Optimizing Performance of AO Ophthalmic Systems. Austin Roorda, PhD

Size: px
Start display at page:

Download "Optimizing Performance of AO Ophthalmic Systems. Austin Roorda, PhD"

Transcription

1 Optimizing Performance of AO Ophthalmic Systems Austin Roorda, PhD

2 Charles Garcia, MD Tom Hebert, PhD Fernando Romero-Borja, PhD Krishna Venkateswaran, PhD Joy Martin, OD/PhD student Ramesh Sundaram, MS student Siddharth Poonja, MS student Hope Queener, MS William Donnelly, MS Khalid Chaudry, MD Ricky Sepulveda, MD

3 AO OFF Adaptive Optics AO ON

4 OK, you have a working AO system Now what??

5 Ophthalmoscopes vs Telescopes In a typical Vision Science lab, everyone is involved in all aspects of research adaptive optics optical design optical alignment visual optics electronics computer hardware and software image processing patient care

6 Outline of Talk Imaging Modality? Human Factors accommodation, pupil constriction light budget pupil tracking proper fixation target refraction Operational Improvements contrast improvements wavelength polarization contrast agents resolution improvements

7 Imaging Modality: Snapshot versus Video Imaging Snapshot more light per frame (more photons per pixel) convenient for many experiments (eg cone classing) Video immediate feedback on focus, retinal location dynamic imaging blood flow less light per frame retinal exposure limits huge data rates (lots of extraneous data)

8 Conventional Imaging Eye wavefront sensing illumination laser beacon imaging wavefront correction

9 AO Snapshot Imaging No AO With AO multiple AO frames JW right eye 1 deg eccentricity image wavelength = 550 nm

10 Results from Snapshot AO Camera human (JW) human (AN) macaque 5 arc min Roorda and Williams, Nature, 1999

11 Video Imaging: Scanning Laser Ophthalmoscope

12 Plane of focus Illumination Scanning optics and Adaptive optics Illumination Confocal pinhole Detector

13 Scattered Light from the Plane of Focus Plane of focus Scanning optics and Adaptive optics Confocal pinhole Detector

14 Scattered Light from Behind the Plane of Focus Plane of focus Scanning optics and Adaptive optics Confocal pinhole Detector

15 Scattered Light from Before the Plane of Focus Plane of focus Scanning optics and Adaptive optics Confocal pinhole Detector

16 Photoreceptors and Blood Flow 1.5 deg AR left eye, fovea

17 Fixational eye movements do not blur the image, but they warp the image

18 Optical Sectioning 1.5 deg AR left eye,

19 Huge data rates uncompressed 512X525, 8 bit images obtained at 30 fps. data rate is ~450 MB per minute of video one imaging session fills at least one DVD disk

20 Other Imaging Modalities Optical Coherence Tomography Imaging (coherence gated imaging) Two (or multi) photon imaging?

21 Human Factors: Accommodation & Pupil Constriction

22 The Original Adaptive Optics System courtesy of Adrian Glasser, PhD

23 Human Factors: Fixation

24 Fixation how do you work with a small field of view? every eye is different every clinical condition is different

25 Fundus Photograph 30 deg AOSLO Image 1.5 X 1.4 deg

26 Fixation preplanning is important provide a fixation target with a field of about 30 degrees provide a single fixation spot or fixation light

27

28 Patient Fixation Target

29 When the Patient gets Tired, the Fixation Starts to Degrade

30 Human Factors: Pupil Tracking

31 Bite Bar

32

Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope

Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope Journal of Biomedical Optics 9(1), 132 138 (January/February 2004) Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope Krishnakumar Venkateswaran

More information

Adaptive Optics for Vision Science. Principles, Practices, Design, and Applications

Adaptive Optics for Vision Science. Principles, Practices, Design, and Applications Adaptive Optics for Vision Science Principles, Practices, Design, and Applications Edited by JASON PORTER, HOPE M. QUEENER, JULIANNA E. LIN, KAREN THORN, AND ABDUL AWWAL m WILEY- INTERSCIENCE A JOHN WILEY

