Detection of fibre waviness using ultrasonic array scattering data

Size: px
Start display at page:

Download "Detection of fibre waviness using ultrasonic array scattering data"

Transcription

1 18th World Conference on Nondestructive Testing, April 2012, Durban, South Africa Detection of fibre waviness using ultrasonic array scattering data Damien PAIN, Bruce DRINKWATER Abstract Ultrasonics and NDT Research Group, Department of Mechanical Engineering, University of Bristol. Progress regarding the composites manufacturing process has been progressively improved, small imperfections such as fibre waviness are inevitable. Any localised departure of a ply from the desired lay-up direction and is known to adversely affect strength. Therefore, end users are now particularly interested in detecting subtle defects such as fibre waviness at various stage during prototyping or in completed composite components. In this paper, an ultrasonic array is used to extract information that characterises the scattering of the interior of the composite structure. A method for extracting the scattering matrix from experimental array data over a spatially localised region is presented. Ultimately this leads to the ability to map the distribution of scattering behaviour within the composite. It is shown experimentally that the scattering matrices obtained from areas of correctly placed ply layers and areas that are wrinkle free are statistically separable. Keywords: ultrasonic array, fibre waviness, carbon fibre composite 1. Introduction Composite materials owe their success to the ability to produce favourable mechanical properties in specific directions while reducing the weight of components relative to traditional materials. In this paper we consider a subtle defect type, termed fibre waviness, which is known to adversely affect the mechanical properties of a structure. For example, a fibre misalignment of only 0.25 is sufficient to reduce the compressive strength from 2720 MPa to 1850 MPa and down to 700 MPa for a 3 deviation [1]. Therefore manufacturers and end users are now interested detecting fibre waviness at various stages during manufacturing or after manufacturing. Fibre waviness can be described as ply deformation that exhibits a wave like pattern occurring within the composite material component. Two types of fibre waviness can exist and are termed out-of-plane waviness in-plane waviness with respect to the plane of the plies. Here only the out-of-plane or through thickness fibre waviness is treated. -ray Computed Tomography (CT) is considered to be the reference in terms of detectability of fibre waviness. CT images offer a level of detail down to the fibre distribution that is so far not achievable with any other technique; however CT is expensive and often not practical for on-site inspection[2-6]. Ultrasonic techniques are commonly used for composite material inspection and have been particularly effective for true characterisation of delaminations, porosity or voids using both single element probes and multi-element array [7], [8].However, the fibre arrangement within the matrix generates both scattering and anisotropy that makes ultrasonic methods difficult to apply. In this paper we show that a scattering matrix approach can be used to detect and quantify out-of-plane fibre waviness.

2 2. Data Capture and Imaging One of the most powerful post-processing imaging algorithms is the Total Focussing Method (TFM) [9]. Its efficiency has been demonstrated in previous publications [10], and is considered by some authors as the gold standard [11]. In essence this uses all the elements in the array to focus on every imaging pixel and hence produce a high resolution image over a potentially wide area. Once the full matrix of data has been captured it is usually filtered to remove any noise that is not within the known bandwidth of the array elements. The filtration step is realised in frequency domain by applying a Fast Fourier Transform (FFT) to each time signal contained in the data matrix to give the complex spectra.the subsequent spectra are multiplied with Gaussian function to give. An inverse Fourier transform can be applied to but in practice it is useful to apply the Hilbert transform to obtain. In order to generate an image, the TFM focuses on every pixel of the image as shown by equation (1), (1) (2) where is the image intensity, is the Hilbert transform of the time-trace for the transmit element located at position and the receive element located at position, and where is the ultrasonic longitudinal wave velocity. Alternatively the phase angle, extracted from the Hilbert Transform can be used in the TFM algorithm to produce a phase image. 3. AVERAGE SCATTERING MATRI It has been shown that sub-wavelength discontinuities such as cracks or voids can be characterised using the ultrasonic scattered field [12]. When an ultrasonic wave is incident on a discontinuity within a component scattering occurs and the scattered field carries information about the shape, orientation and size of the discontinuity. The scattering matrix (or S-Matrix) is defined as a matrix containing all the far field scattered amplitudes from all incident and scattered directions [13], (3) where is the distance from the reflector to the receive element, is the amplitude of the scattered wave, the amplitude of the incident wave and the wavenumber. A discontinuity can be fully characterised if its far field scattering amplitudes (or S-matrix) is known over all angles. Experimentally this means that a transmitter-receiver pair needs to be moved completely around the discontinuity. In reality it is rarely possible to have access to all

3 positions surrounding a defect since structures adopt various shapes that make this impossible and therefore only a fraction of the scattering matrix is measureable. The S-matrix can be extracted from experimental data by a number of techniques. Here we use a sub-aperture technique [14]. The challenge is to obtain scattering information from spatially localised region over as wide a range of angles as possible. In the sub-array approach a series of images are formed from different transmitter(tx) and receiver(rx) subarrays as shown in Fig. 1. For a pair of sub-arrays and the amplitude of the intensity of the TFM image at the location of the scatterer can be expressed as follows, (4) Sub-array transmitter (m) = SA (m) Sub-array receiver (n) = SA (n) Q Figure 1. Sub-array principle schematic. It is now possible to use the above scattering matrix approach to interrogate composite material in order to detect fibre waviness. However fibre waviness generally has a length (wavelength) and amplitude greater than the ultrasonic wavelength used to carry out the ultrasonic inspection. Fig. 2 shows a schematic of a simplified out-of plane fibre waviness with the region of interest (ROI) where fibres are misaligned. The approach used in this paper is to average the extracted scattering matrices over a number of locations within the ROI. The computation is realised such that intensities from scattering matrices located at a same angular positions are averaged together. SA (m) SA (n) Figure 2. Schematic of the region of interest containing out-of-plane fibre waviness.

