EE 418 Network Security and Cryptography Lecture #3

Size: px
Start display at page:

Download "EE 418 Network Security and Cryptography Lecture #3"

Transcription

1 EE 418 Network Security and Cryptography Lecture #3 October 6, 2016 Classical cryptosystems. Lecture notes prepared by Professor Radha Poovendran. Tamara Bonaci Department of Electrical Engineering University of Washington, Seattle Outline: 1. The Shift Cipher 2. The Substitution Cipher 3. The Affine Cipher 4. The Euclidean Algorithm Methods of making communicated messages unintelligible to attackers have been important throughout history. In today s lecture, we cover some classical (historical) cryptosystems that were primarily used before the advent of computers. In doing so, we will make use of number theory, especially modular arithmetic we just reviewed. We start with the shift cipher. 1 The Shift Cipher The shift cipher is one of the oldest known cryptosystems, often attributed to Julius Caesar. The idea used in this cryptosystem is to replace each letter in an alphabet by another letter at a distance K from it. Formally, let s associate each letter A, B,..., Z with an integer 0,..., 25. If we allow the key K to be any integer with 0 K 25, the shift cipher can be defined as: P = C = K = Z 26. For 0 K 25, y = e K (x) = (x + K) mod 26, (1) x = d K (y) = (y K) mod 26. (2) Example: Let K = 3 and let the plaintext be shift. Assume each letter is shifted right (or left) by 3 places. We then get VKLIW as the cipher for the right shift, ir PEFCQ, for the left shift. 1

2 Is the Shift Cipher Secure? NO. Let s try a brute force attack: Assume Eve knows a shift cipher algorithm is used for encryption, and she observes the ciphertext V KLIW. Given the small cardinality of the key space, Eve can try all the Handout # 1 7 possible 26 shifts in right direction. Upon shifting, the following plaintexts are obtained: shift, and so on. Since, shift is the only dictionary word in the list of 26 possible words, Eve can assume that it is indeed the plaintext that was encrypted. Thus, Eve not only recovers the plaintext, but also infers the original key K = 3. vkliw 1st left shift ujkhv 2nd left shift tijgu 3rd left shift Fig. 3. Brute force attack on the shift cipher. Fig. 1. Brute force attack on shift cipher. 2 The Substitution Cipher In the shift cipher cryptosystem, each letter (alphabet) of the plaintext is replaced with an alphabet at a fixed distance determined by the key K. Given the keyspace, K = Z 26, there are only 26 possible keys in this cipher. The substitution cipher overcomes this limitation, and provides a much larger keyspace. The idea of the substitution cipher is to replace each alphabet of the plaintext with an alphabet at an arbitrary distance. Formally, we can describe this cryptosystem as follows. Let P = C = Z 26. The keyspace K includes all possible permutations of the 26 symbols, 0, 1,..., 25. For each permutation π K: y = e π (x) = π(x), (3) d π (y) = π 1 (y). (4) 2

