Computa(onal Vision Introduc(on and Overview. Lecture 1: Introduc(on Hamid Dehghani Office: UG38

Size: px
Start display at page:

Download "Computa(onal Vision Introduc(on and Overview. Lecture 1: Introduc(on Hamid Dehghani Office: UG38"

Transcription

1 Computa(onal Vision Introduc(on and Overview Lecture 1: Introduc(on Hamid Dehghani Office: UG38

2 Schedule 1 Lecture / week 9 am, Fridays@ Nuffield G13 1 Lab / week 11 am UG04, CS Modules webpages hpp://

3 Modules web pages

4 Schedule Lectures (L) and Highly Directed Studies (HDS) Preliminary Date% 17/01/2014' 24/01/2014' 31/01/2014' 07/02/2014' 14/02/2014' 21/02/2014' 28/02/2014' 07/03/2014' 14/03/2014' 21/03/2014' ' Topic% Introduction'to'Computational'Vision'and'Human'Vision'I' Human'Vision'II' Edge'Detection'and'Noise'Filtering' Hough'Transform' ROC'Analysis' Motion' Eigenvalues'and'PCA' Face'Recognition' Guest'Lecture' No'Lecture'

5 Schedule Labs Preliminary All lab work (Lab 1 Lab 4) to be wri7en and submi7ed by the following Friday Date% 17/01/2014' 24/01/2014' 31/01/2014' 07/02/2014' 14/02/2014' 21/02/2014' 28/02/2014' 07/03/2014' 14/03/2014' 15/03/2014' ' MATLAB'Tutorial' Lab'1:'Edge'Detection' Lab'2:'Noise'Filtering' Lab'3:'Hough'Transform' Projects' Projects' Projects' Lab'4:'Face'Recognition' Projects' NO'LABS' Topic%

6 Assessment Exam: 1.5 hours 70 % Date - TBA Assignment 30 % 3 page experimental write- up of a specified projects rela(ng to your labs (Individual Effort) Submission Date: Preliminary: Last day of 12.00

7 Advance No(ce APendance will be monitored Lectures and Labs

8 Module Descrip(on Learning Outcomes: Make informed choices about which sort of algorithms to apply to solve specific problems Use standard vision libraries or sodware to construct working vision systems Apply algorithms to simplified problems by hand Discuss the advantages and drawbacks of different methods, explaining their working

9 What is Computa(onal Vision? First consider Visual Percep(on to know what is where, by looking. vision is the process of discovering from images what is present in the world, and where it is. The acquisi(on of knowledge about objects and events in the environment through informa(on processing of light emiped or reflected from objects

10 What is Computa(onal Vision? To make computers See Automa(c inference of proper(es of the world from images Automa(c inference The world Image Proper(es Inference without (or minimal) human interven(on The real unconstrained 3D physical world Constrained/Engineered environments 2D projec(on of the electromagne(c signal provided by the world Geometric: shape, size, loca(on, distance, Material : color, texture, reflec(vity, transparency Temporal: direc(on of mo(on (in 3D), speed, events Illumina(on: light source specifica(on, light source color Symbolic: objects class, object s ID

11 What is Computa(onal Vision?

12 Is it easy? All people can see equally well Babies can see Really primi(ve animals can see We see effortlessly (at least it feels this way) Vision is immediate Vision appears to be flawless

13 Computa(onal Vision is challenging Vision needs to reverse the imaging process which is a many- to- one mapping ( recover lost informa(on). Vision needs to cope with an inherently imperfect imaging process ( recover lost informa(on) Vision needs to cope with discre(zed images of a prac(cally con(nuous world ( recover lost informa(on). The mere complexity of the task is enormous! Huge por(on of our brain is dedicated to visual percep(on.

