Quick work: Memory allocation

Size: px
Start display at page:

Download "Quick work: Memory allocation"

Transcription

1 Quick work: Memory allocation The OS is using a fixed partition algorithm. Processes place requests to the OS in the following sequence: P1=15 KB, P2=5 KB, P3=30 KB Draw the memory map at the end, if each of the following algorithms is in use: Worst-fit First-fit Best-fit 1

2 QUIZ: P1=15 KB, P2=5 KB, P3=30 KB Worst-fit Best-fit First-fit 2

3 Chapter 13 Artificial Intelligence

4 13.1 Thinking Machines Can you list the items in this picture? Courtesy of Amy Rose. 4

5 Thinking Machines Can you Count the distribution of letters in a book? Add a thousand 4-digit numbers? Match fingerprints? Search a list of a million values for duplicates? 5

6 Thinking Machines Humans do best Image processing Language Strategy Learning Computers do best Counting Operating fast with large numbers Searching, sorting Matching patterns 6

7 Artificial intelligence (AI) AI = the study of computer systems that model and apply the intelligence of the human (animal) mind Examples: Writing a program to pick out objects in a picture Navigate to the nest using landmarks Play backgammon, chess, go, 7

8 Not in text AI and strategy board games July 1979, BKG 9.8 was strong enough to play against the reigning backgammon world champion Luigi Villa. It won the match, 7 1, becoming the first computer program to defeat a world champion in any board game. [ Deep Blue versus Garry Kasparov was a pair of famous six-game human computer chess matches, in the format of machine and humans, versus a human. In this format, on the machine side a team of chess experts and programmers manually alter engineering between the games. The first match was played in 1996, and Kasparov won 4 2. A rematch was played in 1997 this time Deep Blue won 3½ 2½. [ AlphaGo versus Ke Jie was a three-game Go match between the computer Go program AlphaGo and current world No. 1 ranking player Ke Jie, played in May AlphaGo won 3-0. [ 8

9 Not in text AI and strategy board games See more links on the webpage News from AI and Robotics 9

10 QUIZ: True or false? A. A computer has beaten the best human checkers player. B. A computer has beaten the best human backgammon player. C. A computer has beaten the best human chess player. D. A computer has beaten the best human go player. E. A computer has beaten the best human poker player. 10

11 The ultimate goal of AI (?) Turing test = A test to empirically determine whether a computer has achieved (human) intelligence Alan Turing English mathematician who wrote a landmark paper in 1950 that asked the question: Can machines think? Yes, the same guy who worked at Bletchley Park during WWII! He proposed a test that could answer the question 11

12 The Turing Test Figure 13.2 In a Turing test, the interrogator must determine which respondent is the computer and which is the human 12

13 The Turing Test Loebner prize The first practical instantiation of the Turing test, held annually since 1991! Chatbots = programs designed to carry on a conversation with a human user Has any chatbot won the Loebner Prize yet? Read the Wikipedia article: 13

14 Try talking with one of the following chatbots: Read more:

15 A program passed the Turing Test! On 7 June 2014, at a contest marking the 60 th anniversary of Turing's death, 33% of the event's judges thought that the program Eugene Goostman was human after 5 minutes of interacting with it. Turing's prediction in his 1950 paper Computing Machinery and Intelligence, was that, by the year 2000, machines would be capable of fooling 30% of human judges after five minutes of questioning. The event's organizer, Kevin Warwick, considered it to have passed Turing's test. Source: 15

16 Not in text Strategies for passing the Turing Test Weak equivalence Two systems (human and computer) are equivalent in results (output), but they do not arrive at those results in the same way Strong equivalence Two systems (human and computer) use the same internal processes to produce results 16

17 13.2 Knowledge Representation We need to create a logical view of the data, based on how we want to process it Natural language is very descriptive, but does not lend itself to efficient processing Semantic networks and search trees are promising techniques for representing knowledge. 17

18 Semantic Networks Semantic network/net = A knowledge representation technique that focuses on the relationships between objects. A directed graph is used to represent a semantic net. Remember directed Graphs from Ch.8? 18

19 Semantic Networks What questions can we ask about the data in this network? What questions can we not ask? 19

20 What questions can we not ask? Is John a good student? Do Mary and John know each other? Solution What questions can we ask about the data in this network? Is John male? Does Mary have an eye color? How many students live in Heritage Acres? 20

21 QUIZ What would a computer answer, based solely on this S.N.? Do whales have vertebrae? Are there 2 or more animals that have fur? Do bears live in water? 21