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION High-resolution retinal imaging: enhancement techniques Mircea Mujat 1*, Ankit Patel 1, Nicusor Iftimia 1, James D. Akula 2, Anne B. Fulton 2, and R. Daniel Ferguson 1 1 Physical Sciences Inc., Andover

More information

The First True Color Confocal Scanner on the Market

The First True Color Confocal Scanner on the Market The First True Color Confocal Scanner on the Market White color and infrared confocal images: the advantages of white color and confocality together for better fundus images. The infrared to see what our

More information

Study of self-interference incoherent digital holography for the application of retinal imaging

Study of self-interference incoherent digital holography for the application of retinal imaging Study of self-interference incoherent digital holography for the application of retinal imaging Jisoo Hong and Myung K. Kim Department of Physics, University of South Florida, Tampa, FL, US 33620 ABSTRACT

More information

The First True Color Confocal Scanner

The First True Color Confocal Scanner The First True Color Confocal Scanner White color and infrared confocal images: the advantages of white color and confocality together for better fundus images. The infrared to see what our eye is not

More information

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009 Synopsis of METHOD AND APPARATUS FOR IMPROVING VISION AND THE RESOLUTION OF RETINAL IMAGES by David R. Williams and Junzhong Liang from the US Patent Number: 5,777,719 issued in July 7, 1998 Ron Liu OPTI521-Introductory

More information

Impressive Wide Field Image Quality with Small Pupil Size

Impressive Wide Field Image Quality with Small Pupil Size Impressive Wide Field Image Quality with Small Pupil Size White color and infrared confocal images: the advantages of white color and confocality together for better fundus images. The infrared to see

More information

OCT mini-symposium. Presenters. Donald Miller, Indiana Univ. Joseph Izatt, Duke Univ. Thomas Milner, Univ. of Texas at Austin Jay Wei, Zeiss Meditec

OCT mini-symposium. Presenters. Donald Miller, Indiana Univ. Joseph Izatt, Duke Univ. Thomas Milner, Univ. of Texas at Austin Jay Wei, Zeiss Meditec OCT mini-symposium Presenters Donald Miller, Indiana Univ. Joseph Izatt, Duke Univ. Thomas Milner, Univ. of Texas at Austin Jay Wei, Zeiss Meditec Starlight, eyebright Canberra Times, Australia Combining

More information

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry Optics of Wavefront Austin Roorda, Ph.D. University of Houston College of Optometry Geometrical Optics Relationships between pupil size, refractive error and blur Optics of the eye: Depth of Focus 2 mm

More information

Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope

Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope Fernando Romero-Borja, Krishnakumar Venkateswaran, Austin Roorda, and Thomas Hebert We present imaging

More information

Binocular retinal eye-tracking system Product Requirements Document C. Light Technologies, Inc.

Binocular retinal eye-tracking system Product Requirements Document C. Light Technologies, Inc. Binocular retinal eye-tracking system Product Requirements Document C. Light Technologies, Inc. Document Number 00001 Revisions Level Date 5 12-12-2016 This is a computer-generated document. The electronic

More information

The best retinal location"

The best retinal location How many photons are required to produce a visual sensation? Measurement of the Absolute Threshold" In a classic experiment, Hecht, Shlaer & Pirenne (1942) created the optimum conditions: -Used the best

More information

The First True-Color Wide-Field Confocal Scanner

The First True-Color Wide-Field Confocal Scanner The First True-Color Wide-Field Confocal Scanner 2 Company Profile CenterVue designs and manufactures highly automated medical devices for the diagnosis and management of ocular pathologies, including

More information

Tracking adaptive optics scanning laser ophthalmoscope

Tracking adaptive optics scanning laser ophthalmoscope Tracking adaptive optics scanning laser ophthalmoscope R. Daniel Ferguson a, Daniel X. Hammer a, Chad E. Bigelow a, Nicusor V. Iftimia a, Teoman E. Ustun a, Stephen A. Burns b, Ann E. Elsner b, David R.