14 Approaching the problem computa(onally Constrain/simplify the world Constrain/simplify the task (i.e., the desired output) Devise universal guiding assump(ons or heuris(cs Incorporate explicit knowledge Use experience (learning)

15 Applica(ons Automated naviga(on with obstacle avoidance Object/target detec(on and recogni(on Place/scene recogni(on Manufacturing and assembly Document processing Quality control Biomedical applica(ons Accessibility tools Human computer interfaces

16 Biological Vision Light and image forma(on Re(nal Processing Colour Visual Pathway

17 Electromagne(c Spectrum

18 Visible Light Humans perceive electromagne(c radia(on with wavelengths nm (1 nm = 10-9 m) f = c/λ f = frequency (Hz) λ = wavelength (m) c = speed of light (2.998x10 8 ms - 1 ) E = hf E = Energy (J) h = Plank s constant (6.623x10 34 Js)

19 Light Capturing Devices In the beginning: Forma(on of photopigments (>3BYA) Molecules in which light triggers a physical or chemical change. Captured photons lead to release of energy (of different forms) Released energy is used for Building food (photosynthesis) Behavioral reac(on (nerve reac(on)

20 Light Capturing Devices Photocells Light sensi(ve patch

21 Evolu(on of eyes Single cell 1D capture of light X Mul(ple cell BePer direc(on resolu(on

22 Evolu(on of eyes Mul(ple cell BePer direc(on resolu(on But...where is the image?

23 Evolu(on of eyes A pinhole camera Dilemma:

24 Evolu(on of eyes Solu(on: Use of light refrac(on and hence lenses

25 Refrac(on (Snell s Law) The wavelength changes, but wave crests can't be created or destroyed at the interface, so to make the waves match up, the light has to change direction.

26 Forma(on of lens Evolu(on of eyes

27 The Human Eye

28 Pinhole Camera Model

29 Pinhole Camera: Basic geometry

30 Pinhole Camera: Perspec(ve projec(on

31 Image Forma(on f = the focal length (in meters) 1/f = the power of the lens (dioptres) Human eye has power ~59 dioptres 1/f = 50 dioptres; f = 1/50 = 0.02 m

32 Image Forma(on Most of the refrac(ve power of the human eye comes from the air- cornea boundary(49 of 59 dioptres) As an object moves closer the power of the lens must increase to accommodate So if the object is infinitely far away f = = dioptres But if it is 1m away the lens must change shape to produce a sharp image dioptres f = =

33 Image Forma(on As an object moves in world how does it move across the image plane? If the image plane is curved then as θ gets larger this becomes a worse and worse approxima(on

34 Summary Module Outline Uses of Computa(onal Vision Image forma(on Very early visual processing Filling in and perceptual effects

35 Reading Vicki Bruce, Visual Percep(on, Chapters 1-3 Neil Carlson, Physiology of Behavior, Chapter 3, Vision

Computational and Biological Vision

Computational and Biological Vision Introduction to Computational and Biological Vision CS 202-1-5261 Computer Science Department, BGU Ohad Ben-Shahar Some necessary administrivia Lecturer : Ohad Ben-Shahar Email address : ben-shahar@cs.bgu.ac.il

More information

Lecture 26. PHY 112: Light, Color and Vision. Finalities. Final: Thursday May 19, 2:15 to 4:45 pm. Prof. Clark McGrew Physics D 134

Lecture 26. PHY 112: Light, Color and Vision. Finalities. Final: Thursday May 19, 2:15 to 4:45 pm. Prof. Clark McGrew Physics D 134 PHY 112: Light, Color and Vision Lecture 26 Prof. Clark McGrew Physics D 134 Finalities Final: Thursday May 19, 2:15 to 4:45 pm ESS 079 (this room) Lecture 26 PHY 112 Lecture 1 Introductory Chapters Chapters

More information

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4 Further reading Angel, section 1.4 Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Spencer, Shirley, Zimmerman, and Greenberg. Physically-based glare effects for

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

=, where f is focal length of a lens (positive for convex. Equations: Lens equation

=, where f is focal length of a lens (positive for convex. Equations: Lens equation Physics 1230 Light and Color : Exam #1 Your full name: Last First & middle General information: This exam will be worth 100 points. There are 10 multiple choice questions worth 5 points each (part 1 of

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

The Law of Reflection

The Law of Reflection PHY132H1F Introduction to Physics II Class 5 Outline: Reflection and Refraction Fibre-Optics Colour and Dispersion Thin Lens Equation Image Formation Quick reading quiz.. virtual image is. the cause of

More information

What is AI? Ar)ficial Intelligence. What is AI? What is AI? 9/4/09

What is AI? Ar)ficial Intelligence. What is AI? What is AI? 9/4/09 What is AI? Ar)ficial Intelligence CISC481/681 Lecture #1 Ben Cartere

More information

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections Reading Optional: Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA, 1995. Research papers:

More information

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8 Vision 1 Light, Optics, & The Eye Chaudhuri, Chapter 8 1 1 Overview of Topics Physical Properties of Light Physical properties of light Interaction of light with objects Anatomy of the eye 2 3 Light A

More information

CS 443: Imaging and Multimedia Cameras and Lenses

CS 443: Imaging and Multimedia Cameras and Lenses CS 443: Imaging and Multimedia Cameras and Lenses Spring 2008 Ahmed Elgammal Dept of Computer Science Rutgers University Outlines Cameras and lenses! 1 They are formed by the projection of 3D objects.