4 50mm 20mm 4. Experimental apparatus A 5-MHz linear array with 64 elements (manufactured by Imasonic, Besancon, France) was used in the experiments, and its parameters are shown in Table 1. A commercial array controller (Micropulse MP5PA, Peak NDT, Ltd., Derby, UK) was used to capture the complete set of time-domain signals from every transmitter-receiver element pair of the ultrasonic array. The captured data were then exported and processed using MATLAB (The Math- Works, Inc., Natick, MA). TABLE 1. Array parameters Array parameter Value Number of elements 64 Element width (mm) 0.53 Element pitch (mm) 0.63 Element length (mm) 15 Centre frequency (MHz) Bandwidth at -6dB (MHz) 5 4 Two test samples were used during the experiments for the validation and test the average scattering matrix algorithm. The geometry and dimensions of each sample is shown in Fig. 3 and Fig. 4. Sample#1 is an aluminium block 50 mm deep with a 45 o notch located at 20 mm from the top surface and 1mm wide. Sample#2 was designed by Rolls-Royce to develop a methodology to distinguish the different defects and establish the resolution capabilities of various NDE techniques in flat simple laminates. Sample #2 is a 30 mm thick carbon fibre sample made from 124 plies of carbon fibre unidirectional following a ply staking (-45). Three different fibre folding regions were created comprising of one, two and three ply folding with the folded packs being 0.25 mm (1 ply- small waviness), 0.5 mm (2 plies-medium waviness) and 0.75 mm (3 plies- large waviness). The back face and top face of the sample are finished with pre-peg woven plies. The three regions of waviness have an estimated amplitude of 2mm and a wavelength of to 10 mm. 1 mm ROI Figure 3. Sample#1, Aluminium block with slot at 45 o

5 10mm 30mm 150mm... 3 folds waviness 2 folds waviness 1 fold waviness 10 mm Non wavy region 300 mm Y Position 20 Position 2 Position 1 50 mm 150 mm 250 mm Figure 4. Sample#2, drawing of the carbon sample including the three different types of fibre waviness. 5. Results and discussions 5.1 TFM: Amplitude and phase imaging The amplitude TFM was shown to be a reliable imaging technique [9], also it is possible to image the internal structure of a component using the phase information which can sometimes produce more details regarding the characteristics of a defect. Fig 5. shows imaging of the three different levels of waviness as shown if Fig 4. The images are plotted up to 20 mm deep so the back wall located at 30 mm in not visible in the images. Amplitude TFM images are shown at the top (Fig 5a-5c) and the phase TFM is presented at the bottom (Fig 5d-5e). Images of the large waviness (3 plies) show a clear disturbance at 10 mm deep indicating the presence of the fibre waviness. The medium waviness (2 plies fold) is discernable around 10 mm but the signal is lost when looking at the small waviness (1 ply fold). The phase imaging exhibits a repetitive pattern throughout the image. The pattern is linked to the plies layout, however does not represent every single plies of the sample since the physical resolution achievable is limited by the wavelength which in this case is 0.59mm.

6 a) b) c) d) e) f) Figure 5. Comparison; Amplitude TFM a), large waviness, b), medium waviness and c) small waviness; phase TFM d), large waviness, e), medium waviness and f) small waviness. Array and composite sample used are described in table I and figure 3 respectively. 5.2 Validation of scattering matrix code: Aluminium sample and Rexolite sample The aluminium sample (sample#1) was used in order to validate the scattering matrix extraction algorithm against a feature with a known orientation. The slot is 1mm wide and 5 mm long at an orientation of -45 o from the vertical axis. The region of interest (ROI) was chosen to cover the slot and had an aperture of 6mm along axis (-3 mm to 3 mm) and 6 mm along the axis (-18mm to -23 mm). The resolution chosen when extracting the scattering matrices was 0.5 mm which results in 144 pixels in the ROI. The average scattering matrix generated is visible in Fig. 6a) and an inspection of the amplitudes shows that the highest amplitude is obtained from the pulse-echo elements at a reflected angle of o which is 1.5 o off the expected reflected angle. The darker area in the top right corner of the matrix is due to the flat end of the slot reflecting at +45 o. The middle pattern (lighter colour) is an artefact inherent to all single scattering matrices contained in the ROI and exacerbated when averaging scattering matrices together; the pattern shows that due to the orientation of the slot, only a small quantity of the ultrasound reflected is detected by the array along the specular diagonal.

7 Figure 6. Averaged scattering matrix over a 6 6mm ROI for sample#1 with a 45 o slot. 5.3 Carbon fibre sample The experiments using sample#2 have shown that the average scattering matrix present a typical pattern when there is waviness. The average scattering data presented in Fig. 7 shows results obtain for wavy and non wavy zones. Regarding the waviness, Fig.7a) is representative of a typical pattern obtain when waviness is present. The average scattering matrix for a wavy location exhibits darker areas symmetrical in respect to the specular diagonal (Fig. 7a), conversely those areas are not present when no waviness is detected as seen in Fig. 7b. In order to statically quantify our results, data were collected at different locations over the wavy regions as well as over a region that was thought to contain no waviness; for each wavy area several batches of 20 measurements were made along the fibre waviness as shown in figure 4c with a 5 mm pitch between each location. The non wavy region was chosen between two wavy regions again as seen in Fig. 4. The waviness was made to be localised and so it was reasonable to assume that the zone between two wavy regions was not affected by the surrounding waviness. The same sampling process was then followed for the non wavy region with a 5mm pitch between each position. To avoid any tilting of the probe about the axis, the array was moved along a guide to maintain constant vertical orientation. Analysis of the scattering matrices indicated that the largest differences in the scattering matrices occurred in dashed box regions of Fig. 7. Note that since two similar regions are visible within the average scattering matrix, two windows were generated. For each window the mean amplitude of the pixels included in the window is calculated and the two windows of each average scattering matrix averaged together. In order to compare the results with the non wavy results identical windows were selected for non wavy average scattering matrices. a) b) Figure 7. Comparison S-matrix, a) sample with waviness and b) zone without waviness

8 Density in % If the information provided by the average scattering matrix allows us to statistically separate wavy and non wavy groups then the potential exists to define a meaningful waviness threshold above which detection is possible, and below which it is not. Fig. 8. shows an example of the differentiation of the two groups in the case of the large waviness. The representation of the probability density function of the two data sets, i.e. waviness and no waviness shows that it is possible to separate the wavy sample from the non wavy sample. Note that the cut-off point (CoP) is arbitrary and is defined here as CoP=( ),where is the mean value of the wavy group and is the standard deviation of the wavy group as shown in Table 2. Table 3 summarises the distribution test between the two groups. TABLE 2. TABLE 3. Waviness No waviness waviness Mean (µ) test present % absent % Standard Deviation (σ) positive True Positive (TN) 87.5 False Positive (FP) 10 negative False Negative (FN) 12.5 True Negative (TN) CoP TN TP FN FP no waviness waviness mean no waviness mean waviness waviness 2 std deviations no waviness 2 std deviations Amplitude Figure 8. Statistical differentiation between wavy and non wavy data. 6. Conclusion It has been shown that it is possible to use ultrasonic array scattering data for the detection of fibre waviness. Also the paper is a proof of principle further work using different samples is necessary to accurately determine the sensitivity of the technique and its resolution. Importantly, microscopic examination will be used to allow precise measurement of the actual extend of the waviness. Acknowledgement The work was funded through the Engineering and Physical Sciences Research Council (EPSRC) and Rolls-Royce.