3 π 1 denotes inverse permutation to π. Is the Substitution Cipher Secure? Brute force attack: Since a key consists of a permutation of the 26 letters, the keyspace is very large (26! ). Hence, the key space in the substitution cipher is much larger than the key space of the shift cipher, and a brute force attack (exhaustive) search will take a long time. However, other attacks are feasible against the substitution cipher. For example, frequency analysis may allow us to break this cipher, as we will show next week. 3 The Affine Cipher The idea of the affine cipher is to first scale and then shift, which is known as the affine transformation. y = e K (x) = (ax + b) mod 26, (5) d K (y) = a 1 (y b) mod 26. (6) In this scheme, the pair (a, b) denotes the cryptographic key K used for encryption/decryption. Here we need to know which pairs (a, b) are valid keys that yield an injective encryption function, and we need to know a 1 for decryption. Note: if a = 1, the affine cipher becomes identical to the shift cipher. Handout # 1 9 x X ax y=ax+b + + ax X x a ENCRYPTION b -b DECRYPTION a -1 Fig. 4. Schematic of the affine cipher cryptosystem Fig. 2. Schematic of the affine cipher cryptosystem 7.1 Decryption of the Affine Cipher Definition 2. The modular multiplicative inverse of an integer a Z m modulo m, denotedasa Modular modmultiplicative m, isanelementa Inverse Z m such that aa a a 1 (mod m). Many of the cryptosystems If m is prime, every covered non-zero in this element course of Zinvolve m has afinding multiplicative the multiplicative inverse. The modular inverse multiplicative inverse of an integer a Z m can be found using either the Extended Euclidean Algorithm, or the of an integer a under modulo arithmetic with base integer m, and the Affine cipher is the first such cryptosystem that we Direct Modular Exponentiation method. Given the multiplicative inverse, the congruence y ax + b will consider. (mod Therefore, 26) canlet s be solved startfor byx defining/reviewing as follows. what the modular multiplicative inverse is. Definition 1. The modular multiplicative inverse ax y ofb an (mod integer 26), a Z m modulo m, denotes as a 1 (8) (mod m) is an element a Z m such that: a 1 (ax) 1 (y b) (mod 26), (9) a 1 a a a (ax) (a 1 a 1 (mod m) a)x 1x x (mod 26), (10) (7) x = a 1 (y b) mod 26. (11) 3.2 Decryption with Affine Cipher An example of an affine cipher. Given the modular multiplicative inverse, the congruence y ax+b (mod 26) can be solved for x as follows: Let a =9andb = 3. Let the plaintext be d that corresponds to the numerical value 3, based on table 1. ax y b (mod 26) (8) a 1 (ax) e K (d) a 1 =(9 (y b) 3+3)mod (mod 26) 26=4. (12) (9) For the decryption part, a 1 (ax) (a 1 a)x 1x x (mod 26) d K (4) = a 1 (4 b) x = mod26=9 a 1 (y 1 b) (4(mod 3) mod 26) 26 = 9 1 (mod 26) = 3, (13) (10) (11) which is the multiplicative inverse of 9 (mod 26), i.e (mod 26). Example: Let a = 9 and b = 3. Let the plaintext be d that corresponds to the numerical value 3,. 7.2 Problem with choice of a e K (d) = ( ) mod 26 = 4. (12) Not all choices of a have a multiplicative inverse. As an example, consider the case where a =13 and b = 3. Assume the plaintext is the word busted. Using the table above, we can compute cipher for busted as follows. 3 e K (1) = (13 1+3)mod26=16=Q. (14)

4 For the decryption part, d K (4) = a 1 (4 b) mod 26 = 9 1 (4 3) mod 26 = 9 1 (mod 26) = 3, (13) which is the multiplicative inverse of 9 (mod 26), i.e (mod 26). 3.3 Problem with the Choice of a Not all choices of a have a multiplicative inverse. As an example, consider the case where a = 13 and b = 3. Assume the plaintext is the word busted. Using English letters conversion table, we can compute cipher for busted as follows. i.e. busted QDDQDQ. e K (1) = ( ) mod 26 = 16 = Q. (14) e K (20) = ( ) mod 26 = 3 = D. (15) e K (18) = ( ) mod 26 = 3 = D. (16) e K (19) = ( ) mod 26 = 16 = Q. (17) e K (4) = ( ) mod 26 = 3 = D. (18) e K (3) = ( ) mod 26 = 3 = Q. (19) Since multiple plaintexts will result in this ciphertext (for instance, the word dealer also encrypts to QDDQDQ), no unique decryption is possible here. This is due to the fact that a = 13 does not have a multiplicative inverse in Z 26. For your interest you can also work out the example for a = 2, and see that affine cipher does not work. It is thus important to characterize the integers that have multiplicative inverses mod 26, and in doing so, we have to review the concepts of prime number and greatest common divisor. Definition 2. An integer p > 1 is a prime number if it has not positive divisors other that 1 and p. If the size of our keyspace, m is a prime number, then every non-zero element Z m has a multiplicative inverse. Definition 3. Given two integers a and b, the greatest common divisor of a and b (denoted gcd (a, b)) is equal to the largest integer c that divides both a and b. Theorem 1. An integer a has an inverse (mod m) if and only if there exist numbers p and q such thar ap + qm = 1 (mod m) (20) Proof. Let s rewrite equation (20) as: 1 = ap + qm ap (mod m) (21) Equation (21) implies that a has a modular multiplicative inverse p (mod m). Let s now recall that some number r 1 (mod m) if and only we can write: for some b, implying that ap 1 (mod m) if and only if it holds that: r + bm = 1 (22) ap + mq = 1 (23) for some q. Equation (23) is, in turn, valid only if gcd(a, m) = 1. To see why, let c = gcd (a, m) and suppose c > 1. Then there exist positive integers α, β satisfying a = αc and m = βc. If ap + mq = 1 for some p, q, then pcα + qcα = 1, hence c(pα + qα) = 1. This is a contradiction since there are no positive integers that divide 1 (except 1 itself). The other direction of the theorem is also true: if gcd(a, m) = 1, then there exist integers p, q satisfying equation (20). These integers can be computed using the extended Euclidean algorithm, and integer p is a modular multiplicative inverse of a (mod m). 4