More information

sclera pupil What happens to light that enters the eye?

sclera pupil What happens to light that enters the eye? Human Vision Textbook pages 202 215 Before You Read Some people can see things clearly from a great distance. Other people can see things clearly only when they are nearby. Why might this be? Write your

More information

Chapter 2: The Beginnings of Perception

Chapter 2: The Beginnings of Perception Chapter 2: The Beginnings of Perception We ll see the first three steps of the perceptual process for vision https:// 49.media.tumblr.co m/ 87423d97f3fbba8fa4 91f2f1bfbb6893/ tumblr_o1jdiqp4tc1 qabbyto1_500.gif

More information

Mobile and Ubiquitous Compu3ng. Wireless Signals. George Roussos.

Mobile and Ubiquitous Compu3ng. Wireless Signals. George Roussos. Mobile and Ubiquitous Compu3ng Wireless Signals George Roussos g.roussos@dcs.bbk.ac.uk Overview Signal characteris3cs Represen3ng digital informa3on with wireless Transmission and propaga3on Accessing

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Light. Path of Light. Looking at things. Depth and Distance. Getting light to imager. CS559 Lecture 2 Lights, Cameras, Eyes

Light. Path of Light. Looking at things. Depth and Distance. Getting light to imager. CS559 Lecture 2 Lights, Cameras, Eyes CS559 Lecture 2 Lights, Cameras, Eyes These are course notes (not used as slides) Written by Mike Gleicher, Sept. 2005 Adjusted after class stuff we didn t get to removed / mistakes fixed Light Electromagnetic

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes:

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The iris (the pigmented part) The cornea (a clear dome

More information

Getting light to imager. Capturing Images. Depth and Distance. Ideal Imaging. CS559 Lecture 2 Lights, Cameras, Eyes

Getting light to imager. Capturing Images. Depth and Distance. Ideal Imaging. CS559 Lecture 2 Lights, Cameras, Eyes CS559 Lecture 2 Lights, Cameras, Eyes Last time: what is an image idea of image-based (raster representation) Today: image capture/acquisition, focus cameras and eyes displays and intensities Corrected

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The E-M spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference

More information

Reading. Lenses, cont d. Lenses. Vision and color. d d f. Good resources: Glassner, Principles of Digital Image Synthesis, pp

Reading. Lenses, cont d. Lenses. Vision and color. d d f. Good resources: Glassner, Principles of Digital Image Synthesis, pp Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Vision and color Wandell. Foundations of Vision. 1 2 Lenses The human

More information

Introduction. Ioannis Rekleitis

Introduction. Ioannis Rekleitis Introduction Ioannis Rekleitis Why Image Processing? Who here has a camera? How many cameras do you have Point where computers fast/cheap Cameras become omnipresent Deep Learning CSCE 590: Introduction

More information

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources:

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources: Reading Good resources: Vision and Color Brian Curless CSEP 557 Fall 2016 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Brian Curless CSEP 557 Fall 2016

Vision and Color. Brian Curless CSEP 557 Fall 2016 Vision and Color Brian Curless CSEP 557 Fall 2016 1 Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Commissioning Photo Sensor Based Ligh3ng Controls for Daylight Harves3ng

Commissioning Photo Sensor Based Ligh3ng Controls for Daylight Harves3ng Commissioning Photo Sensor Based Ligh3ng Controls for Daylight Harves3ng Professor Konstan3nos Papamichael, Ph.D. Associate Director, California Ligh3ng Technology Center University of California, Davis

More information

10/8/ dpt. n 21 = n n' r D = The electromagnetic spectrum. A few words about light. BÓDIS Emőke 02 October Optical Imaging in the Eye

10/8/ dpt. n 21 = n n' r D = The electromagnetic spectrum. A few words about light. BÓDIS Emőke 02 October Optical Imaging in the Eye A few words about light BÓDIS Emőke 02 October 2012 Optical Imaging in the Eye Healthy eye: 25 cm, v1 v2 Let s determine the change in the refractive power between the two extremes during accommodation!