22 Not in text Prolog: a language dedicated to Semantic Networks! Visual representation of the S.N. Prolog code 22

23 Not in text Prolog: a language dedicated to Semantic Networks! Who are Jim s ancestors? 23

24 Not in text Prolog: a language dedicated to Semantic Networks! Who are Jim s female ancestors? In order to answer this, we need to add more information to our model! 24

25 Designing Semantic Networks The objects in the network represent the objects in the real world that we are representing The relationships that we represent are based on the real world questions that we would like to ask That is, the types of relationships represented determine which questions are easily answered, which are more difficult to answer, and which cannot be answered Challenges: Find the relationships that relevant to the problem! Populate the network with all data needed! 25

26 Search Trees Search tree = structure that represents alternatives in adversarial situations such as game playing The paths down a search tree represent a series of decisions made by the players Remember Trees from Ch.8? 26

27 Nim Figure 13.4 A search tree for a simplified version of Nim: Five spaces total, each player (X and 0) places 1, 2, or 3 symbols from Left to Right. Player to place last symbol wins. 27

28 Is this a binary tree? 28

29 Nim For each leaf, decide which player has won! Does the first player have a winning strategy? 29

30 Your turn! Draw the tree for the Nim game with 4 positions and either 1 or 2 symbols 30

31 Search tree for the Nim game with 4 positions and either 1 or 2 symbols 31

32 Search tree for the Nim game with 4 positions and either 1 or 2 symbols Does the first player have a winning strategy? 32

33 Quick work for next time Draw the search tree for the Nim game with 5 positions either 1 or 2 symbols per turn. Does the first player have a winning strategy? Does the second player have one? 33

34 Search Trees Search tree analysis can be applied to other, more complicated games such as chess. However, the full analysis of the chess search tree would take many lifetimes of the Universe! (on today s fastest supercomputers!) Because these trees are so large, only a fraction of the tree can be analyzed in a reasonable time. Therefore, we must find a way to intelligently prune the tree. 34

35 Techniques for pruning Search Trees Depth-first search down the paths of a tree prior to searching across levels Remember DFS from Ch.8? Breadth-first search across levels of a tree prior to searching down specific paths Breadth-first tends to yield the best results 35

36 DFS vs. BFS example Figure 13.5 Depth-first and breadth-first searches 36

37 This is the end of the material covered in our course! Skip the remainder of Ch.13, starting with 13.3 Expert Systems 37

38 Read bio: Who am I? My Ph.D. was in Political Science, not Computer Science! I coined the term bounded rationality in I received the Nobel prize in economics and the Turing award (in CS)! 38

39 Not a homework, do not turn in! Practice/review problems for Ch.13: 6 through through 35 37, 38, 39, 42 through 45 39

Adversarial Search: Game Playing. Reading: Chapter

Adversarial Search: Game Playing. Reading: Chapter Adversarial Search: Game Playing Reading: Chapter 6.5-6.8 1 Games and AI Easy to represent, abstract, precise rules One of the first tasks undertaken by AI (since 1950) Better than humans in Othello and

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

Artificial Intelligence Search III

Artificial Intelligence Search III Artificial Intelligence Search III Lecture 5 Content: Search III Quick Review on Lecture 4 Why Study Games? Game Playing as Search Special Characteristics of Game Playing Search Ingredients of 2-Person

More information

Artificial Intelligence. Minimax and alpha-beta pruning

Artificial Intelligence. Minimax and alpha-beta pruning Artificial Intelligence Minimax and alpha-beta pruning In which we examine the problems that arise when we try to plan ahead to get the best result in a world that includes a hostile agent (other agent

More information

CS 771 Artificial Intelligence. Adversarial Search

CS 771 Artificial Intelligence. Adversarial Search CS 771 Artificial Intelligence Adversarial Search Typical assumptions Two agents whose actions alternate Utility values for each agent are the opposite of the other This creates the adversarial situation

More information

Game Playing AI Class 8 Ch , 5.4.1, 5.5

Game Playing AI Class 8 Ch , 5.4.1, 5.5 Game Playing AI Class Ch. 5.-5., 5.4., 5.5 Bookkeeping HW Due 0/, :59pm Remaining CSP questions? Cynthia Matuszek CMSC 6 Based on slides by Marie desjardin, Francisco Iacobelli Today s Class Clear criteria

More information

Adversarial Search (Game Playing)