5 Theorem 2. If gcd(a, m) = 1 then ax y (mod m) has a unique solution. Example: Given m = 26, for a = 13 we have gcd(13, 26) = Also if a = 2 then gcd(2, 26) = 2. But for a = 9, gcd(9, 26) = 1 and hence the affine cipher works. Similarly for a = 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25 we have gcd(a, 26) = 1. Hence, a can take a total of 12 values with unique inverses in Z 26, and b can take any of the 26 values in Z 26. Therefore the key space is limited to = 312 values for K, and a brute force attack (exhaustive search is possible). 3.4 Computation of the Cardinality of the Key Space for the Affine Cipher Theorem 3 (Unique Factorization). For any integer m, there exists an integer n, a set of distinct primes p 1,..., p n, and a set of integers e 1,..., e n satisfying m = p e1 1 pe2 2 pen n (24) Furthermore, the sequences p 1,..., p n and e 1,..., e n are unique up to reordering of the p i s. Example: For x = 432, 432 = (25) This factorization is unique up to a rearrangement of the terms on the right hand side (i.e., we can write instead). Definition 4. Two integers a 1 and m 2 are said to be relatively prime if gcd(a, m) = 1. The number of integers in Z m that are relatively prime to m is known as the Euler-phi function, denoted by φ(m). Theorem 4. Let m = n i=1 where p i are distinct primes and e i > 0, 1 i n. Then φ(m) = n (p ei i i=1 p ei i, (26) p ei 1 i ). (27) Based on Theorem 2, the cardinality of the key space for the affine cipher is mφ(m). Example: For m = 60 and, 60 = , (28) φ(m) = (4 2) (3 1) (5 1) = 16. (29) The cardinality of the key space = 960 keys. Sources for Today s Lecture: 1. Douglas R. Stinson, Cryptography, Theory and Practice, 3rd edition. CRC Press, 2005, p Wade Trappe and Lawrence C. Washington Introduction to Cryptography with Coding Theory. Prentice Hall, 2002, p and Neil Daswani, Christoph Kern, and Anita Kesavan Foundations of Security, What Every Programmer Needs to Know. Apress, 2007, p

EE 418: Network Security and Cryptography

EE 418: Network Security and Cryptography EE 418: Network Security and Cryptography Homework 3 Solutions Assigned: Wednesday, November 2, 2016, Due: Thursday, November 10, 2016 Instructor: Tamara Bonaci Department of Electrical Engineering University

More information

Classical Cryptography

Classical Cryptography Classical Cryptography CS 6750 Lecture 1 September 10, 2009 Riccardo Pucella Goals of Classical Cryptography Alice wants to send message X to Bob Oscar is on the wire, listening to all communications Alice

More information

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext Cryptography Codes Lecture 4: The Times Cipher, Factors, Zero Divisors, and Multiplicative Inverses Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler New Cipher Times Enemy

More information

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 7 Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 Cryptography studies techniques for secure communication in the presence of third parties. A typical

More information

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence.

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence. Section 4.4 Linear Congruences Definition: A congruence of the form ax b (mod m), where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence. The solutions

More information

Fermat s little theorem. RSA.