More information

Going beyond the surface of your retina

Going beyond the surface of your retina Going beyond the surface of your retina OCT-HS100 Optical Coherence Tomography Canon s expertise in optics and innovative technology have resulted in a fantastic 3 μm optical axial resolution for amazing

More information

Photon signal detection and evaluation in the adaptive optics scanning laser ophthalmoscope

Photon signal detection and evaluation in the adaptive optics scanning laser ophthalmoscope 1276 J. Opt. Soc. Am. A/ Vol. 24, No. 5/ May 2007 Y. Zhang and A. Roorda Photon signal detection and evaluation in the adaptive optics scanning laser ophthalmoscope Yuhua Zhang and Austin Roorda School

More information

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2)

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Lecture 5 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Summary of last

More information

Medical Photonics Lecture 1.2 Optical Engineering

Medical Photonics Lecture 1.2 Optical Engineering Medical Photonics Lecture 1.2 Optical Engineering Lecture 10: Instruments III 2018-01-18 Michael Kempe Winter term 2017 www.iap.uni-jena.de 2 Contents No Subject Ref Detailed Content 1 Introduction Gross

More information

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine.

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine. Lecture The Human Visual System The Human Visual System Retina Optic Nerve Optic Chiasm Lateral Geniculate Nucleus (LGN) Visual Cortex The Human Eye The Human Retina Lens rods cones Cornea Fovea Optic

More information

Center for Adaptive Optics Spring Retreat Agenda Park Plaza San Jose Airport Hotel 1355 N Fourth St, San Jose, CA March 2003

Center for Adaptive Optics Spring Retreat Agenda Park Plaza San Jose Airport Hotel 1355 N Fourth St, San Jose, CA March 2003 Center for Adaptive Optics Spring Retreat Agenda Park Plaza San Jose Airport Hotel 1355 N Fourth St, San Jose, CA 20-23 March 2003 20 March 2003 Thursday 3:00 5:00 Lobby Registration 3:30 6:00 DE Reception

More information

Fundus Photograph Reading Center

Fundus Photograph Reading Center Autofluorescence Using Confocal Scanning Laser Ophthalmoscope (cslo) Instruments (AF-D) 8010 Excelsior Drive, Suite 100, Madison WI 53717 Telephone: (608) 410-0560 Fax: (608) 410-0566 Table of Contents

More information

Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY

Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY Automatic functions make examinations short and simple. Perform the examination with only two simple mouse clicks! 1. START

More information

Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY

Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY Full Auto OCT High specifications in a very compact design Automatic functions make examinations short and simple. Perform

More information

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy Bi177 Lecture 5 Adding the Third Dimension Wide-field Imaging Point Spread Function Deconvolution Confocal Laser Scanning Microscopy Confocal Aperture Optical aberrations Alternative Scanning Microscopy

More information

Scanning laser ophthalmoscopy was invented about 3 decades. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy REVIEW.

Scanning laser ophthalmoscopy was invented about 3 decades. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy REVIEW. 1040-5488/10/8704-0260/0 VOL. 87, NO. 4, PP. 260 268 OPTOMETRY AND VISION SCIENCE Copyright 2010 American Academy of Optometry REVIEW Applications of Adaptive Optics Scanning Laser Ophthalmoscopy Austin

More information

What s Fundus photography s purpose? Why do we take them? Why do we do it? Why do we do it? Why do we do it? 11/3/2014. To document the retina

What s Fundus photography s purpose? Why do we take them? Why do we do it? Why do we do it? Why do we do it? 11/3/2014. To document the retina What s Fundus photography s purpose? To document the retina Photographers role to show the retina Document other ocular structures Why do we take them? Why do we do it? We as photographers help the MD

More information

UC Davis UC Davis Previously Published Works

UC Davis UC Davis Previously Published Works UC Davis UC Davis Previously Published Works Title Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography

More information

Supporting Information

Supporting Information Supporting Information Rossi et al. 10.1073/pnas.1613445114 SI Materials and Methods Animal Preparation. Three macaque monkeys, two Macaca fascicularis (5-y-old female and 9-y-old male) and one Macaca

More information

Applications of Adaptive Optics for Vision Science

Applications of Adaptive Optics for Vision Science Adaptive Optics for Vision Science and Astronomy ASP Conference Series, Vol. **VOLUME**, **PUBLICATION YEAR** A. Quirrenbach Applications of Adaptive Optics for Vision Science Yasuki Yamauchi, Austin Roorda,

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Large Field of View, Modular, Stabilized, Adaptive-Optics- Based Scanning Laser Ophthalmoscope

Large Field of View, Modular, Stabilized, Adaptive-Optics- Based Scanning Laser Ophthalmoscope Large Field of View, Modular, Stabilized, Adaptive-Optics- Based Scanning Laser Ophthalmoscope Stephen A. Burns, Remy Tumbar, Ann E. Elsner, Daniel Ferguson, Daniel X. Hammer OCIS Codes: 170.1790, 170.3890,

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 1 1 2! NA = 0.5! NA 2D imaging

More information

Adaptive Optics. Adaptive optics for imaging. Adaptive optics to improve. Ocular High order Aberrations (HOA)

Adaptive Optics. Adaptive optics for imaging. Adaptive optics to improve. Ocular High order Aberrations (HOA) Effect of Adaptive Optics Correction on Visual Performance and Accommodation Adaptive optics for imaging Astromomy Retinal imaging Since 977, Hardy et al, JOSA A Since 989, Dreher et al. Appl Opt Susana

More information

Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy

Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy Article Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy Nripun Sredar 1, Oladipo E. Fagbemi 2, and Alfredo Dubra 1 https://doi.org/10.1167/tvst.7.2.17 1 Byers Eye Institute, Stanford University,

More information

Reflectance curves of some common foods. Spectral colors. What is colour? 11/4/11

Reflectance curves of some common foods. Spectral colors. What is colour? 11/4/11 Colour Vision I: The re0nal basis of colour vision and the inherited colour vision deficiencies Prof. Kathy T. ullen What is colour? What physical aspect of the world does our sense of colour inform us

More information

Biology 70 Slides for Lecture 1 Fall 2007

Biology 70 Slides for Lecture 1 Fall 2007 Biology 70 Part II Sensory Systems www.biology.ucsc.edu 1 2 intensity vs spatial position (image formation) color 3 4 motion depth (monocular) 5 6 1 depth (binocular) 1. In the lectures on perception we

More information

Applications of Optics

Applications of Optics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

More information

Confocal and 2-photon Imaging. October 15, 2010

Confocal and 2-photon Imaging. October 15, 2010 Confocal and 2-photon Imaging October 15, 2010 Review Optical Elements Adapted from Sluder & Nordberg 2007 Review Optical Elements Collector Lens Adapted from Sluder & Nordberg 2007 Review Optical Elements

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

Martin J. Booth, Delphine Débarre and Alexander Jesacher. Adaptive Optics for

Martin J. Booth, Delphine Débarre and Alexander Jesacher. Adaptive Optics for Martin J. Booth, Delphine Débarre and Alexander Jesacher Adaptive Optics for Over the last decade, researchers have applied adaptive optics a technology that was originally conceived for telescopes to

More information

Normal Wavefront Error as a Function of Age and Pupil Size

Normal Wavefront Error as a Function of Age and Pupil Size RAA Normal Wavefront Error as a Function of Age and Pupil Size Raymond A. Applegate, OD, PhD Borish Chair of Optometry Director of the Visual Optics Institute College of Optometry University of Houston

More information

Quantitative Measurements of. Autofluorescence with the Scanning Laser Ophthalmoscope. Appendix. Optical and Theoretical Considerations