9 References [1]M. Wisnom, The effect of fibre misalignment on the compressive strength of unidirectional carbon fibre/epoxy. Composites, Volume 21, Number 5. September [2] R. Oster, Computed Tomography as a Non-destructive Test Method for Fiber Main RotorBlades. Computerized Tomography for Industrial Applications and Image Processing in Radiology, March 15-17, 1999, Berlin, Germany. [3] P. Joyce, D. Kugler, and T. Moon, A Technique for Characterizing Process-Induced Fiber Waviness in Composite Laminates - Using Optical Microscopy. Journal of Composite Materials 1997;31(17): [4] G. Requena, G. Fiedler, B. Seiser, P. Degischer, M. Di Michiel, T. Buslaps 3D-Quantification of the distribution of continuous fibres in unidirectionally reinforced composites. Composites: Part A 40 (2009) [5] J.S.U. Schell, M. Renggli, G.H. van Lenthe, R. Muller, P. Ermanni, Micro-computed tomography determination of glass fibre reinforced polymer meso-structure. Composites Science and Technology 66 (2006) [6] M. Kosek, P. Sejak, Visualization of voids in actual C/C woven composite structure. Composites Science and Technology 69 (2009) [7]R.D. Adams, and P. Cawley, A review of defect types and non destructive testing techniques for composites and bonded joints. NDT International Volume 21, Number 4 August [8] R J Freemantle, N Hankinson, and C J Brotherhood, Rapid phased array ultrasonic imaging of large area composite aerospace structures. Insight - Vol. 47 No. 3, March [9] C. Holmes, B. W. Drinkwater, P. D. Wilcox, Post-processing of the full matrix of ultrasonic transmit receive array data for nondestructive evaluation. NDT&E International 38 (2005) [10] J. hang, B. W. Drinkwater, P. D. Wilcox, A. J. Hunter, Defect detection using ultrasonic arrays: The multi-mode total focusing method. NDT&E International 43 (2010) [11]O. Oralkan, S. Ergun, J.A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T.H. Lee, B.T. Khuri-Yakub, Capacitive micromachined ultrasonic transducers: nextgeneration arrays for acoustic imaging?, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 49 (11) (2002) [12] J. hang, B. W. Drinkwater, and P. D. Wilcox, Defect Characterization Using an Ultrasonic Array to Measure the Scattering Coefficient Matrix. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 10, October [13] L. W. Schmerr, Fundamentals of Ultrasonic Nondestructive Evaluation A Modeling Approach. New York: Plenum Press, [14] P. D. Wilcox, C. Holmes, and B. W. Drinkwater, Advanced Reflector Characterization with Ultrasonic Phased Arrays in NDE Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 8, august 2007.

Extending Acoustic Microscopy for Comprehensive Failure Analysis Applications

Extending Acoustic Microscopy for Comprehensive Failure Analysis Applications Extending Acoustic Microscopy for Comprehensive Failure Analysis Applications Sebastian Brand, Matthias Petzold Fraunhofer Institute for Mechanics of Materials Halle, Germany Peter Czurratis, Peter Hoffrogge

More information

An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array

An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array S. Mondal London South Bank University; School of Engineering 103 Borough Road, London SE1 0AA More info about this article: http://www.ndt.net/?id=19093

More information

Determination of the Structural Integrity of a Wind Turbine Blade Using Ultrasonic Pulse Echo Reflectometry

Determination of the Structural Integrity of a Wind Turbine Blade Using Ultrasonic Pulse Echo Reflectometry International Journal of Engineering and Technology Volume 3 No. 5, May, 2013 Determination of the Structural Integrity of a Wind Turbine Blade Using Ultrasonic Pulse Echo Reflectometry Benjamin Ayibapreye

More information

RapidScan II Application Note General Composite Scanning

RapidScan II Application Note General Composite Scanning RapidScan II Application Note General Composite Scanning RapidScan II General Composite Scanning Application Note Page 1 Applications The RapidScan system has been utilised for a wide range of inspections

More information

Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques

Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques Sheng Liu and I. Charles Ume* School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 3332 (44) 894-7411(P)

More information

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites SINCE2013 Singapore International NDT Conference & Exhibition 2013, 19-20 July 2013 A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites Wei LIN, Lay Siong GOH, B.

More information

Novel Imaging Techniques for Defects Characterisation in Phased Array Inspection

Novel Imaging Techniques for Defects Characterisation in Phased Array Inspection Novel Imaging Techniques for Defects Characterisation in Phased Array Inspection P. Rioux 1, F. Lachance 1 and J. Turcotte 1 1 Sonatest, Québec, Canada Phone: +1 418 683 6222, e-mail: sales@sonatest.com

More information

APPLICATION OF ULTRASONIC GUIDED WAVES FOR INVESTIGATION OF COMPOSITE CONSTRUCTIONAL COMPONENTS OF TIDAL POWER PLANTS

APPLICATION OF ULTRASONIC GUIDED WAVES FOR INVESTIGATION OF COMPOSITE CONSTRUCTIONAL COMPONENTS OF TIDAL POWER PLANTS The 12 th International Conference of the Slovenian Society for Non-Destructive Testing»Application of Contemporary Non-Destructive Testing in Engineering«September 4-6, 2013, Portorož, Slovenia More info

More information

Detectability of kissing bonds using the non-linear high frequency transmission technique

Detectability of kissing bonds using the non-linear high frequency transmission technique 17th World Conference on Nondestructive Testing, 25-28 Oct 28, Shanghai, China Detectability of kissing bonds using the non-linear high frequency transmission technique Dawei YAN 1, Bruce W. DRINKWATER

More information

Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components

Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components ECNDT 26 - Mo.2.6.4 Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components Uwe PFEIFFER, Wolfgang HILLGER, DLR German Aerospace Center, Braunschweig, Germany Abstract. Ultrasonic

More information

AIP (2015) 34. AIP ISBN

AIP (2015) 34. AIP ISBN Gongzhang, Rui and Gachagan, Anthony and Xiao, Bo (215) Clutter noise reduction for phased array imaging using frequency-spatial polarity coherence. In: 41st Annual Review of Progress in Quantative Nondestructive

More information

Ultrasonic Time-of-Flight Shift Measurements in Carbon Composite Laminates Containing Matrix Microcracks

Ultrasonic Time-of-Flight Shift Measurements in Carbon Composite Laminates Containing Matrix Microcracks Ultrasonic Time-of-Flight Shift Measurements in Carbon Composite Laminates Containing Matrix Microcracks Ajith Subramanian a, Vinay Dayal b, and Daniel J. Barnard a a CNDE, Iowa State University, Ames,

More information

Ultrasound Nondestructive Evaluation (NDE) Imaging with Transducer Arrays and Adaptive Processing

Ultrasound Nondestructive Evaluation (NDE) Imaging with Transducer Arrays and Adaptive Processing Sensors 212, 12, 42-54; doi:1.339/s12142 OPEN ACCESS sensors ISSN 1424-822 www.mdpi.com/journal/sensors Article Ultrasound Nondestructive Evaluation (NDE) Imaging with Transducer Arrays and Adaptive Processing

More information

Developments in Ultrasonic Phased Array Inspection III

Developments in Ultrasonic Phased Array Inspection III Developments in Ultrasonic Phased Array Inspection III Improved Phased Array Mode Conversion Inspections Using Variable Split Aperture Processing R. ong, P. Cawley, Imperial College, United Kingdom J.