Adversarial Search (Game Playing) Artificial Intelligence Adversarial Search (Game Playing) Chapter 5 Adapted from materials by Tim Finin, Marie desjardins, and Charles R. Dyer Outline Game playing State of the art and resources Framework

More information

Game Playing AI. Dr. Baldassano Yu s Elite Education

Game Playing AI. Dr. Baldassano Yu s Elite Education Game Playing AI Dr. Baldassano chrisb@princeton.edu Yu s Elite Education Last 2 weeks recap: Graphs Graphs represent pairwise relationships Directed/undirected, weighted/unweights Common algorithms: Shortest

More information

Game-Playing & Adversarial Search

Game-Playing & Adversarial Search Game-Playing & Adversarial Search This lecture topic: Game-Playing & Adversarial Search (two lectures) Chapter 5.1-5.5 Next lecture topic: Constraint Satisfaction Problems (two lectures) Chapter 6.1-6.4,

More information

CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH Santiago Ontañón so367@drexel.edu Recall: Adversarial Search Idea: When there is only one agent in the world, we can solve problems using DFS, BFS, ID,

More information

Monte Carlo Tree Search

Monte Carlo Tree Search Monte Carlo Tree Search 1 By the end, you will know Why we use Monte Carlo Search Trees The pros and cons of MCTS How it is applied to Super Mario Brothers and Alpha Go 2 Outline I. Pre-MCTS Algorithms

More information

Artificial Intelligence Adversarial Search

Artificial Intelligence Adversarial Search Artificial Intelligence Adversarial Search Adversarial Search Adversarial search problems games They occur in multiagent competitive environments There is an opponent we can t control planning again us!

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence selman@cs.cornell.edu Module: Adversarial Search R&N: Chapter 5 1 Outline Adversarial Search Optimal decisions Minimax α-β pruning Case study: Deep Blue

More information

Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA

Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA 5.1-5.2 Games: Outline of Unit Part I: Games as Search Motivation Game-playing AI successes Game Trees Evaluation

More information

Dr Rong Qu History of AI

Dr Rong Qu History of AI Dr Rong Qu History of AI AI Originated in 1956, John McCarthy coined the term very successful at early stage Within 10 years a computer will be a chess champion Herbert Simon, 1957 IBM Deep Blue on 11

More information

History and Philosophical Underpinnings

History and Philosophical Underpinnings History and Philosophical Underpinnings Last Class Recap game-theory why normal search won t work minimax algorithm brute-force traversal of game tree for best move alpha-beta pruning how to improve on

More information

Lecture 33: How can computation Win games against you? Chess: Mechanical Turk

Lecture 33: How can computation Win games against you? Chess: Mechanical Turk 4/2/0 CS 202 Introduction to Computation " UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department Lecture 33: How can computation Win games against you? Professor Andrea Arpaci-Dusseau Spring 200

More information

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game Outline Game Playing ECE457 Applied Artificial Intelligence Fall 2007 Lecture #5 Types of games Playing a perfect game Minimax search Alpha-beta pruning Playing an imperfect game Real-time Imperfect information

More information

AI in Tabletop Games. Team 13 Josh Charnetsky Zachary Koch CSE Professor Anita Wasilewska

AI in Tabletop Games. Team 13 Josh Charnetsky Zachary Koch CSE Professor Anita Wasilewska AI in Tabletop Games Team 13 Josh Charnetsky Zachary Koch CSE 352 - Professor Anita Wasilewska Works Cited Kurenkov, Andrey. a-brief-history-of-game-ai.png. 18 Apr. 2016, www.andreykurenkov.com/writing/a-brief-history-of-game-ai/

More information

CSC321 Lecture 23: Go

CSC321 Lecture 23: Go CSC321 Lecture 23: Go Roger Grosse Roger Grosse CSC321 Lecture 23: Go 1 / 21 Final Exam Friday, April 20, 9am-noon Last names A Y: Clara Benson Building (BN) 2N Last names Z: Clara Benson Building (BN)

More information

How AI Won at Go and So What? Garry Kasparov vs. Deep Blue (1997)

How AI Won at Go and So What? Garry Kasparov vs. Deep Blue (1997) How AI Won at Go and So What? Garry Kasparov vs. Deep Blue (1997) Alan Fern School of Electrical Engineering and Computer Science Oregon State University Deep Mind s vs. Lee Sedol (2016) Watson vs. Ken

More information

What is AI? Robert Platt Northeastern University

What is AI? Robert Platt Northeastern University Robert Platt Northeastern University Some material used from: 1. Russell/Norvig, AIMA 2. Stacy Marsella, CS4100 3. Seif El-Nasr, CS4100 4. Amy Hoover, CS4100 Historical perspective: Handbook of AI: the

