Automatic High Dynamic Range Image Generation for Dynamic Scenes IEEE COMPUTER GRAPHICS AND APPLICATIONS 1 Automatic High Dynamic Range Image Generation for Dynamic Scenes Katrien Jacobs 1, Celine Loscos 1,2, and Greg Ward 3 keywords: High Dynamic Range Imaging Abstract

More information