More information

Ultrasonic Detection of Inclusion Type Defect in a Composite Panel Using Shannon Entropy

Ultrasonic Detection of Inclusion Type Defect in a Composite Panel Using Shannon Entropy Ultrasonic Detection of Inclusion Type Defect in a Composite Panel Using Shannon Entropy Sutanu Samanta 1 and Debasis Datta 2 1 Research Scholar, Mechanical Engineering Department, Bengal Engineering and

More information

Developments in Ultrasonic Phased Array Inspection I

Developments in Ultrasonic Phased Array Inspection I Developments in Ultrasonic Phased Array Inspection I Automatic Image Correction for Flexible Ultrasonic Phased Array Inspection A.J. Hunter, B.W. Drinkwater, P.D. Wilcox Department of Mechanical Engineering,

More information

Tadeusz Stepinski and Bengt Vagnhammar, Uppsala University, Signals and Systems, Box 528, SE Uppsala, Sweden

Tadeusz Stepinski and Bengt Vagnhammar, Uppsala University, Signals and Systems, Box 528, SE Uppsala, Sweden AUTOMATIC DETECTING DISBONDS IN LAYERED STRUCTURES USING ULTRASONIC PULSE-ECHO INSPECTION Tadeusz Stepinski and Bengt Vagnhammar, Uppsala University, Signals and Systems, Box 58, SE-751 Uppsala, Sweden

More information

Investigation of Woven Fiber Reinforced Laminated Composites Using a Through Transmission Ultrasonic Technique

Investigation of Woven Fiber Reinforced Laminated Composites Using a Through Transmission Ultrasonic Technique Photos placed in horizontal position with even amount of white space between photos and header Photos placed in horizontal position with even amount of white space between photos and header Investigation

More information

Ultrasonic Air-Coupled Non-Destructive Testing of Aerospace Components

Ultrasonic Air-Coupled Non-Destructive Testing of Aerospace Components ECNDT 2006 - We.1.1.5 Ultrasonic Air-Coupled Non-Destructive Testing of Aerospace Components Rymantas KAZYS, Andrius DEMCENKO, Liudas MAZEIKA, Reimondas SLITERIS, Egidijus ZUKAUSKAS, Ultrasound Institute

More information

Characterization of Flip Chip Interconnect Failure Modes Using High Frequency Acoustic Micro Imaging With Correlative Analysis

Characterization of Flip Chip Interconnect Failure Modes Using High Frequency Acoustic Micro Imaging With Correlative Analysis Characterization of Flip Chip Interconnect Failure Modes Using High Frequency Acoustic Micro Imaging With Correlative Analysis Janet E. Semmens and Lawrence W. Kessler SONOSCAN, INC. 530 East Green Street

More information

RELIABILITY OF GUIDED WAVE ULTRASONIC TESTING. Dr. Mark EVANS and Dr. Thomas VOGT Guided Ultrasonics Ltd. Nottingham, UK

RELIABILITY OF GUIDED WAVE ULTRASONIC TESTING. Dr. Mark EVANS and Dr. Thomas VOGT Guided Ultrasonics Ltd. Nottingham, UK RELIABILITY OF GUIDED WAVE ULTRASONIC TESTING Dr. Mark EVANS and Dr. Thomas VOGT Guided Ultrasonics Ltd. Nottingham, UK The Guided wave testing method (GW) is increasingly being used worldwide to test

More information

Characterization of Damages in Honeycomb Structures Using SonatestDryScan 410D

Characterization of Damages in Honeycomb Structures Using SonatestDryScan 410D 18thWorld Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Characterization of Damages in Honeycomb Structures Using SonatestDryScan 410D Winnie M. SITHOLE 1, Ngeletshedzo NETSHIDAVHINI

More information

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS Alexander A.KARABUTOV 1, Elena V.SAVATEEVA 2, Alexei N. ZHARINOV 1, Alexander A.KARABUTOV 1 Jr. 1 International Laser Center of M.V.Lomonosov

More information

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING H. Gao, M. J. Guers, J.L. Rose, G. (Xiaoliang) Zhao 2, and C. Kwan 2 Department of Engineering Science and Mechanics, The

More information

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection ECNDT - Poster 39 Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection Yago GÓMEZ-ULLATE, Instituto de Acústica CSIC, Madrid, Spain Francisco MONTERO DE ESPINOSA, Instituto de Acústica

More information

Dual and Multi-energy Radiography for CFRP Composites Inspection

Dual and Multi-energy Radiography for CFRP Composites Inspection 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic Dual and Multi-energy Radiography for CFRP Composites Inspection More Info at Open Access Database

More information

Rayleigh Wave Interaction and Mode Conversion in a Delamination

Rayleigh Wave Interaction and Mode Conversion in a Delamination Rayleigh Wave Interaction and Mode Conversion in a Delamination Sunil Kishore Chakrapani a, Vinay Dayal, a and Jamie Dunt b a Department of Aerospace Engineering & Center for NDE, Iowa State University,

More information

A STUDY ON NON-CONTACT ULTRASONIC TECHNIQUE FOR ON-LINE INSPECTION OF CFRP

A STUDY ON NON-CONTACT ULTRASONIC TECHNIQUE FOR ON-LINE INSPECTION OF CFRP 12 th A-PCNDT 6 Asia-Pacific Conference on NDT, 5 th 1 th Nov 6, Auckland, New Zealand A STUDY ON NON-CONTACT ULTRASONIC TECHNIQUE FOR ON-LINE INSPECTION OF CFRP Seung-Joon Lee 1, Won-Su Park 1, Joon-Hyun

More information

Adhesive Thickness Measurement on Composite Aerospace Structures using Guided Waves

Adhesive Thickness Measurement on Composite Aerospace Structures using Guided Waves 19 th World Conference on Non-Destructive Testing 2016 Adhesive Thickness Measurement on Composite Aerospace Structures using Guided Waves Laura TAUPIN 1, Bastien CHAPUIS 1, Mathieu DUCOUSSO 2, Frédéric

More information

Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod

Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod Qixiang Tang a, Jones Owusu Twumasi a, Jie Hu a, Xingwei Wang b and Tzuyang Yu a a Department of

More information

IMAGING OF DEFECTS IN CONCRETE COMPONENTS WITH NON-CONTACT ULTRASONIC TESTING W. Hillger, DLR and Ing. Büro Dr. Hillger, Braunschweig, Germany