Quantitative Measurements of. Autofluorescence with the Scanning Laser Ophthalmoscope. Appendix. Optical and Theoretical Considerations Quantitative Measurements of Autofluorescence with the Scanning Laser Ophthalmoscope Appendix Optical and Theoretical Considerations A. Confocal scanning laser ophthalmoscope (cslo) B. Quantitative AF:

More information

Shaping light in microscopy:

Shaping light in microscopy: Shaping light in microscopy: Adaptive optical methods and nonconventional beam shapes for enhanced imaging Martí Duocastella planet detector detector sample sample Aberrated wavefront Beamsplitter Adaptive

More information

Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras. CSE 455, Winter 2010 January 25, 2010 Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

More information

Chapter 6 Human Vision

Chapter 6 Human Vision Chapter 6 Notes: Human Vision Name: Block: Human Vision The Humane Eye: 8) 1) 2) 9) 10) 4) 5) 11) 12) 3) 13) 6) 7) Functions of the Eye: 1) Cornea a transparent tissue the iris and pupil; provides most

More information

4th International Congress of Wavefront Sensing and Aberration-free Refractive Correction ADAPTIVE OPTICS FOR VISION: THE EYE S ADAPTATION TO ITS

4th International Congress of Wavefront Sensing and Aberration-free Refractive Correction ADAPTIVE OPTICS FOR VISION: THE EYE S ADAPTATION TO ITS 4th International Congress of Wavefront Sensing and Aberration-free Refractive Correction (Supplement to the Journal of Refractive Surgery; June 2003) ADAPTIVE OPTICS FOR VISION: THE EYE S ADAPTATION TO

More information

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich Transferring wavefront measurements to ablation profiles Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich corneal ablation Calculation laser spot positions Centration Calculation

More information

Review of Basic Principles in Optics, Wavefront and Wavefront Error

Review of Basic Principles in Optics, Wavefront and Wavefront Error Review of Basic Principles in Optics, Wavefront and Wavefront Error Austin Roorda, Ph.D. University of California, Berkeley Google my name to find copies of these slides for free use and distribution Geometrical

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 2D imaging 3D imaging Resolution

More information

Reflective afocal broadband adaptive optics scanning ophthalmoscope

Reflective afocal broadband adaptive optics scanning ophthalmoscope Reflective afocal broadband adaptive optics scanning ophthalmoscope Alfredo Dubra 1,* and Yusufu Sulai 2 1 Flaum Eye Institute, University of Rochester, Rochester, NY, 14642-0314, USA 2 The Institute of

More information

Chapter 3 Op,cal Instrumenta,on

Chapter 3 Op,cal Instrumenta,on Imaging by an Op,cal System Change in curvature of wavefronts by a thin lens Chapter 3 Op,cal Instrumenta,on 3-1 Stops, Pupils, and Windows 3-4 The Camera 3-5 Simple Magnifiers and Eyepieces 1. Magnifiers

More information

Adaptive Optics lectures

Adaptive Optics lectures Adaptive Optics lectures 2. Adaptive optics Invented in 1953 by H.Babcock Andrei Tokovinin 1 Plan General idea (open/closed loop) Wave-front sensing, its limitations Correctors (DMs) Control (spatial and

More information

VC 11/12 T2 Image Formation

VC 11/12 T2 Image Formation VC 11/12 T2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

INTRODUCTION TO MICROSCOPY. Urs Ziegler THE PROBLEM

INTRODUCTION TO MICROSCOPY. Urs Ziegler THE PROBLEM INTRODUCTION TO MICROSCOPY Urs Ziegler ziegler@zmb.uzh.ch THE PROBLEM 1 ORGANISMS ARE LARGE LIGHT AND ELECTRONS: ELECTROMAGNETIC WAVES v = Wavelength ( ) Speed (v) Frequency ( ) Amplitude (A) Propagation

More information

Optical Microscopy and Imaging ( Part 2 )

Optical Microscopy and Imaging ( Part 2 ) 1 Optical Microscopy and Imaging ( Part 2 ) Chapter 7.1 : Semiconductor Science by Tudor E. Jenkins Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian University of Science and