More information

Millimetre and Radio Astronomy Techniques for Star Forma:on Studies II

Millimetre and Radio Astronomy Techniques for Star Forma:on Studies II Millimetre and Radio Astronomy Techniques for Star Forma:on Studies II John Conway Onsala Space Observatory, Sweden &Nordic ALMA ARC node (john.conway@chalmers.se) Today prac:cal details... For details

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

Optics Review (Chapters 11, 12, 13)

Optics Review (Chapters 11, 12, 13) Optics Review (Chapters 11, 12, 13) Complete the following questions in preparation for your test on FRIDAY. The notes that you need are in italics. Try to answer it on your own first, then check with

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A Chapter Content Mastery What is light? LESSON 1 Directions: Use the letters on the diagram to identify the parts of the wave listed below. Write the correct letters on the line provided. 1. amplitude 2.

More information

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2)

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Lecture 5 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Summary of last

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14

Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14 Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14 1. INTRODUCTION TO HUMAN VISION Self introduction Dr. Salmon Northeastern State University, Oklahoma. USA Teach

More information

CS 376b Computer Vision

CS 376b Computer Vision CS 376b Computer Vision 09 / 03 / 2014 Instructor: Michael Eckmann Today s Topics This is technically a lab/discussion session, but I'll treat it as a lecture today. Introduction to the course layout,

More information

2 The First Steps in Vision: Seeing Stars

2 The First Steps in Vision: Seeing Stars 2 The First Steps in Vision: Seeing Stars Outline What is light? Types of waves Dual nature of light: waves and particles Spectrum of electromagnetic radiation Intensity, wavelength, polarization, direction

More information

UNIT 12 LIGHT and OPTICS

UNIT 12 LIGHT and OPTICS UNIT 12 LIGHT and OPTICS What is light? Light is simply a name for a range of electromagnetic radiation that can be detected by the human eye. What characteristic does light have? Light is electromagnetic

More information

The best retinal location"

The best retinal location How many photons are required to produce a visual sensation? Measurement of the Absolute Threshold" In a classic experiment, Hecht, Shlaer & Pirenne (1942) created the optimum conditions: -Used the best

More information

Chapter Introduction. Chapter Wrap-Up. and the Eye

Chapter Introduction. Chapter Wrap-Up. and the Eye Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Sound Light Chapter Wrap-Up Mirrors, Lenses, and the Eye How do sound and light waves travel and interact with matter? What do you think? Before you begin,

More information

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources:

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources: Reading Good resources: Vision and Color Brian Curless CSE 557 Autumn 2015 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Brian Curless CSE 557 Autumn 2015

Vision and Color. Brian Curless CSE 557 Autumn 2015 Vision and Color Brian Curless CSE 557 Autumn 2015 1 Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Confocal Microscopy. (Increasing contrast and resolu6on using op6cal sec6oning) Lecture 7. November 2017

Confocal Microscopy. (Increasing contrast and resolu6on using op6cal sec6oning) Lecture 7. November 2017 Confocal Microscopy (Increasing contrast and resolu6on using op6cal sec6oning) Lecture 7 November 2017 3 Flavours of Microscope Confocal Laser Scanning Problem: Out of Focus Light Spinning disc 2-Photon

More information

INSPI Mobile. ios Quick Guide The Safeguard mobile applica3on for Inspectors. Table of Contents

INSPI Mobile. ios Quick Guide The Safeguard mobile applica3on for Inspectors. Table of Contents ios Quick Guide The Safeguard mobile applicaon for Inspectors Table of Contents Page. Logging In Page. Order List Page. Order Details Page 4. Camera (Taking and labeling photos) Page. Photo Gallery Page.