IMAGING OF DEFECTS IN CONCRETE COMPONENTS WITH NON-CONTACT ULTRASONIC TESTING W. Hillger, DLR and Ing. Büro Dr. Hillger, Braunschweig, Germany IMAGING OF DEFECTS IN CONCRETE COMPONENTS WITH NON-CONTACT ULTRASONIC TESTING W. Hillger, DLR and Ing. Büro Dr. Hillger, Braunschweig, Germany Abstract: The building industries require NDT- methods for

More information

vibro-acoustic modulation

vibro-acoustic modulation 17th World Conference on Nondestructive Testing, 25-28 Oct 28, Shanghai, ChinaContact defect detection in plates using guided wave and vibro-acoustic modulation Jingpin JIAO 1, Bruce W. DRINKWATER 2, Simon

More information

Micromachined ultrasonic transducers for air-coupled

Micromachined ultrasonic transducers for air-coupled Micromachined ultrasonic transducers for air-coupled non-destructive evaluation Scan 'F. Hansen. F. Levent Degertekin. and Butrus '1'. Khuri-Yakuh Edward L. Ginzton Laboratory Stanford University Stanford.

More information

DEVELOPMENT OF A PROBE OF EDDY CURRENT TESTING FOR DETECTION OF IN-PLANE WAVINESS IN CFRP CROSS-PLY LAMINATES

DEVELOPMENT OF A PROBE OF EDDY CURRENT TESTING FOR DETECTION OF IN-PLANE WAVINESS IN CFRP CROSS-PLY LAMINATES 7 th International Symposium on NDT in Aerospace Tu.1.A.7 DEVELOPMENT OF A PROBE OF EDDY CURRENT TESTING FOR DETECTION OF IN-PLANE WAVINESS IN CFRP CROSS-PLY LAMINATES Koichi MIZUKAMI 1, Yoshihiro MIZUTANI

More information

A Modified Synthetic Aperture Focussing Technique Utilising the Spatial Impulse Response of the Ultrasound Transducer

A Modified Synthetic Aperture Focussing Technique Utilising the Spatial Impulse Response of the Ultrasound Transducer A Modified Synthetic Aperture Focussing Technique Utilising the Spatial Impulse Response of the Ultrasound Transducer Stephen A. MOSEY 1, Peter C. CHARLTON 1, Ian WELLS 1 1 Faculty of Applied Design and

More information

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites Single-Sided Contact-Free Ultrasonic Testing A New Air-Coupled Inspection Technology for Weld and Bond Testing M. Kiel, R. Steinhausen, A. Bodi 1, and M. Lucas 1 Research Center for Ultrasonics - Forschungszentrum

More information

ON FIBER DIRECTION AND POROSITY CONTENT USING ULTRASONIC PITCH-CATCH TECHNIQUE IN CFRP COMPOSITE SOLID LAMINATES

ON FIBER DIRECTION AND POROSITY CONTENT USING ULTRASONIC PITCH-CATCH TECHNIQUE IN CFRP COMPOSITE SOLID LAMINATES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS ON FIBER DIRECTION AND POROSITY CONTENT USING ULTRASONIC PITCH-CATCH TECHNIQUE IN CFRP COMPOSITE SOLID LAMINATES K.H. Im 1*, Y. H. Hwang 1, C. H. Song

More information

Air- coupled ultrasonic testing of CFRP rods by means of guided waves

Air- coupled ultrasonic testing of CFRP rods by means of guided waves Available online at www.sciencedirect.com Physics Physics Procedia 3 (2010) 00 (2009) 185 192 000 000 www.elsevier.com/locate/procedia International Congress on Ultrasonics, Universidad de Santiago de

More information

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY J. Poguet Imasonic S.A. France E. Abittan EDF-GDL France Abstract In order to meet the requirements

More information

Long Range Guided Wave Monitoring of Rail Track

Long Range Guided Wave Monitoring of Rail Track Long Range Guided Wave Monitoring of Rail Track More Info at Open Access Database www.ndt.net/?id=15124 Philip W. Loveday 1,a, Craig S. Long 1,b and Francois A. Burger 2,c 1 CSIR Materials Science and

More information

PRACTICAL ENHANCEMENTS ACHIEVABLE IN LONG RANGE ULTRASONIC TESTING BY EXPLOITING THE PROPERTIES OF GUIDED WAVES

PRACTICAL ENHANCEMENTS ACHIEVABLE IN LONG RANGE ULTRASONIC TESTING BY EXPLOITING THE PROPERTIES OF GUIDED WAVES PRACTICAL ENHANCEMENTS ACHIEVABLE IN LONG RANGE ULTRASONIC TESTING BY EXPLOITING THE PROPERTIES OF GUIDED WAVES PJ Mudge Plant Integrity Limited, Cambridge, United Kingdom Abstract: Initial implementations

More information

Imaging using Ultrasound - I

Imaging using Ultrasound - I Imaging using Ultrasound - I Prof. Krishnan Balasubramaniam Professor in Mechanical Engineering Head of Centre for NDE Indian Institute t of Technology Madras Chennai 600 036, INDIA Email: balas@iitm.ac.in

More information

A Novel Crack Location Method Based on the Reflection Coefficients of Guided Waves

A Novel Crack Location Method Based on the Reflection Coefficients of Guided Waves 18th World Conference on Non-destructive Testing, 16-20 April 2012, Durban, South Africa A Novel Crack Location Method Based on the Reflection Coefficients of Guided Waves Qiang FAN, Zhenyu HUANG, Dayue

More information

Data set reduction for ultrasonic TFM imaging using the effective aperture approach and virtual sources

Data set reduction for ultrasonic TFM imaging using the effective aperture approach and virtual sources Journal of Physics: Conference Series OPEN ACCESS Data set reduction for ultrasonic TFM imaging using the effective aperture approach and virtual sources To cite this article: S Bannouf et al 2013 J. Phys.:

More information

ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS

ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS T. Stepinski P. Wu Uppsala University Signals and Systems P.O. Box 528, SE- 75 2 Uppsala Sweden ULTRASONIC IMAGING of COPPER MATERIAL USING

More information

REFLECTION AND TRANSMISSION OF LAMB WAVES AT DISCONTINUITY IN PLATE Z. Liu NDT Systems & Services AG, Stutensee, Germany

REFLECTION AND TRANSMISSION OF LAMB WAVES AT DISCONTINUITY IN PLATE Z. Liu NDT Systems & Services AG, Stutensee, Germany REFLECTION AND TRANSMISSION OF LAMB WAVES AT DISCONTINUITY IN PLATE Z. Liu NDT Systems & Services AG, Stutensee, Germany Abstract: Lamb waves can be used for testing thin plate and pipe because they provide

More information

18th World Conference on Nondestructive Testing, April 2012, Durban, South Africa. Joanna X.Qiao 1, Matthias Jobst 2