More information

LENSES. INEL 6088 Computer Vision

LENSES. INEL 6088 Computer Vision LENSES INEL 6088 Computer Vision Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons

More information

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8 Vision 1 Light, Optics, & The Eye Chaudhuri, Chapter 8 1 1 Overview of Topics Physical Properties of Light Physical properties of light Interaction of light with objects Anatomy of the eye 2 3 Light A

More information

Long-Range Adaptive Passive Imaging Through Turbulence

Long-Range Adaptive Passive Imaging Through Turbulence / APPROVED FOR PUBLIC RELEASE Long-Range Adaptive Passive Imaging Through Turbulence David Tofsted, with John Blowers, Joel Soto, Sean D Arcy, and Nathan Tofsted U.S. Army Research Laboratory RDRL-CIE-D

More information

Basics of confocal imaging (part I)

Basics of confocal imaging (part I) Basics of confocal imaging (part I) Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Lateral resolution BioImaging &Optics Platform Light

More information

HEINE Direct Ophthalmoscopes

HEINE Direct Ophthalmoscopes [ 036 ] 02 HEINE Direct Ophthalmoscopes BETA 200 S BETA 200 / BETA 200 M2 Opt. 1 Opt. 2 K 180 Opt. 1 Opt. 2 mini 3000 mini 3000 LED Optical System Aspherical Conventional Illumination LED-Illumination

More information

The TRC-NW8F Plus: As a multi-function retinal camera, the TRC- NW8F Plus captures color, red free, fluorescein

The TRC-NW8F Plus: As a multi-function retinal camera, the TRC- NW8F Plus captures color, red free, fluorescein The TRC-NW8F Plus: By Dr. Beth Carlock, OD Medical Writer Color Retinal Imaging, Fundus Auto-Fluorescence with exclusive Spaide* Filters and Optional Fluorescein Angiography in One Single Instrument W

More information

Dynamic beam shaping with programmable diffractive optics

Dynamic beam shaping with programmable diffractive optics Dynamic beam shaping with programmable diffractive optics Bosanta R. Boruah Dept. of Physics, GU Page 1 Outline of the talk Introduction Holography Programmable diffractive optics Laser scanning confocal

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 Eye growth regulation KL Schmid, CF Wildsoet

More information

2 The First Steps in Vision

2 The First Steps in Vision 2 The First Steps in Vision 2 The First Steps in Vision A Little Light Physics Eyes That See light Retinal Information Processing Whistling in the Dark: Dark and Light Adaptation The Man Who Could Not

More information

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis Center for Microscopy and Image Analysis Bio 407 Applied Introduction into light José María Mateos Fundamentals of light Compound microscope Microscope composed of an objective and an additional lens (eyepiece,

More information

VC 16/17 TP2 Image Formation

VC 16/17 TP2 Image Formation VC 16/17 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Hélder Filipe Pinto de Oliveira Outline Computer Vision? The Human Visual

More information

Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography

Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography Enrique J. Fernández Center for Biomedical Engineering and Physics,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Computational high-resolution optical imaging of the living human retina Nathan D. Shemonski 1,2, Fredrick A. South 1,2, Yuan-Zhi Liu 1,2, Steven G. Adie 3, P. Scott Carney 1,2, Stephen A. Boppart 1,2,4,5,*

More information

Chapter 3 Op+cal Instrumenta+on

Chapter 3 Op+cal Instrumenta+on Chapter 3 Op+cal Instrumenta+on 3-1 Stops, Pupils, and Windows 3-4 The Camera 3-5 Simple Magnifiers and Eyepieces 3-6 Microscopes 3-7 Telescopes Today (2011-09-22) 1. Magnifiers 2. Camera 3. Resolution

More information

The Photoreceptor Mosaic

The Photoreceptor Mosaic The Photoreceptor Mosaic Aristophanis Pallikaris IVO, University of Crete Institute of Vision and Optics 10th Aegean Summer School Overview Brief Anatomy Photoreceptors Categorization Visual Function Photoreceptor