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision 1 / 55 CPSC 425: Computer Vision Instructor: Fred Tung ftung@cs.ubc.ca Department of Computer Science University of British Columbia Lecture Notes 2015/2016 Term 2 2 / 55 Menu January 7, 2016 Topics: Image

More information

Cameras, lenses, and sensors

Cameras, lenses, and sensors Cameras, lenses, and sensors Reading: Chapter 1, Forsyth & Ponce Optional: Section 2.1, 2.3, Horn. 6.801/6.866 Profs. Bill Freeman and Trevor Darrell Sept. 10, 2002 Today s lecture How many people would

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

The eye & corrective lenses

The eye & corrective lenses Phys 102 Lecture 20 The eye & corrective lenses 1 Today we will... Apply concepts from ray optics & lenses Simple optical instruments the camera & the eye Learn about the human eye Accommodation Myopia,

More information

Vision and Color. Reading. The lensmaker s formula. Lenses. Brian Curless CSEP 557 Autumn Good resources:

Vision and Color. Reading. The lensmaker s formula. Lenses. Brian Curless CSEP 557 Autumn Good resources: Reading Good resources: Vision and Color Brian Curless CSEP 557 Autumn 2017 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Lecture 7: Op,cal Design. Christoph U. Keller

Lecture 7: Op,cal Design. Christoph U. Keller Lecture 7: Op,cal Design Christoph U. Keller Overview 1. Introduc5on 2. Requirements Defini5on 3. Op5cal Design Principles 4. Ray- Tracing and Design Analysis 5. Op5miza5on: Merit Func5on 6. Tolerance

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour CS 565 Computer Vision Nazar Khan PUCIT Lecture 4: Colour Topics to be covered Motivation for Studying Colour Physical Background Biological Background Technical Colour Spaces Motivation Colour science

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below)

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below) Grade Level/Course: Grade 7 Life Science Lesson/Unit Plan Name: Light Card Sort Rationale/Lesson Abstract: Light vocabulary building, students identify and share vocabulary meaning. Timeframe: 10 to 20

More information

Visual Perception. Readings and References. Forming an image. Pinhole camera. Readings. Other References. CSE 457, Autumn 2004 Computer Graphics

Visual Perception. Readings and References. Forming an image. Pinhole camera. Readings. Other References. CSE 457, Autumn 2004 Computer Graphics Readings and References Visual Perception CSE 457, Autumn Computer Graphics Readings Sections 1.4-1.5, Interactive Computer Graphics, Angel Other References Foundations of Vision, Brian Wandell, pp. 45-50

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

11/23/11. A few words about light nm The electromagnetic spectrum. BÓDIS Emőke 22 November Schematic structure of the eye

11/23/11. A few words about light nm The electromagnetic spectrum. BÓDIS Emőke 22 November Schematic structure of the eye 11/23/11 A few words about light 300-850nm 400-800 nm BÓDIS Emőke 22 November 2011 The electromagnetic spectrum see only 1/70 of the electromagnetic spectrum The External Structure: The Immediate Structure:

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

What determines data speed?

What determines data speed? PHY385-H1F Introductory Optics Class 12 Outline: Section 5.7, Sub-sections 5.7.1 5.7.6 Fibre-Optics The Human Eye Corrective Lenses Pinhole Camera Camera Depth of Field What determines data speed? Broadband

More information

Unit 3 - Foundations of Waves

Unit 3 - Foundations of Waves Unit 3 - Foundations of Waves Chapter 6 - Light, Mirrors, and Lenses Mr. Palmarin Chapter 6 - Light, Mirrors, and Lenses 1 / 57 Section 6.1 - The Behaviour of Light History of Light Plato (428 BCE - 348

More information

19. Vision and color

19. Vision and color 19. Vision and color 1 Reading Glassner, Principles of Digital Image Synthesis, pp. 5-32. Watt, Chapter 15. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA, pp. 45-50 and 69-97,

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

CPSC 4040/6040 Computer Graphics Images. Joshua Levine

CPSC 4040/6040 Computer Graphics Images. Joshua Levine CPSC 4040/6040 Computer Graphics Images Joshua Levine levinej@clemson.edu Lecture 04 Displays and Optics Sept. 1, 2015 Slide Credits: Kenny A. Hunt Don House Torsten Möller Hanspeter Pfister Agenda Open

More information

Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May

Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May 30 2009 1 Outline Visual Sensory systems Reading Wickens pp. 61-91 2 Today s story: Textbook page 61. List the vision-related

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

Op(cal Lens Design Op#cal lens design is the science, art of calcula#ng the various lens construc#on parameters that will meet or at least

Op(cal Lens Design Op#cal lens design is the science, art of calcula#ng the various lens construc#on parameters that will meet or at least 3.1.2- Op(cal Lens Design Op#cal lens design is the science, art of calcula#ng the various lens construc#on parameters that will meet or at least approach desired performance requirements while staying