18th World Conference on Nondestructive Testing, April 2012, Durban, South Africa. Joanna X.Qiao 1, Matthias Jobst 2 8th World Conference on ondestructive Testing, 6-0 April 0, Durban, outh Africa An Adaptive Phased-Array Imaging ethod for Ultrasonic Testing Joanna X.Qiao, atthias Jobst GE Inspection Technologies; 50

More information

NOVEL ACOUSTIC EMISSION SOURCE LOCATION

NOVEL ACOUSTIC EMISSION SOURCE LOCATION NOVEL ACOUSTIC EMISSION SOURCE LOCATION RHYS PULLIN, MATTHEW BAXTER, MARK EATON, KAREN HOLFORD and SAM EVANS Cardiff School of Engineering, The Parade, Newport Road, Cardiff, CF24 3AA, UK Abstract Source

More information

warwick.ac.uk/lib-publications

warwick.ac.uk/lib-publications Original citation: Hughes, F., Day, R., Tung, N. and Dixon, Steve. (2016) High-frequency eddy current measurements using sensor-mounted electronics. Insight- Non-Destructive Testing & Condition Monitoring,

More information

Ultrasonic Guided Wave Testing of Cylindrical Bars

Ultrasonic Guided Wave Testing of Cylindrical Bars 18th World Conference on Nondestructive Testing, 16-2 April 212, Durban, South Africa Ultrasonic Guided Wave Testing of Cylindrical Bars Masanari Shoji, Takashi Sawada NTT Energy and Environment Systems

More information

ACOUSTIC MICRO IMAGING ANALYSIS METHODS FOR 3D PACKAGES

ACOUSTIC MICRO IMAGING ANALYSIS METHODS FOR 3D PACKAGES ACOUSTIC MICRO IMAGING ANALYSIS METHODS FOR 3D PACKAGES Janet E. Semmens Sonoscan, Inc. Elk Grove Village, IL, USA Jsemmens@sonoscan.com ABSTRACT Earlier studies concerning evaluation of stacked die packages

More information

Advanced Ultrasonic Imaging for Automotive Spot Weld Quality Testing

Advanced Ultrasonic Imaging for Automotive Spot Weld Quality Testing 5th Pan American Conference for NDT 2-6 October 2011, Cancun, Mexico Advanced Ultrasonic Imaging for Automotive Spot Weld Quality Testing Alexey A. DENISOV 1, Roman Gr. MAEV 1, Johann ERLEWEIN 2, Holger

More information

Reduction of Dispersive Wave Modes in Guided Wave Testing using Split-Spectrum Processing

Reduction of Dispersive Wave Modes in Guided Wave Testing using Split-Spectrum Processing More Info at Open Access Database www.ndt.net/?id=19138 Reduction of Dispersive Wave Modes in Guided Wave Testing using Split-Spectrum Processing S. K. Pedram 1, K. Thornicroft 2, L. Gan 3, and P. Mudge

More information

Performance of UT Creeping Waves in Crack Sizing

Performance of UT Creeping Waves in Crack Sizing 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Performance of UT Creeping Waves in Crack Sizing Michele Carboni, Michele Sangirardi Department of Mechanical Engineering,

More information

An Investigation into the Performance of Complex Plane Spilt Spectrum Processing Ultrasonics on Composite Materials

An Investigation into the Performance of Complex Plane Spilt Spectrum Processing Ultrasonics on Composite Materials 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China An Investigation into the Performance of Complex Plane Spilt Spectrum Processing Ultrasonics on Composite Materials Manfred

More information

A NOVEL HIGH SPEED, HIGH RESOLUTION, ULTRASOUND IMAGING SYSTEM

A NOVEL HIGH SPEED, HIGH RESOLUTION, ULTRASOUND IMAGING SYSTEM A NOVEL HIGH SPEED, HIGH RESOLUTION, ULTRASOUND IMAGING SYSTEM OVERVIEW Marvin Lasser Imperium, Inc. Rockville, Maryland 20850 We are reporting on the capability of our novel ultrasonic imaging camera

More information

Passive Polymer. Figure 1 (a) and (b). Diagram of a 1-3 composite (left) and a 2-2 composite (right).

Passive Polymer. Figure 1 (a) and (b). Diagram of a 1-3 composite (left) and a 2-2 composite (right). MINIMISATION OF MECHANICAL CROSS TALK IN PERIODIC PIEZOELECTRIC COMPOSITE ARRAYS D. Robertson, G. Hayward, A. Gachagan and P. Reynolds 2 Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow,

More information

Testing of Buried Pipelines Using Guided Waves

Testing of Buried Pipelines Using Guided Waves Testing of Buried Pipelines Using Guided Waves A. Demma, D. Alleyne, B. Pavlakovic Guided Ultrasonics Ltd 16 Doverbeck Close Ravenshead Nottingham NG15 9ER Introduction The inspection requirements of pipes

More information

Guided wave based material characterisation of thin plates using a very high frequency focused PVDF transducer

Guided wave based material characterisation of thin plates using a very high frequency focused PVDF transducer Guided wave based material characterisation of thin plates using a very high frequency focused PVDF transducer Anoop U and Krishnan Balasubramanian More info about this article: http://www.ndt.net/?id=22227

More information

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE DOYOUN KIM, YOUNHO CHO * and JOONHYUN LEE Graduate School of Mechanical Engineering, Pusan National University Jangjeon-dong,

More information

FPGA-BASED CONTROL SYSTEM OF AN ULTRASONIC PHASED ARRAY

FPGA-BASED CONTROL SYSTEM OF AN ULTRASONIC PHASED ARRAY The 10 th International Conference of the Slovenian Society for Non-Destructive Testing»Application of Contemporary Non-Destructive Testing in Engineering«September 1-3, 009, Ljubljana, Slovenia, 77-84

More information

1831. Fractional derivative method to reduce noise and improve SNR for lamb wave signals

1831. Fractional derivative method to reduce noise and improve SNR for lamb wave signals 8. Fractional derivative method to reduce noise and improve SNR for lamb wave signals Xiao Chen, Yang Gao, Chenlong Wang Jiangsu Key Laboratory of Meteorological observation and Information Processing,

More information

DEFECT CHARACTERIZATION IN THICK COMPOSITES BY ULTRASOUND. David K. Hsu and Ali Minachi Center for NDE Iowa State University Ames, IA 50011

DEFECT CHARACTERIZATION IN THICK COMPOSITES BY ULTRASOUND. David K. Hsu and Ali Minachi Center for NDE Iowa State University Ames, IA 50011 DEFECT CHARACTERIZATION IN THICK COMPOSITES BY ULTRASOUND David K. Hsu and Ali Minachi Center for NDE Iowa State University Ames, IA 50011 INTRODUCTION In today's application of composites, thick composites