Fermat s little theorem. RSA. .. Computing large numbers modulo n (a) In modulo arithmetic, you can always reduce a large number to its remainder a a rem n (mod n). (b) Addition, subtraction, and multiplication preserve congruence:

More information

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator.

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator. Lecture 32 Instructor s Comments: This is a make up lecture. You can choose to cover many extra problems if you wish or head towards cryptography. I will probably include the square and multiply algorithm

More information

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext Cryptography Codes Lecture 3: The Times Cipher, Factors, Zero Divisors, and Multiplicative Inverses Spring 2015 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler New Cipher Times Enemy

More information

Cryptography, Number Theory, and RSA

Cryptography, Number Theory, and RSA Cryptography, Number Theory, and RSA Joan Boyar, IMADA, University of Southern Denmark November 2015 Outline Symmetric key cryptography Public key cryptography Introduction to number theory RSA Modular

More information

The number theory behind cryptography

The number theory behind cryptography The University of Vermont May 16, 2017 What is cryptography? Cryptography is the practice and study of techniques for secure communication in the presence of adverse third parties. What is cryptography?

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

1 Introduction to Cryptology

1 Introduction to Cryptology U R a Scientist (CWSF-ESPC 2017) Mathematics and Cryptology Patrick Maidorn and Michael Kozdron (Department of Mathematics & Statistics) 1 Introduction to Cryptology While the phrase making and breaking

More information

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Chapter 0: Introduction Number Theory enjoys a very long history in short, number theory is a study of integers. Mathematicians over

More information

Data security (Cryptography) exercise book

Data security (Cryptography) exercise book University of Debrecen Faculty of Informatics Data security (Cryptography) exercise book 1 Contents 1 RSA 4 1.1 RSA in general.................................. 4 1.2 RSA background.................................

More information

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory - Divisibility - Congruences June 23, 2014 Primes - Divisibility - Congruences Definition A positive integer p is prime if p 2 and its only positive factors are itself and 1. Otherwise, if p 2, then p

More information

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete

More information

Assignment 2. Due: Monday Oct. 15, :59pm

Assignment 2. Due: Monday Oct. 15, :59pm Introduction To Discrete Math Due: Monday Oct. 15, 2012. 11:59pm Assignment 2 Instructor: Mohamed Omar Math 6a For all problems on assignments, you are allowed to use the textbook, class notes, and other

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand. Midterm #2: practice MATH 311 Intro to Number Theory midterm: Thursday, Oct 20 Please print your name: Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013 MODULE: (Title & Code) CA642 Cryptography and Number Theory COURSE: M.Sc. in Security and Forensic Computing YEAR: 1 EXAMINERS: (Including Telephone

More information

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties.

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. LECTURE 3: CONGRUENCES 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. Definition 1.1. Suppose that a, b Z and m N. We say that a is congruent to

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013/2014 MODULE: CA642/A Cryptography and Number Theory PROGRAMME(S): MSSF MCM ECSA ECSAO MSc in Security & Forensic Computing M.Sc. in Computing Study

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method Exercises Exercises 1. Show that 15 is an inverse of 7 modulo 26. 2. Show that 937 is an inverse of 13 modulo 2436. 3. By inspection (as discussed prior to Example 1), find an inverse of 4 modulo 9. 4.

More information

Math 1111 Math Exam Study Guide

Math 1111 Math Exam Study Guide Math 1111 Math Exam Study Guide The math exam will cover the mathematical concepts and techniques we ve explored this semester. The exam will not involve any codebreaking, although some questions on the

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic 1 Integers modulo n 1.1 Preliminaries Introduction to Modular Arithmetic Definition 1.1.1 (Equivalence relation). Let R be a relation on the set A. Recall that a relation R is a subset of the cartesian

More information

CHAPTER 2. Modular Arithmetic

CHAPTER 2. Modular Arithmetic CHAPTER 2 Modular Arithmetic In studying the integers we have seen that is useful to write a = qb + r. Often we can solve problems by considering only the remainder, r. This throws away some of the information,

More information

Solutions for the Practice Questions

Solutions for the Practice Questions Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions

More information

Distribution of Primes

Distribution of Primes Distribution of Primes Definition. For positive real numbers x, let π(x) be the number of prime numbers less than or equal to x. For example, π(1) = 0, π(10) = 4 and π(100) = 25. To use some ciphers, we

More information

MA 111, Topic 2: Cryptography

MA 111, Topic 2: Cryptography MA 111, Topic 2: Cryptography Our next topic is something called Cryptography, the mathematics of making and breaking Codes! In the most general sense, Cryptography is the mathematical ideas behind changing

More information

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m.