More information

Chapter 3 Op+cal Instrumenta+on

Chapter 3 Op+cal Instrumenta+on Chapter 3 Op+cal Instrumenta+on 3-1 Stops, Pupils, and Windows 3-4 The Camera 3-5 Simple Magnifiers and Eyepieces 3-6 Microscopes 3-7 Telescopes Today (2011-09-22) 1. Magnifiers 2. Camera 3. Resolution

More information

Op#mal Control of Non- determinis#c Systems for a Fragment of Temporal Logic

Op#mal Control of Non- determinis#c Systems for a Fragment of Temporal Logic Op#mal Control of Non- determinis#c Systems for a Fragment of Temporal Logic Eric M. Wolff 1 Ufuk Topcu 2 and Richard M. Murray 1 1 Caltech and 2 UPenn SYNT July 13, 2013 Autonomous Systems in the Field

More information

AP Chemistry Cell Phone Spectroscopy Lab Adopted from Alexander Scheeline Department of Chemistry University of Illinois at Urbana-Champaign

AP Chemistry Cell Phone Spectroscopy Lab Adopted from Alexander Scheeline Department of Chemistry University of Illinois at Urbana-Champaign AP Chemistry Cell Phone Spectroscopy Lab Adopted from Alexander Scheeline Department of Chemistry University of Illinois at Urbana-Champaign Back Ground Electromagnetic radiation Electromagnetic radiation

More information

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal IFT3355: Infographie Couleur Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal Color Appearance Visual Range Electromagnetic waves (in nanometres) γ rays X rays ultraviolet violet

More information

P a n B l u r. The Classroom Collection

P a n B l u r. The Classroom Collection Saturate yourself with your subject and the camera will all but take you by the hand. - Margaret Bourke- White 1/3 seconds Pan Blur is an aesthe

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

AST 443 / PHY 517. Photon Detectors

AST 443 / PHY 517. Photon Detectors AST 443 / PHY 517 Photon Detectors Photons Light is electro- magne>c radia>on Crossed electric and magne>c vectors Self- propaga>ng Travels at speed of light c c=2.99792 x 10 8 m/s (vacuum) λν = c n=c/v

More information

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Topic 4: Lenses and Vision Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Double Concave Lenses Are thinner and flatter in the middle than around the edges.

More information

Part 1: Introduc.on to RLS 1.1 Spec. Part 2: Introduc.on to RoIS 1.0 Spec. Part 3: Introduc.on of UNR Pla<orm

Part 1: Introduc.on to RLS 1.1 Spec. Part 2: Introduc.on to RoIS 1.0 Spec. Part 3: Introduc.on of UNR Pla<orm Part 1: Introduc.on to RLS 1.1 Spec. Part 2: Introduc.on to RoIS 1.0 Spec. Part 3: Introduc.on of UNR Pla

More information

Glossary of Terms. Beta Movement (Lesson 3)

Glossary of Terms. Beta Movement (Lesson 3) Glossary of Terms Frame Rate (Lesson 3) The rate of frames per second in film and video. Modern theatrical film runs at 24 frames a second. This is the rate for both tradi:onal film and digital cinema

More information

Vocabulary: Description: Materials: Objectives: Safety: Two 45-minute class periods (one for background and one for activity) Schedule:

Vocabulary: Description: Materials: Objectives: Safety: Two 45-minute class periods (one for background and one for activity) Schedule: Resolution Not just for the New Year Author(s): Alia Jackson Date Created: 07/31/2013 Subject: Physics Grade Level: 11-12 Standards: Standard 1: M1.1 Use algebraic and geometric representations to describe

More information

Introduc)on to Directed Energy

Introduc)on to Directed Energy Introduc)on to Directed Energy Yu- Dong Yao Department of Electrical and Computer Engineering Stevens Ins)tute of Technology October 15, 2014 1 hfp://fas.org/man/dod- 101/army/docs/astmp/c4/P4K.htm 2 References

More information

Chapter 20 Human Vision

Chapter 20 Human Vision Chapter 20 GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Characterize the physical parameters that are significant in human vision. Visual

More information

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3.