More information

ACOUSTO-ULTRASONIC EVALUATION OF HYBRID COMPOSITES USING

ACOUSTO-ULTRASONIC EVALUATION OF HYBRID COMPOSITES USING ACOUSTO-ULTRASONIC EVALUATION OF HYBRID COMPOSITES USING OBLIQUE INCIDENCE WAVES INTRODUCTION Yuyin Ji, Sotirios J. Vahaviolos, Ronnie K. Miller, Physical Acoustics Corporation P.O. Box 3135 Princeton,

More information

Reference wavelets used for deconvolution of ultrasonic time-of-flight diffraction (ToFD) signals

Reference wavelets used for deconvolution of ultrasonic time-of-flight diffraction (ToFD) signals 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Reference wavelets used for deconvolution of ultrasonic time-of-flight diffraction (ToFD) signals Farhang HONARVAR 1, Amin

More information

A SHEAR WAVE TRANSDUCER ARRAY FOR REAL-TIME IMAGING. R.L. Baer and G.S. Kino. Edward L. Ginzton Laboratory Stanford University Stanford, CA 94305

A SHEAR WAVE TRANSDUCER ARRAY FOR REAL-TIME IMAGING. R.L. Baer and G.S. Kino. Edward L. Ginzton Laboratory Stanford University Stanford, CA 94305 A SHEAR WAVE TRANSDUCER ARRAY FOR REAL-TIME IMAGING R.L. Baer and G.S. Kino Edward L. Ginzton Laboratory Stanford University Stanford, CA 94305 INTRODUCTION In this paper we describe a contacting shear

More information

RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE

RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE D. MacLauchlan, S. Clark, B. Cox, T. Doyle, B. Grimmett, J. Hancock, K. Hour, C. Rutherford BWXT Services, Non Destructive Evaluation and Inspection

More information

INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED PLASTIC (CFRP) BY EDDY CURRENT NON- DESTRUCTIVE TESTING

INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED PLASTIC (CFRP) BY EDDY CURRENT NON- DESTRUCTIVE TESTING International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED

More information

CHARACTERIZATION OF FLIP CHIP BUMP FAILURE MODES USING HIGH FREQUENCY ACOUSTIC MICRO IMAGING

CHARACTERIZATION OF FLIP CHIP BUMP FAILURE MODES USING HIGH FREQUENCY ACOUSTIC MICRO IMAGING CHARACTERIZATION OF FLIP CHIP BUMP FAILURE MODES USING HIGH FREQUENCY ACOUSTIC MICRO IMAGING Janet E. Semmens and Lawrence W. Kessler SONOSCAN, INC. 530 East Green Street Bensenville, IL 60106 U.S.A. Tel:

More information

USE OF GUIDED WAVES FOR DETECTION OF INTERIOR FLAWS IN LAYERED

USE OF GUIDED WAVES FOR DETECTION OF INTERIOR FLAWS IN LAYERED USE OF GUIDED WAVES FOR DETECTION OF INTERIOR FLAWS IN LAYERED MATERIALS Gordon G. Krauss Julie Chen Paul E. Barbone Department of Aerospace and Mechanical Engineering Boston University Boston, MA 02215

More information

ECNDT We.2.6.4

ECNDT We.2.6.4 ECNDT 006 - We..6.4 Towards Material Characterization and Thickness Measurements using Pulsed Eddy Currents implemented with an Improved Giant Magneto Resistance Magnetometer V. O. DE HAAN, BonPhysics

More information

The Application of TOFD Technique on the Large Pressure Vessel

The Application of TOFD Technique on the Large Pressure Vessel 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China The Application of TOFD Technique on the Large Pressure Vessel Yubao Guangdong Special Equipment Inspection Institute Floor

More information

MICROWAVE SCATTERING FOR THE CHARACTERIZATION OF A DISC-SHAPE VOID IN DIELECTRIC MATERIALS AND COMPOSITES

MICROWAVE SCATTERING FOR THE CHARACTERIZATION OF A DISC-SHAPE VOID IN DIELECTRIC MATERIALS AND COMPOSITES MICROWAVE SCATTERING FOR THE CHARACTERIZATION OF A DISC-SHAPE VOID IN DIELECTRIC MATERIALS AND COMPOSITES John M. Liu Code 684 Naval Surface Warfare Center Carderock Div. West Bethesda, Md. 20817-5700

More information

Manual UT vs PIMS (Permanently installed monitoring sensors)

Manual UT vs PIMS (Permanently installed monitoring sensors) Manual UT vs PIMS (Permanently installed monitoring sensors) F. B. Cegla Non-Destructive Evaluation Group, Department of Mechanical Engineering Imperial College London, SW7 AZ,UK Outline /36 Motivation/Background

More information

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection Bo WANG 1,

More information

MICROWAVE SUB-SURFACE IMAGING TECHNOLOGY FOR DAMAGE DETECTION

MICROWAVE SUB-SURFACE IMAGING TECHNOLOGY FOR DAMAGE DETECTION MICROWAVE SUB-SURFACE IMAGING TECHNOLOGY FOR DAMAGE DETECTION By Yoo Jin Kim 1, Associate Member, ASCE, Luis Jofre 2, Franco De Flaviis 3, and Maria Q. Feng 4, Associate Member, ASCE Abstract: This paper

More information

D DAVID PUBLISHING. 1. Introduction

D DAVID PUBLISHING. 1. Introduction Journal of Mechanics Engineering and Automation 5 (2015) 286-290 doi: 10.17265/2159-5275/2015.05.003 D DAVID PUBLISHING Classification of Ultrasonic Signs Pre-processed by Fourier Transform through Artificial

More information

RADAR INSPECTION OF CONCRETE, BRICK AND MASONRY STRUCTURES

RADAR INSPECTION OF CONCRETE, BRICK AND MASONRY STRUCTURES RADAR INSPECTION OF CONCRETE, BRICK AND MASONRY STRUCTURES C.P.Hobbs AEA Industrial Technology Materials and Manufacturing Division Nondestructive Testing Department Building 447 Harwell Laboratory Oxon

More information

Fast, portable, user-friendly...the complete C-scan solution.

Fast, portable, user-friendly...the complete C-scan solution. Fast, portable, user-friendly......the complete C-scan solution. Designed for speed, portability, and performance, RapidScan2 has been developed as a versatile and user-friendly A, B and C-scan inspection

More information

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND V.V. Shah, K. Balasubramaniam and J.P. Singh+ Department of Aerospace Engineering and Mechanics +Diagnostic Instrumentation and Analysis

More information

Optimal matched filter design for ultrasonic NDE of coarse grain materials

Optimal matched filter design for ultrasonic NDE of coarse grain materials Optimal matched filter design for ultrasonic NDE of coarse grain materials Minghui Li and Gordon Hayward Citation: AIP Conference Proceedings 176, 211 (216); doi: 1.163/1.494457 View online: http://dx.doi.org/1.163/1.494457

More information

Original citation: Edwards, R. S. (Rachel S.), Clough, A. R., Rosli, M. H., Hernandez-Valle, Francisco and Dutton, B. (2011) Detection and characterisation of surface cracking using scanning laser techniques.