More information

Simultaneous Measurement of Foveal Spectral Reflectance and Cone Photoreceptor Directionality

Simultaneous Measurement of Foveal Spectral Reflectance and Cone Photoreceptor Directionality Chapter 3 Simultaneous Measurement of Foveal Spectral Reflectance and Cone Photoreceptor Directionality N.P.A. Zagers, J. van de Kraats, T.T.J.M. Berendschot, and D. van Norren Simultaneous measurement

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

VC 14/15 TP2 Image Formation

VC 14/15 TP2 Image Formation VC 14/15 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

Light Microscopy. Upon completion of this lecture, the student should be able to:

Light Microscopy. Upon completion of this lecture, the student should be able to: Light Light microscopy is based on the interaction of light and tissue components and can be used to study tissue features. Upon completion of this lecture, the student should be able to: 1- Explain the

More information

Basics Of Retinal Image Quality

Basics Of Retinal Image Quality Slide 2 Basics Of Retinal Image Quality Slide 3 The optics of the eye are the first stage of vision. It is an extremely important stage but not the only stage. Slide 4 Broadly There Are Two Components

More information

Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations

Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations Eric Logean, Eugénie Dalimier, and Chris Dainty Applied Optics Group, National University of

More information

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO TRAINING MANUAL Multiphoton Microscopy LSM 510 META-NLO September 2010 Multiphoton Microscopy Training Manual Multiphoton microscopy is only available on the LSM 510 META-NLO system. This system is equipped

More information

DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY ABSTRACT

DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY ABSTRACT DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY University of Hawai`i at Hilo Alex Hedglen ABSTRACT The presented project is to implement a small adaptive optics system

More information

Version 1.0. th March 2011

Version 1.0. th March 2011 Optical Coherence Tomography Scan and Retinal Imagingg Version 1.0 http://www.ukbiobank.ac.uk/ 5 th March 2011 This manual details the procedure for Scan and Retinal Imagingg at an Assessment Centre of

More information

Optical Monitoring System Enables Greater Accuracy in Thin-Film Coatings. Line Scan Cameras What Do They Do?

Optical Monitoring System Enables Greater Accuracy in Thin-Film Coatings. Line Scan Cameras What Do They Do? November 2017 Optical Monitoring System Enables Greater Accuracy in Thin-Film Coatings Line Scan Cameras What Do They Do? Improved Surface Characterization with AFM Imaging Supplement to Tech Briefs CONTENTS

More information

Bi/BE 227 Winter Assignment #3. Adding the third dimension: 3D Confocal Imaging

Bi/BE 227 Winter Assignment #3. Adding the third dimension: 3D Confocal Imaging Bi/BE 227 Winter 2016 Assignment #3 Adding the third dimension: 3D Confocal Imaging Schedule: Jan 20: Assignment Jan 20-Feb 8: Work on assignment Feb 10: Student PowerPoint presentations. Goals for this

More information

HEINE BETA 200S Ophthalmoscope

HEINE BETA 200S Ophthalmoscope [ 033 ] HEINE BETA 200S Ophthalmoscope Superior aspherical optics and 74 single-diopter steps :- Unique optical system. HEINE optimizes the Gullstrand principle with aspherical optics (separation of illumination

More information

Digital Image Processing

Digital Image Processing Part 1: Course Introduction Achim J. Lilienthal AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapters 1 & 2 2011-04-05 Contents 1. Introduction

More information

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al.