More information

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH Santiago Ontañón so367@drexel.edu Recall: Problem Solving Idea: represent the problem we want to solve as: State space Actions Goal check Cost function

More information

Andrei Behel AC-43И 1

Andrei Behel AC-43И 1 Andrei Behel AC-43И 1 History The game of Go originated in China more than 2,500 years ago. The rules of the game are simple: Players take turns to place black or white stones on a board, trying to capture

More information

Game-playing: DeepBlue and AlphaGo

Game-playing: DeepBlue and AlphaGo Game-playing: DeepBlue and AlphaGo Brief history of gameplaying frontiers 1990s: Othello world champions refuse to play computers 1994: Chinook defeats Checkers world champion 1997: DeepBlue defeats world

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Instructor: Stuart Russell University of California, Berkeley Game Playing State-of-the-Art Checkers: 1950: First computer player. 1959: Samuel s self-taught

More information

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I Adversarial Search and Game- Playing C H A P T E R 6 C M P T 3 1 0 : S P R I N G 2 0 1 1 H A S S A N K H O S R A V I Adversarial Search Examine the problems that arise when we try to plan ahead in a world

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH 10/23/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Recall: Problem Solving Idea: represent

More information

Programming Project 1: Pacman (Due )

Programming Project 1: Pacman (Due ) Programming Project 1: Pacman (Due 8.2.18) Registration to the exams 521495A: Artificial Intelligence Adversarial Search (Min-Max) Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu

More information

Game Playing. Garry Kasparov and Deep Blue. 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM.

Game Playing. Garry Kasparov and Deep Blue. 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM. Game Playing Garry Kasparov and Deep Blue. 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM. Game Playing In most tree search scenarios, we have assumed the situation is not going to change whilst

More information

The REAL Problem With Artificial Intelligence:

The REAL Problem With Artificial Intelligence: The REAL Problem With Artificial Intelligence: A Lack of Understanding Dr. Frank Jones January 2016 Outline of This Talk Beginning (YOU ARE HERE) Middle End Definition: Artificial Intelligence: The branch

More information

CPS 570: Artificial Intelligence Two-player, zero-sum, perfect-information Games

CPS 570: Artificial Intelligence Two-player, zero-sum, perfect-information Games CPS 57: Artificial Intelligence Two-player, zero-sum, perfect-information Games Instructor: Vincent Conitzer Game playing Rich tradition of creating game-playing programs in AI Many similarities to search

More information

THE AI REVOLUTION. How Artificial Intelligence is Redefining Marketing Automation

THE AI REVOLUTION. How Artificial Intelligence is Redefining Marketing Automation THE AI REVOLUTION How Artificial Intelligence is Redefining Marketing Automation The implications of Artificial Intelligence for modern day marketers The shift from Marketing Automation to Intelligent

More information

Adversarial Search. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5

Adversarial Search. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5 Adversarial Search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5 Outline Game

More information

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search CSE 473: Artificial Intelligence Fall 2017 Adversarial Search Mini, pruning, Expecti Dieter Fox Based on slides adapted Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Dan Weld, Stuart Russell or Andrew Moore

More information

Introduction to AI. What is Artificial Intelligence?

Introduction to AI. What is Artificial Intelligence? Introduction to AI Instructor: Dr. Wei Ding Fall 2009 1 What is Artificial Intelligence? Views of AI fall into four categories: Thinking Humanly Thinking Rationally Acting Humanly Acting Rationally The

More information

CSE 40171: Artificial Intelligence. Adversarial Search: Games and Optimality

CSE 40171: Artificial Intelligence. Adversarial Search: Games and Optimality CSE 40171: Artificial Intelligence Adversarial Search: Games and Optimality 1 What is a game? Game Playing State-of-the-Art Checkers: 1950: First computer player. 1994: First computer champion: Chinook

More information

Game playing. Outline

Game playing. Outline Game playing Chapter 6, Sections 1 8 CS 480 Outline Perfect play Resource limits α β pruning Games of chance Games of imperfect information Games vs. search problems Unpredictable opponent solution is

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence One way to define Artificial Intelligence (AI) is as a branch of science trying to determine and formally describe, permitting a computer implementation the solutions for hard problems.