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. What theories help us understand color vision? 4. Is your

More information

Game AI Overview. What is Ar3ficial Intelligence. AI in Games. AI in Game. Scripted AI. Introduc3on

Game AI Overview. What is Ar3ficial Intelligence. AI in Games. AI in Game. Scripted AI. Introduc3on Game AI Overview Introduc3on History Overview / Categorize Agent Based Modeling Sense-> Think->Act FSM in biological simula3on (separate slides) Hybrid Controllers Simple Perceptual Schemas Discussion:

More information

Motion illusion, rotating snakes

Motion illusion, rotating snakes Motion illusion, rotating snakes Previous classes Computer vision overview Mathematics of pinhole camera Sensors and light Recap: projection X t x K R 1 1 0 0 0 1 33 32 31 23 22 21 13 12 11 0 0 z y x t

More information

Introduc8on to Computer Networks. Where we are in the Course. Overview of the Physical Layer

Introduc8on to Computer Networks. Where we are in the Course. Overview of the Physical Layer Introduc8on to Computer Networks Overview of the Physical Layer Computer Science & Engineering Where we are in the Course Beginning to work our way up star8ng with the Physical layer Applica8on Transport

More information

Image Formation: Camera Model

Image Formation: Camera Model Image Formation: Camera Model Ruigang Yang COMP 684 Fall 2005, CS684-IBMR Outline Camera Models Pinhole Perspective Projection Affine Projection Camera with Lenses Digital Image Formation The Human Eye

More information

Chapter 6 Human Vision

Chapter 6 Human Vision Chapter 6 Notes: Human Vision Name: Block: Human Vision The Humane Eye: 8) 1) 2) 9) 10) 4) 5) 11) 12) 3) 13) 6) 7) Functions of the Eye: 1) Cornea a transparent tissue the iris and pupil; provides most

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

More information

Block 3: Physics of Waves. Chapter 12: Sound. Relate pitch and loudness to frequency and amplitude Describe how sound travels

Block 3: Physics of Waves. Chapter 12: Sound. Relate pitch and loudness to frequency and amplitude Describe how sound travels Chapter 12: Sound Describe production of sounds Measure the speed of sound Relate pitch and loudness to frequency and amplitude Describe how sound travels Sound is a longitudinal (compression) wave Sound

More information

Color and perception Christian Miller CS Fall 2011

Color and perception Christian Miller CS Fall 2011 Color and perception Christian Miller CS 354 - Fall 2011 A slight detour We ve spent the whole class talking about how to put images on the screen What happens when we look at those images? Are there any

More information

Introduction Image Analysis & Computer Vision. Guido Gerig CS/BIOEN 6640 FALL 2012

Introduction Image Analysis & Computer Vision. Guido Gerig CS/BIOEN 6640 FALL 2012 Introduction Image Analysis & Computer Vision Guido Gerig CS/BIOEN 6640 FALL 2012 Courses and Seminars related to Research in Image Analysis SoC Image Analysis Track (Director Tom Fletcher) (click) Fall

More information

Notes: Light and Optics. Reflection. Refraction. Law of Reflection. Light goes straight 12/13/2012

Notes: Light and Optics. Reflection. Refraction. Law of Reflection. Light goes straight 12/13/2012 Notes: Light and Optics Light goes straight Light travels in a straight line unless it interacts with a medium. The material through which a wave travels is called a medium. Light can be reflected, refracted

More information

Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study

Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study STR/03/044/PM Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study E. Lea Abstract An experimental investigation of a surface analysis method has been carried

More information

Prof. Feng Liu. Winter /09/2017

Prof. Feng Liu. Winter /09/2017 Prof. Feng Liu Winter 2017 http://www.cs.pdx.edu/~fliu/courses/cs410/ 01/09/2017 Today Course overview Computer vision Admin. Info Visual Computing at PSU Image representation Color 2 Big Picture: Visual

More information

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:...

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:... Katarina Logg, Kristofer Bodvard, Mikael Käll Dept. of Applied Physics 12 September 2007 O1 Optical Microscopy Name:.. Date:... Supervisor s signature:... Introduction Over the past decades, the number

More information

Introduc)on to spectral reflectance Ac)ve sensors. Pedro Andrade and John Heun University of Arizona

Introduc)on to spectral reflectance Ac)ve sensors. Pedro Andrade and John Heun University of Arizona Introduc)on to spectral reflectance Ac)ve sensors Pedro Andrade and John Heun University of Arizona Early developments Ac)ve spectral sensors for crop management - weed detec)on Beck and Vyse 1995 patent

More information