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. Capturing Light in man and machine Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Image Formation Digital

More information

Optimization of confocal scanning laser ophthalmoscope design

Optimization of confocal scanning laser ophthalmoscope design Optimization of confocal scanning laser ophthalmoscope design Francesco LaRocca Al-Hafeez Dhalla Michael P. Kelly Sina Farsiu Joseph A. Izatt Journal of Biomedical Optics 18(7), 076015 (July 2013) Optimization

More information

OMI-SWIR. SpotOptics FAST & ACCURATE WAVEFRONT SENSOR S W I R

OMI-SWIR. SpotOptics FAST & ACCURATE WAVEFRONT SENSOR S W I R potoptics OM- FAT & ACCUATE AVEFONT ENO Acquisition speed up to 300 Hz, analysis speed up to 200Hz Optimized for wavelength range with ngaas camera Accurate metrology in single pass (OM) and double pass

More information

CS 443: Imaging and Multimedia Cameras and Lenses

CS 443: Imaging and Multimedia Cameras and Lenses CS 443: Imaging and Multimedia Cameras and Lenses Spring 2008 Ahmed Elgammal Dept of Computer Science Rutgers University Outlines Cameras and lenses! 1 They are formed by the projection of 3D objects.

More information

Adaptive Optics Phoropters

Adaptive Optics Phoropters Adaptive Optics Phoropters Scot S. Olivier Adaptive Optics Group Leader Physics and Advanced Technologies Lawrence Livermore National Laboratory Associate Director NSF Center for Adaptive Optics Adaptive

More information

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D Microscopy Outline 1. Resolution and Simple Optical Microscope 2. Contrast enhancement: Dark field, Fluorescence (Chelsea & Peter), Phase Contrast, DIC 3. Newer Methods: Scanning Tunneling microscopy (STM),

More information

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging Imaging Retreat - UMASS 2012 Customized real-time confocal and 2-photon imaging Mike Sanderson Department of Microbiology and Physiological Systems University of Massachusetts Medical School Thanks for

More information

Practical work no. 3: Confocal Live Cell Microscopy

Practical work no. 3: Confocal Live Cell Microscopy Practical work no. 3: Confocal Live Cell Microscopy Course Instructor: Mikko Liljeström (MIU) 1 Background Confocal microscopy: The main idea behind confocality is that it suppresses the signal outside

More information

Subjective Image Quality Metrics from The Wave Aberration

Subjective Image Quality Metrics from The Wave Aberration Subjective Image Quality Metrics from The Wave Aberration David R. Williams William G. Allyn Professor of Medical Optics Center For Visual Science University of Rochester Commercial Relationship: Bausch

More information

High-speed imaging of human retina in vivo with swept-source optical coherence tomography

High-speed imaging of human retina in vivo with swept-source optical coherence tomography High-speed imaging of human retina in vivo with swept-source optical coherence tomography H. Lim, M. Mujat, C. Kerbage, E. C. W. Lee, and Y. Chen Harvard Medical School and Wellman Center for Photomedicine,

More information

Renishaw InVia Raman microscope

Renishaw InVia Raman microscope Laser Spectroscopy Labs Renishaw InVia Raman microscope Operation instructions 1. Turn On the power switch, system power switch is located towards the back of the system on the right hand side. Wait ~10

More information

A piece of white paper can be 1,000,000,000 times brighter in outdoor sunlight than in a moonless night.

A piece of white paper can be 1,000,000,000 times brighter in outdoor sunlight than in a moonless night. Light intensities range across 9 orders of magnitude. A piece of white paper can be 1,000,000,000 times brighter in outdoor sunlight than in a moonless night. But in a given lighting condition, light ranges

More information

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA Optical Design of Microscopes George H. Seward Tutorial Texts in Optical Engineering Volume TT88 SPIE PRESS Bellingham, Washington USA Preface xiii Chapter 1 Optical Design Concepts /1 1.1 A Value Proposition

More information

Single Photon Interference Katelynn Sharma and Garrett West University of Rochester, Institute of Optics, 275 Hutchison Rd. Rochester, NY 14627

Single Photon Interference Katelynn Sharma and Garrett West University of Rochester, Institute of Optics, 275 Hutchison Rd. Rochester, NY 14627 Single Photon Interference Katelynn Sharma and Garrett West University of Rochester, Institute of Optics, 275 Hutchison Rd. Rochester, NY 14627 Abstract: In studying the Mach-Zender interferometer and

More information