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m. Great Theoretical Ideas In Computer Science Steven Rudich CS - Spring Lecture Feb, Carnegie Mellon University Modular Arithmetic and the RSA Cryptosystem p- p MAX(a,b) + MIN(a,b) = a+b n m means that m

More information

Cryptography. Module in Autumn Term 2016 University of Birmingham. Lecturers: Mark D. Ryan and David Galindo

Cryptography. Module in Autumn Term 2016 University of Birmingham. Lecturers: Mark D. Ryan and David Galindo Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 1 Cryptography Module in Autumn Term 2016 University of Birmingham Lecturers: Mark D. Ryan and David Galindo Slides originally written

More information

Drill Time: Remainders from Long Division

Drill Time: Remainders from Long Division Drill Time: Remainders from Long Division Example (Drill Time: Remainders from Long Division) Get some practice finding remainders. Use your calculator (if you want) then check your answers with a neighbor.

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic and the RSA Public Key Cryptosystem Jeremy R. Johnson 1 Introduction Objective: To understand what a public key cryptosystem is and

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information

Math 255 Spring 2017 Solving x 2 a (mod n)

Math 255 Spring 2017 Solving x 2 a (mod n) Math 255 Spring 2017 Solving x 2 a (mod n) Contents 1 Lifting 1 2 Solving x 2 a (mod p k ) for p odd 3 3 Solving x 2 a (mod 2 k ) 5 4 Solving x 2 a (mod n) for general n 9 1 Lifting Definition 1.1. Let

More information

Sheet 1: Introduction to prime numbers.

Sheet 1: Introduction to prime numbers. Option A Hand in at least one question from at least three sheets Sheet 1: Introduction to prime numbers. [provisional date for handing in: class 2.] 1. Use Sieve of Eratosthenes to find all prime numbers

More information

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation.

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation. Congruences A congruence is a statement about divisibility. It is a notation that simplifies reasoning about divisibility. It suggests proofs by its analogy to equations. Congruences are familiar to us

More information

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh Public-Key Cryptosystem Based on Composite Degree Residuosity Classes aka Paillier Cryptosystem Harmeet Singh Harmeet Singh Winter 2018 1 / 26 Background s Background Foundation of public-key encryption

More information

Exam 1 7 = = 49 2 ( ) = = 7 ( ) =

Exam 1 7 = = 49 2 ( ) = = 7 ( ) = Exam 1 Problem 1. a) Define gcd(a, b). Using Euclid s algorithm comute gcd(889, 168). Then find x, y Z such that gcd(889, 168) = x 889 + y 168 (check your answer!). b) Let a be an integer. Prove that gcd(3a

More information

Number Theory/Cryptography (part 1 of CSC 282)

Number Theory/Cryptography (part 1 of CSC 282) Number Theory/Cryptography (part 1 of CSC 282) http://www.cs.rochester.edu/~stefanko/teaching/11cs282 1 Schedule The homework is due Sep 8 Graded homework will be available at noon Sep 9, noon. EXAM #1

More information

Final exam. Question Points Score. Total: 150

Final exam. Question Points Score. Total: 150 MATH 11200/20 Final exam DECEMBER 9, 2016 ALAN CHANG Please present your solutions clearly and in an organized way Answer the questions in the space provided on the question sheets If you run out of room

More information

Primitive Roots. Chapter Orders and Primitive Roots

Primitive Roots. Chapter Orders and Primitive Roots Chapter 5 Primitive Roots The name primitive root applies to a number a whose powers can be used to represent a reduced residue system modulo n. Primitive roots are therefore generators in that sense,

More information

Wilson s Theorem and Fermat s Theorem

Wilson s Theorem and Fermat s Theorem Wilson s Theorem and Fermat s Theorem 7-27-2006 Wilson s theorem says that p is prime if and only if (p 1)! = 1 (mod p). Fermat s theorem says that if p is prime and p a, then a p 1 = 1 (mod p). Wilson

More information

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00 18.781 Solutions to Problem Set 6 - Fall 008 Due Tuesday, Oct. 1 at 1:00 1. (Niven.8.7) If p 3 is prime, how many solutions are there to x p 1 1 (mod p)? How many solutions are there to x p 1 (mod p)?