More information

Games and Adversarial Search II

Games and Adversarial Search II Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3) Some slides adapted from Richard Lathrop, USC/ISI, CS 271 Review: The Minimax Rule Idea: Make the best move for MAX assuming that MIN always

More information

Game-Playing & Adversarial Search Alpha-Beta Pruning, etc.

Game-Playing & Adversarial Search Alpha-Beta Pruning, etc. Game-Playing & Adversarial Search Alpha-Beta Pruning, etc. First Lecture Today (Tue 12 Jul) Read Chapter 5.1, 5.2, 5.4 Second Lecture Today (Tue 12 Jul) Read Chapter 5.3 (optional: 5.5+) Next Lecture (Thu

More information

CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5

CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5 CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5 Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Topics Game playing Game trees

More information

Game Playing: Adversarial Search. Chapter 5

Game Playing: Adversarial Search. Chapter 5 Game Playing: Adversarial Search Chapter 5 Outline Games Perfect play minimax search α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Games vs. Search

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Games and game trees Multi-agent systems

More information

Artificial Intelligence Lecture 3

Artificial Intelligence Lecture 3 Artificial Intelligence Lecture 3 The problem Depth first Not optimal Uses O(n) space Optimal Uses O(B n ) space Can we combine the advantages of both approaches? 2 Iterative deepening (IDA) Let M be a

More information

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1 Announcements Homework 1 Due tonight at 11:59pm Project 1 Electronic HW1 Written HW1 Due Friday 2/8 at 4:00pm CS 188: Artificial Intelligence Adversarial Search and Game Trees Instructors: Sergey Levine

More information

SDS PODCAST EPISODE 110 ALPHAGO ZERO

SDS PODCAST EPISODE 110 ALPHAGO ZERO SDS PODCAST EPISODE 110 ALPHAGO ZERO Show Notes: http://www.superdatascience.com/110 1 Kirill: This is episode number 110, AlphaGo Zero. Welcome back ladies and gentlemen to the SuperDataSceince podcast.

More information

Mastering Chess and Shogi by Self- Play with a General Reinforcement Learning Algorithm

Mastering Chess and Shogi by Self- Play with a General Reinforcement Learning Algorithm Mastering Chess and Shogi by Self- Play with a General Reinforcement Learning Algorithm by Silver et al Published by Google Deepmind Presented by Kira Selby Background u In March 2016, Deepmind s AlphaGo

More information

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1 Adversarial Search Read AIMA Chapter 5.2-5.5 CIS 421/521 - Intro to AI 1 Adversarial Search Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides were created by Dan

More information

Ch.4 AI and Games. Hantao Zhang. The University of Iowa Department of Computer Science. hzhang/c145

Ch.4 AI and Games. Hantao Zhang. The University of Iowa Department of Computer Science.   hzhang/c145 Ch.4 AI and Games Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of Computer Science Artificial Intelligence p.1/29 Chess: Computer vs. Human Deep Blue is a chess-playing

More information

Final Lecture: Fun, mainly

Final Lecture: Fun, mainly Today s Plan Final Lecture: Fun, mainly Minesweeper Conway s Game of Life The Busy-Beaver function Eliza The Turing Test: Can a machine be intelligent? The Chinese Room: Maybe not. A Story about a Barometer

More information

Adversarial Search Aka Games

Adversarial Search Aka Games Adversarial Search Aka Games Chapter 5 Some material adopted from notes by Charles R. Dyer, U of Wisconsin-Madison Overview Game playing State of the art and resources Framework Game trees Minimax Alpha-beta

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 6. Board Games Search Strategies for Games, Games with Chance, State of the Art Joschka Boedecker and Wolfram Burgard and Bernhard Nebel Albert-Ludwigs-Universität

More information

Adversarial search (game playing)

Adversarial search (game playing) Adversarial search (game playing) References Russell and Norvig, Artificial Intelligence: A modern approach, 2nd ed. Prentice Hall, 2003 Nilsson, Artificial intelligence: A New synthesis. McGraw Hill,

More information

Adversarial Search and Game Playing. Russell and Norvig: Chapter 5

Adversarial Search and Game Playing. Russell and Norvig: Chapter 5 Adversarial Search and Game Playing Russell and Norvig: Chapter 5 Typical case 2-person game Players alternate moves Zero-sum: one player s loss is the other s gain Perfect information: both players have

More information

Games and Adversarial Search

Games and Adversarial Search 1 Games and Adversarial Search BBM 405 Fundamentals of Artificial Intelligence Pinar Duygulu Hacettepe University Slides are mostly adapted from AIMA, MIT Open Courseware and Svetlana Lazebnik (UIUC) Spring