More information

ULTRASONIC DEFECT DETECTION IN BILLET USING TIME- OF-FLIGHT OF BOTTOM ECHO

ULTRASONIC DEFECT DETECTION IN BILLET USING TIME- OF-FLIGHT OF BOTTOM ECHO ULTRASONIC DEFECT DETECTION IN BILLET USING TIME- OF-FLIGHT OF BOTTOM ECHO Ryusuke Miyamoto Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8573 Japan

More information

Nondestructive Testing and Flaw Detection in Steel block Using extension of Split Spectrum Processing based on Chebyshev IIR filter

Nondestructive Testing and Flaw Detection in Steel block Using extension of Split Spectrum Processing based on Chebyshev IIR filter Nondestructive Testing and Flaw Detection in Steel block Using extension of Split Spectrum Processing based on Chebyshev IIR filter Revathi.T.S 1, Salim Paul 2 1 M.tech (Signal Processing), Dept. Of ECE,

More information

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing Dominique Braconnier,

More information

MIRA Purpose MIRA Tomographer MIRA MIRA Principle MIRA MIRA shear waves MIRA

MIRA Purpose MIRA Tomographer MIRA MIRA Principle MIRA MIRA shear waves MIRA Purpose The MIRA Tomographer is a state-of-the-art instrument for creating a three-dimensional (3-D) representation (tomogram) of internal defects that may be present in a concrete element. MIRA is based

More information

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants Younho Cho School of Mechanical Engineering, Pusan National University, Korea ABSTRACT State-of-art

More information

ULTRASONIC NDE OF THREE-DIMENSIONAL TEXTILE COMPOSITES

ULTRASONIC NDE OF THREE-DIMENSIONAL TEXTILE COMPOSITES ULTRASONIC NDE OF THREE-DIMENSIONAL TEXTILE COMPOSITES INTRODUCTION R. D. Hale and D. K. Hsu Center for NDE Iowa State University Ames,IA 50011 Composite materials represent the future of the defense,

More information

High contrast air-coupled acoustic imaging with zero group velocity Lamb modes

High contrast air-coupled acoustic imaging with zero group velocity Lamb modes Aerospace Engineering Conference Papers, Presentations and Posters Aerospace Engineering 7-3 High contrast air-coupled acoustic imaging with zero group velocity Lamb modes Stephen D. Holland Iowa State

More information

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound Ultrasound Physics History: Ultrasound Ultrasound 1942: Dr. Karl Theodore Dussik transmission ultrasound investigation of the brain 1949-51: Holmes and Howry subject submerged in water tank to achieve

More information

Modelling of Pulsed Eddy Current Testing of wall thinning of carbon steel pipes through insulation and cladding

Modelling of Pulsed Eddy Current Testing of wall thinning of carbon steel pipes through insulation and cladding Modelling of Pulsed Eddy Current Testing of wall thinning of carbon steel pipes through insulation and cladding S Majidnia a,b, J Rudlin a, R. Nilavalan b a TWI Ltd, Granta Park Cambridge, b Brunel University

More information

Amplitude and Phase Distortions in MIMO and Diversity Systems

Amplitude and Phase Distortions in MIMO and Diversity Systems Amplitude and Phase Distortions in MIMO and Diversity Systems Christiane Kuhnert, Gerd Saala, Christian Waldschmidt, Werner Wiesbeck Institut für Höchstfrequenztechnik und Elektronik (IHE) Universität

More information

UNDERSTANDING THE PROPAGATION OF GUIDED ULTRASONIC WAVES IN UNDAMAGED COMPOSITE PLATES

UNDERSTANDING THE PROPAGATION OF GUIDED ULTRASONIC WAVES IN UNDAMAGED COMPOSITE PLATES The 14 th International Conference of the Slovenian Society for Non-Destructive Testing»Application of Contemporary Non-Destructive Testing in Engineering«September 4-6, 2017, Bernardin, Slovenia More

More information

1112. Dimensional evaluation of metal discontinuities by geometrical parameters of their patterns on imaging flaw detector monitor

1112. Dimensional evaluation of metal discontinuities by geometrical parameters of their patterns on imaging flaw detector monitor 1112. Dimensional evaluation of metal discontinuities by geometrical parameters of their patterns on imaging flaw detector monitor Samokrutov A. A., Shevaldykin V. G. Closed Joint Stock Company, Scientific

More information

ENHANCEMENT OF SYNTHETIC APERTURE FOCUSING TECHNIQUE (SAFT) BY ADVANCED SIGNAL PROCESSING

ENHANCEMENT OF SYNTHETIC APERTURE FOCUSING TECHNIQUE (SAFT) BY ADVANCED SIGNAL PROCESSING ENHANCEMENT OF SYNTHETIC APERTURE FOCUSING TECHNIQUE (SAFT) BY ADVANCED SIGNAL PROCESSING M. Jastrzebski, T. Dusatko, J. Fortin, F. Farzbod, A.N. Sinclair; University of Toronto, Toronto, Canada; M.D.C.

More information

Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates

Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates Authors (names are for example only): Chul Min Yeum Hoon Sohn Jeong Beom Ihn Hyung Jin Lim ABSTRACT This

More information

NARROWBAND ULTRASONIC SPECTROSCOPY FOR NDE OF LAYERED STRUCTURES T. Stepinski and M. Jonsson 1 Uppsala University, Uppsala, Sweden

NARROWBAND ULTRASONIC SPECTROSCOPY FOR NDE OF LAYERED STRUCTURES T. Stepinski and M. Jonsson 1 Uppsala University, Uppsala, Sweden NARROWBAND ULTRASONIC SPECTROSCOPY FOR NDE OF LAYERED STRUCTURES T. Stepinski and M. Jonsson 1 Uppsala University, Uppsala, Sweden Abstract: NDE of airspace sandwich structures is often performed using

More information

A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System

A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System 1266 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 7, JULY 2003 A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System Kambiz Kaviani, Student Member,

More information

DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea

DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea Abstract: The initiation and growth of short fatigue cracks in a simulated

More information

Further Developments in Ultrasonic Phased Array Inspection of Aging Aircraft

Further Developments in Ultrasonic Phased Array Inspection of Aging Aircraft Further Developments in Ultrasonic Phased Array Inspection of Aging Aircraft Irene G Pettigrew 1, David I A Lines 2, Jesse A Skramstad 3, Robert A Smith 4 and Katherine J Kirk 1 1 Microscale Sensors, Institute

More information