More information

Number Theory and Public Key Cryptography Kathryn Sommers

Number Theory and Public Key Cryptography Kathryn Sommers Page!1 Math 409H Fall 2016 Texas A&M University Professor: David Larson Introduction Number Theory and Public Key Cryptography Kathryn Sommers Number theory is a very broad and encompassing subject. At

More information

Modular Arithmetic. Kieran Cooney - February 18, 2016

Modular Arithmetic. Kieran Cooney - February 18, 2016 Modular Arithmetic Kieran Cooney - kieran.cooney@hotmail.com February 18, 2016 Sums and products in modular arithmetic Almost all of elementary number theory follows from one very basic theorem: Theorem.

More information

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Public Polynomial congruences come up constantly, even when one is dealing with much deeper problems

More information

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand. Midterm #: practice MATH Intro to Number Theory midterm: Thursday, Nov 7 Please print your name: Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating

More information

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 Name: Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 INSTRUCTIONS Read Carefully Time: 50 minutes There are 5 problems. Write your name legibly at the top of this page. No calculators

More information

Modular Arithmetic. claserken. July 2016

Modular Arithmetic. claserken. July 2016 Modular Arithmetic claserken July 2016 Contents 1 Introduction 2 2 Modular Arithmetic 2 2.1 Modular Arithmetic Terminology.................. 2 2.2 Properties of Modular Arithmetic.................. 2 2.3

More information

B. Substitution Ciphers, continued. 3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the ciphertext alphabet.

B. Substitution Ciphers, continued. 3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the ciphertext alphabet. B. Substitution Ciphers, continued 3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the ciphertext alphabet. Non-periodic case: Running key substitution ciphers use a known text (in

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1 Cryptography CS 555 Topic 20: Other Public Key Encryption Schemes Topic 20 1 Outline and Readings Outline Quadratic Residue Rabin encryption Goldwasser-Micali Commutative encryption Homomorphic encryption

More information

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers.

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively rime ositive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). c) Find the remainder of 1 008

More information

Numbers (8A) Young Won Lim 5/22/17

Numbers (8A) Young Won Lim 5/22/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Numbers (8A) Young Won Lim 6/21/17

Numbers (8A) Young Won Lim 6/21/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Numbers (8A) Young Won Lim 5/24/17

Numbers (8A) Young Won Lim 5/24/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Number Theory. Konkreetne Matemaatika

Number Theory. Konkreetne Matemaatika ITT9131 Number Theory Konkreetne Matemaatika Chapter Four Divisibility Primes Prime examples Factorial Factors Relative primality `MOD': the Congruence Relation Independent Residues Additional Applications

More information

Block Ciphers Security of block ciphers. Symmetric Ciphers

Block Ciphers Security of block ciphers. Symmetric Ciphers Lecturers: Mark D. Ryan and David Galindo. Cryptography 2016. Slide: 26 Assume encryption and decryption use the same key. Will discuss how to distribute key to all parties later Symmetric ciphers unusable

More information

Math 1111 Math Exam Study Guide

Math 1111 Math Exam Study Guide Math 1111 Math Exam Study Guide The math exam will cover the mathematical concepts and techniques we ve explored this semester. The exam will not involve any codebreaking, although some questions on the

More information

University of British Columbia. Math 312, Midterm, 6th of June 2017

University of British Columbia. Math 312, Midterm, 6th of June 2017 University of British Columbia Math 312, Midterm, 6th of June 2017 Name (please be legible) Signature Student number Duration: 90 minutes INSTRUCTIONS This test has 7 problems for a total of 100 points.