More information

Foundations of AI. 6. Board Games. Search Strategies for Games, Games with Chance, State of the Art

Foundations of AI. 6. Board Games. Search Strategies for Games, Games with Chance, State of the Art Foundations of AI 6. Board Games Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller SA-1 Contents Board Games Minimax

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 6. Board Games Search Strategies for Games, Games with Chance, State of the Art Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel Albert-Ludwigs-Universität

More information

What is AI? AI is the reproduction of human reasoning and intelligent behavior by computational methods. an attempt of. Intelligent behavior Computer

What is AI? AI is the reproduction of human reasoning and intelligent behavior by computational methods. an attempt of. Intelligent behavior Computer What is AI? an attempt of AI is the reproduction of human reasoning and intelligent behavior by computational methods Intelligent behavior Computer Humans 1 What is AI? (R&N) Discipline that systematizes

More information

Adversarial Search Lecture 7

Adversarial Search Lecture 7 Lecture 7 How can we use search to plan ahead when other agents are planning against us? 1 Agenda Games: context, history Searching via Minimax Scaling α β pruning Depth-limiting Evaluation functions Handling

More information

Foundations of Artificial Intelligence Introduction State of the Art Summary. classification: Board Games: Overview

Foundations of Artificial Intelligence Introduction State of the Art Summary. classification: Board Games: Overview Foundations of Artificial Intelligence May 14, 2018 40. Board Games: Introduction and State of the Art Foundations of Artificial Intelligence 40. Board Games: Introduction and State of the Art 40.1 Introduction

More information

V. Adamchik Data Structures. Game Trees. Lecture 1. Apr. 05, Plan: 1. Introduction. 2. Game of NIM. 3. Minimax

V. Adamchik Data Structures. Game Trees. Lecture 1. Apr. 05, Plan: 1. Introduction. 2. Game of NIM. 3. Minimax Game Trees Lecture 1 Apr. 05, 2005 Plan: 1. Introduction 2. Game of NIM 3. Minimax V. Adamchik 2 ü Introduction The search problems we have studied so far assume that the situation is not going to change.

More information

Artificial Intelligence for Engineers. EE 562 Winter 2015

Artificial Intelligence for Engineers. EE 562 Winter 2015 Artificial Intelligence for Engineers EE 562 Winter 2015 1 Administrative Details Instructor: Linda Shapiro, 634 CSE, shapiro@cs.washington.edu TA: ½ time Bilge Soran, bilge@cs.washington.edu Course Home

More information

Creating a Poker Playing Program Using Evolutionary Computation

Creating a Poker Playing Program Using Evolutionary Computation Creating a Poker Playing Program Using Evolutionary Computation Simon Olsen and Rob LeGrand, Ph.D. Abstract Artificial intelligence is a rapidly expanding technology. We are surrounded by technology that

More information

COMP219: Artificial Intelligence. Lecture 13: Game Playing

COMP219: Artificial Intelligence. Lecture 13: Game Playing CMP219: Artificial Intelligence Lecture 13: Game Playing 1 verview Last time Search with partial/no observations Belief states Incremental belief state search Determinism vs non-determinism Today We will

More information

CSE 473: Artificial Intelligence. Outline

CSE 473: Artificial Intelligence. Outline CSE 473: Artificial Intelligence Adversarial Search Dan Weld Based on slides from Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer (best illustrations from ai.berkeley.edu) 1

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 1: Intro

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 1: Intro COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 1: Intro Sanjeev Arora Elad Hazan Today s Agenda Defining intelligence and AI state-of-the-art, goals Course outline AI by introspection

More information

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter Read , Skim 5.7

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter Read , Skim 5.7 ADVERSARIAL SEARCH Today Reading AIMA Chapter Read 5.1-5.5, Skim 5.7 Goals Introduce adversarial games Minimax as an optimal strategy Alpha-beta pruning 1 Adversarial Games People like games! Games are

More information

Prepared by Vaishnavi Moorthy Asst Prof- Dept of Cse

Prepared by Vaishnavi Moorthy Asst Prof- Dept of Cse UNIT II-REPRESENTATION OF KNOWLEDGE (9 hours) Game playing - Knowledge representation, Knowledge representation using Predicate logic, Introduction tounit-2 predicate calculus, Resolution, Use of predicate

More information

UNIT 13A AI: Games & Search Strategies. Announcements

UNIT 13A AI: Games & Search Strategies. Announcements UNIT 13A AI: Games & Search Strategies 1 Announcements Do not forget to nominate your favorite CA bu emailing gkesden@gmail.com, No lecture on Friday, no recitation on Thursday No office hours Wednesday,

More information

Game Playing. Philipp Koehn. 29 September 2015

Game Playing. Philipp Koehn. 29 September 2015 Game Playing Philipp Koehn 29 September 2015 Outline 1 Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information 2 games

More information

Game Playing. Why do AI researchers study game playing? 1. It s a good reasoning problem, formal and nontrivial.

Game Playing. Why do AI researchers study game playing? 1. It s a good reasoning problem, formal and nontrivial. Game Playing Why do AI researchers study game playing? 1. It s a good reasoning problem, formal and nontrivial. 2. Direct comparison with humans and other computer programs is easy. 1 What Kinds of Games?

More information

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel Foundations of AI 6. Adversarial Search Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard & Bernhard Nebel Contents Game Theory Board Games Minimax Search Alpha-Beta Search

More information

Foundations of AI. 5. Board Games. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard and Luc De Raedt SA-1

Foundations of AI. 5. Board Games. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard and Luc De Raedt SA-1 Foundations of AI 5. Board Games Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard and Luc De Raedt SA-1 Contents Board Games Minimax Search Alpha-Beta Search Games with

More information

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 10 Today Adversarial search (R&N Ch 5) Tuesday, March 7 Knowledge Representation and Reasoning (R&N Ch 7)

More information

Adversarial Search. Chapter 5. Mausam (Based on slides of Stuart Russell, Andrew Parks, Henry Kautz, Linda Shapiro) 1

Adversarial Search. Chapter 5. Mausam (Based on slides of Stuart Russell, Andrew Parks, Henry Kautz, Linda Shapiro) 1 Adversarial Search Chapter 5 Mausam (Based on slides of Stuart Russell, Andrew Parks, Henry Kautz, Linda Shapiro) 1 Game Playing Why do AI researchers study game playing? 1. It s a good reasoning problem,

More information

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter , 5.7,5.8

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter , 5.7,5.8 ADVERSARIAL SEARCH Today Reading AIMA Chapter 5.1-5.5, 5.7,5.8 Goals Introduce adversarial games Minimax as an optimal strategy Alpha-beta pruning (Real-time decisions) 1 Questions to ask Were there any

More information

UNIT 13A AI: Games & Search Strategies

UNIT 13A AI: Games & Search Strategies UNIT 13A AI: Games & Search Strategies 1 Artificial Intelligence Branch of computer science that studies the use of computers to perform computational processes normally associated with human intellect

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Prof. Scott Niekum The University of Texas at Austin [These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

AlphaGo and Artificial Intelligence GUEST LECTURE IN THE GAME OF GO AND SOCIETY

AlphaGo and Artificial Intelligence GUEST LECTURE IN THE GAME OF GO AND SOCIETY AlphaGo and Artificial Intelligence HUCK BENNET T (NORTHWESTERN UNIVERSITY) GUEST LECTURE IN THE GAME OF GO AND SOCIETY AT OCCIDENTAL COLLEGE, 10/29/2018 The Game of Go A game for aliens, presidents, and

More information

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements CS 171 Introduction to AI Lecture 1 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Programming and experiments Simulated annealing + Genetic

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

More information

Artificial Intelligence. Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University

Artificial Intelligence. Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University Artificial Intelligence Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University What is AI? What is Intelligence? The ability to acquire and apply knowledge and skills (definition

More information

Unit-III Chap-II Adversarial Search. Created by: Ashish Shah 1

Unit-III Chap-II Adversarial Search. Created by: Ashish Shah 1 Unit-III Chap-II Adversarial Search Created by: Ashish Shah 1 Alpha beta Pruning In case of standard ALPHA BETA PRUNING minimax tree, it returns the same move as minimax would, but prunes away branches

More information

MITOCW Project: Backgammon tutor MIT Multicore Programming Primer, IAP 2007

MITOCW Project: Backgammon tutor MIT Multicore Programming Primer, IAP 2007 MITOCW Project: Backgammon tutor MIT 6.189 Multicore Programming Primer, IAP 2007 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue

More information

Random Administrivia. In CMC 306 on Monday for LISP lab

Random Administrivia. In CMC 306 on Monday for LISP lab Random Administrivia In CMC 306 on Monday for LISP lab Artificial Intelligence: Introduction What IS artificial intelligence? Examples of intelligent behavior: Definitions of AI There are as many definitions

More information

Welcome to CompSci 171 Fall 2010 Introduction to AI.