More information

Overview. The Big Picture... CSC 580 Cryptography and Computer Security. January 25, Math Basics for Cryptography

Overview. The Big Picture... CSC 580 Cryptography and Computer Security. January 25, Math Basics for Cryptography CSC 580 Cryptography and Computer Security Math Basics for Cryptography January 25, 2018 Overview Today: Math basics (Sections 2.1-2.3) To do before Tuesday: Complete HW1 problems Read Sections 3.1, 3.2

More information

Public Key Encryption

Public Key Encryption Math 210 Jerry L. Kazdan Public Key Encryption The essence of this procedure is that as far as we currently know, it is difficult to factor a number that is the product of two primes each having many,

More information

LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI

LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI 1. Hensel Lemma for nonsingular solutions Although there is no analogue of Lagrange s Theorem for prime power moduli, there is an algorithm for determining

More information

Constructions of Coverings of the Integers: Exploring an Erdős Problem

Constructions of Coverings of the Integers: Exploring an Erdős Problem Constructions of Coverings of the Integers: Exploring an Erdős Problem Kelly Bickel, Michael Firrisa, Juan Ortiz, and Kristen Pueschel August 20, 2008 Abstract In this paper, we study necessary conditions

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2 Quadratic Reciprocity To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we need to be able to evaluate q for any prime q. The first (and most delicate) case

More information

ElGamal Public-Key Encryption and Signature

ElGamal Public-Key Encryption and Signature ElGamal Public-Key Encryption and Signature Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.org Winter 2017 1 / 10 ElGamal Cryptosystem and Signature Scheme Taher ElGamal, originally from Egypt,

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem 8-3-2014 The Chinese Remainder Theorem gives solutions to systems of congruences with relatively prime moduli The solution to a system of congruences with relatively prime

More information

Introduction to Cryptography

Introduction to Cryptography B504 / I538: Introduction to Cryptography Spring 2017 Lecture 10 Assignment 2 is due on Tuesday! 1 Recall: Pseudorandom generator (PRG) Defⁿ: A (fixed-length) pseudorandom generator (PRG) with expansion

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 5b September 11, 2013 CPSC 467, Lecture 5b 1/11 Stream ciphers CPSC 467, Lecture 5b 2/11 Manual stream ciphers Classical stream ciphers

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 7 1 Congruence Definition 2 Congruence is an Equivalence Relation (CER) 3 Properties of Congruence (PC) 4 Example 5 Congruences

More information

TMA4155 Cryptography, Intro

TMA4155 Cryptography, Intro Trondheim, December 12, 2006. TMA4155 Cryptography, Intro 2006-12-02 Problem 1 a. We need to find an inverse of 403 modulo (19 1)(31 1) = 540: 540 = 1 403 + 137 = 17 403 50 540 + 50 403 = 67 403 50 540

More information

Two congruences involving 4-cores

Two congruences involving 4-cores Two congruences involving 4-cores ABSTRACT. The goal of this paper is to prove two new congruences involving 4- cores using elementary techniques; namely, if a 4 (n) denotes the number of 4-cores of n,

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic Jeremy R. Johnson 1 Introduction Objective: To become familiar with modular arithmetic and some key algorithmic constructions that

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the Inverse

More information

Math 319 Problem Set #7 Solution 18 April 2002

Math 319 Problem Set #7 Solution 18 April 2002 Math 319 Problem Set #7 Solution 18 April 2002 1. ( 2.4, problem 9) Show that if x 2 1 (mod m) and x / ±1 (mod m) then 1 < (x 1, m) < m and 1 < (x + 1, m) < m. Proof: From x 2 1 (mod m) we get m (x 2 1).

More information

Diffie-Hellman key-exchange protocol

Diffie-Hellman key-exchange protocol Diffie-Hellman key-exchange protocol This protocol allows two users to choose a common secret key, for DES or AES, say, while communicating over an insecure channel (with eavesdroppers). The two users

More information

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Clock Math If it is 1:00 now. What time is it in 5 hours?