Welcome to CompSci 171 Fall 2010 Introduction to AI. Welcome to CompSci 171 Fall 2010 Introduction to AI. http://www.ics.uci.edu/~welling/teaching/ics171spring07/ics171fall09.html Instructor: Max Welling, welling@ics.uci.edu Office hours: Wed. 4-5pm in BH

More information

ARTIFICIAL INTELLIGENCE (CS 370D)

ARTIFICIAL INTELLIGENCE (CS 370D) Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) (CHAPTER-5) ADVERSARIAL SEARCH ADVERSARIAL SEARCH Optimal decisions Min algorithm α-β pruning Imperfect,

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 7: Minimax and Alpha-Beta Search 2/9/2011 Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein 1 Announcements W1 out and due Monday 4:59pm P2

More information

Announcements. CS 188: Artificial Intelligence Spring Game Playing State-of-the-Art. Overview. Game Playing. GamesCrafters

Announcements. CS 188: Artificial Intelligence Spring Game Playing State-of-the-Art. Overview. Game Playing. GamesCrafters CS 188: Artificial Intelligence Spring 2011 Announcements W1 out and due Monday 4:59pm P2 out and due next week Friday 4:59pm Lecture 7: Mini and Alpha-Beta Search 2/9/2011 Pieter Abbeel UC Berkeley Many

More information

Overview. Origins. Idea of programming computers for "intelligent" behavior. First suggested by Alan Turing, 1950.

Overview. Origins. Idea of programming computers for intelligent behavior. First suggested by Alan Turing, 1950. Lecture S2: Artificial Intelligence Lecture S2: Artificial Intelligence Overview Origins A whirlwind tour of Artificial Intelligence. Idea of programming computers for "intelligent" behavior. First suggested

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell, Luke Zettlemoyer, Dan Weld Adversarial

More information

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE ARTIFICIAL INTELLIGENCE AN INTRODUCTION Artificial Intelligence 2012 Lecture 01 Delivered By Zahid Iqbal 1 Course Logistics Course Description This course will introduce the basics of Artificial Intelligence(AI),

More information

Computer Game Programming Board Games

Computer Game Programming Board Games 1-466 Computer Game Programg Board Games Maxim Likhachev Robotics Institute Carnegie Mellon University There Are Still Board Games Maxim Likhachev Carnegie Mellon University 2 Classes of Board Games Two

More information

TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play

TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play NOTE Communicated by Richard Sutton TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play Gerald Tesauro IBM Thomas 1. Watson Research Center, I? 0. Box 704, Yorktozon Heights, NY 10598

More information

Game Playing. Dr. Richard J. Povinelli. Page 1. rev 1.1, 9/14/2003

Game Playing. Dr. Richard J. Povinelli. Page 1. rev 1.1, 9/14/2003 Game Playing Dr. Richard J. Povinelli rev 1.1, 9/14/2003 Page 1 Objectives You should be able to provide a definition of a game. be able to evaluate, compare, and implement the minmax and alpha-beta algorithms,

More information

Game-playing AIs: Games and Adversarial Search I AIMA

Game-playing AIs: Games and Adversarial Search I AIMA Game-playing AIs: Games and Adversarial Search I AIMA 5.1-5.2 Games: Outline of Unit Part I: Games as Search Motivation Game-playing AI successes Game Trees Evaluation Functions Part II: Adversarial Search

More information

AI in Business Enterprises

AI in Business Enterprises AI in Business Enterprises Are Humans Rational? Rini Palitmittam 10 th October 2017 Image Courtesy: Google Images Founders of Modern Artificial Intelligence Image Courtesy: Google Images Founders of Modern

More information

A.M. Turing, computer pioneer, worried about intelligence in humans & machines; proposed a test (1950) thinks with electricity

A.M. Turing, computer pioneer, worried about intelligence in humans & machines; proposed a test (1950) thinks with electricity Progress has been tremendous Lawrence Snyder University of Washington, Seattle The inventors of ENIAC, 1 st computer, said it thinks with electricity Do calculators think? Does performing arithmetic, which

More information

CS 331: Artificial Intelligence Adversarial Search II. Outline

CS 331: Artificial Intelligence Adversarial Search II. Outline CS 331: Artificial Intelligence Adversarial Search II 1 Outline 1. Evaluation Functions 2. State-of-the-art game playing programs 3. 2 player zero-sum finite stochastic games of perfect information 2 1

More information