More information

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., Binary exponentiation An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., What are the last two digits of the number 2 284? In the absence

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let m and n be two relatively prime positive integers. Let a and b be any two integers. Then the two congruences x a (mod m) x b (mod n) have common solutions. Any

More information

Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS

Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS Author: MD.HASIRUL ISLAM NAZIR BASHIR Supervisor: MARCUS NILSSON Date: 2012-06-15 Subject: Mathematics and Modeling Level:

More information

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

Successful Implementation of the Hill and Magic Square Ciphers: A New Direction

Successful Implementation of the Hill and Magic Square Ciphers: A New Direction Successful Implementation of the Hill and Magic Square Ciphers: A New Direction ISSN:319-7900 Tomba I. : Dept. of Mathematics, Manipur University, Imphal, Manipur (INDIA) Shibiraj N, : Research Scholar

More information

Chapter 4 The Data Encryption Standard

Chapter 4 The Data Encryption Standard Chapter 4 The Data Encryption Standard History of DES Most widely used encryption scheme is based on DES adopted by National Bureau of Standards (now National Institute of Standards and Technology) in

More information

THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m

THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LXI, 2015, f.2 THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m BY FLORIAN LUCA and AUGUSTINE O.

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1: Introduction Instructor: Omkant Pandey Spring 2018 (CSE390) Instructor: Omkant Pandey Lecture 1: Introduction Spring 2018 (CSE390) 1 / 13 Cryptography Most of us rely on cryptography everyday

More information

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained.

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained. THE CHINESE REMAINDER THEOREM INTRODUCED IN A GENERAL KONTEXT Introduction The rst Chinese problem in indeterminate analysis is encountered in a book written by the Chinese mathematician Sun Tzi. The problem

More information

Purple. Used by Japanese government. Not used for tactical military info. Used to send infamous 14-part message

Purple. Used by Japanese government. Not used for tactical military info. Used to send infamous 14-part message Purple Purple 1 Purple Used by Japanese government o Diplomatic communications o Named for color of binder cryptanalysts used o Other Japanese ciphers: Red, Coral, Jade, etc. Not used for tactical military

More information

Practice Midterm 2 Solutions

Practice Midterm 2 Solutions Practice Midterm 2 Solutions May 30, 2013 (1) We want to show that for any odd integer a coprime to 7, a 3 is congruent to 1 or 1 mod 7. In fact, we don t need the assumption that a is odd. By Fermat s

More information

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 Deartment of Mathematical and Statistical Sciences University of Alberta Question 1. Find integers

More information

ALGEBRA: Chapter I: QUESTION BANK

ALGEBRA: Chapter I: QUESTION BANK 1 ALGEBRA: Chapter I: QUESTION BANK Elements of Number Theory Congruence One mark questions: 1 Define divisibility 2 If a b then prove that a kb k Z 3 If a b b c then PT a/c 4 If a b are two non zero integers

More information

Foundations of Cryptography

Foundations of Cryptography Foundations of Cryptography Ville Junnila viljun@utu.fi Department of Mathematics and Statistics University of Turku 2015 Ville Junnila viljun@utu.fi Lecture 10 1 of 17 The order of a number (mod n) Definition

More information

Implementation / Programming: Random Number Generation

Implementation / Programming: Random Number Generation Introduction to Modeling and Simulation Implementation / Programming: Random Number Generation OSMAN BALCI Professor Department of Computer Science Virginia Polytechnic Institute and State University (Virginia

More information

Modular Arithmetic: refresher.

Modular Arithmetic: refresher. Lecture 7. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!! 3. Euclid s GCD Algorithm. A little tricky here! Clock Math If it is 1:00

More information

A Cryptosystem Based on the Composition of Reversible Cellular Automata

A Cryptosystem Based on the Composition of Reversible Cellular Automata A Cryptosystem Based on the Composition of Reversible Cellular Automata Adam Clarridge and Kai Salomaa Technical Report No. 2008-549 Queen s University, Kingston, Canada {adam, ksalomaa}@cs.queensu.ca

More information

Classification of Ciphers

Classification of Ciphers Classification of Ciphers A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Technology by Pooja Maheshwari to the Department of Computer Science & Engineering Indian

More information