Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext

Size: px
Start display at page:

Download "Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext"

Transcription

1 Cryptography Codes Lecture 3: The Times Cipher, Factors, Zero Divisors, and Multiplicative Inverses Spring 2015 Morgan Schreffler Office: POT 902

2 New Cipher Times Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext A C B F C I How will the plaintext letter D be encrypted? How will the plaintext letter K be encrypted?

3 Encryption Method: Times Cipher Definition (Encryption: Times Cipher) A Times Cipher encrypts by multiplying each letter position. The conversion from English plaintext to ciphertext is represented by the formula (mod 26) =. The conversion from plaintext in a language with n letters to ciphertext is represented by the formula (mod n) =. The cipher from the previous slide is represented by 3 (mod 26) =.

4 Trouble with Times Cipher An enemy agent uses the Times cipher: (mod 26) =. For the times cipher 4 (mod 26) =, how is the letter I encrypted? For the times cipher 4 (mod 26) =, how is the letter V encrypted? What could be wrong with the cipher 4 (mod 26) =?

5 Related Idea: Zero-Divisors Recall the Times Cipher 4 (mod 26) = sent both I and V to N. This is because 4 (mod 26) is something called a zero divisor. Definition (Zero Divisor) A zero divisor modulo n is a number a 0 (mod n) where some other number b 0 (mod n) gives a b (mod n) = 0. (Zero-Divisor for n = 6) The values a = 2 (mod 6) and b = 3 (mod 6) are not equal to zero (mod 6). However, a b (mod n) = 2 3 (mod 6) = 6 (mod 6) = 0 (mod 6). Because a b (mod n) = 0, we can say that both a = 2 (mod 6) and b = 3 (mod 6) are zero-divisors.

6 Drill Time: Zero Divisors Answer these questions about zero-divisors, then check your answers with a neighbor! Does 3 multiply with 2 (mod 6) to make zero? Does 3 multiply with 12 (mod 18) to make zero? Is there a non-zero number to multiply 2 (mod 4) to make zero? Is there a non-zero number to multiply 3 (mod 4) to make zero? Is there a non-zero number to multiply 2 (mod 10) to make zero?

7 Drill Time: Zero Divisors Answer these questions about zero-divisors, then check your answers with a neighbor! Is 6 (mod 15) a zero-divisor? Is 10 (mod 15) a zero-divisor? Is 14 (mod 21) a zero-divisor? Is 9 (mod 33) a zero-divisor? Find a value n so that 4 (mod n) is a zero-divisor. Find a value n so that 11 (mod n) is a zero-divisor.

8 Times Cipher and Zero Divisors Why is 13 (mod 26) a zero divisor for an English language times cipher? Why is 8 (mod 26) a zero divisor for an English language times cipher? Do you think 7 (mod 26) is a zero divisor for an English-language Times Cipher? Why or why not?

9 Times Cipher and Zero Divisors Greek Alphabet Alien # $ % & Q Σ Ψ Is 10 (mod 24) a zero divisor for a Greek language times cipher? Why or Why not? Is 3 (mod 11) a zero divisor for an Alien language times cipher? Why or why not?

10 Related Idea: Unit Definition (Unit) A nonzero value a < n which is not a zero divisor modulo n is called a unit modulo n. If a > n or a < 0, we say a is a unit modulo n if a (mod n) is a unit when simplified. (Identifying units mod n) The value 12 (mod 19) is a unit. This is because 12 (mod 19) is not a zero divisor. The value 23 (mod 20) is not yet reduced! Note that 23 = 3 (mod 20). Since 3 (mod 20) is not a zero-divisor, 3 (mod 20) must be a unit. This says that 23 (mod 20) is a unit too! The value 4 (mod 20) is not a unit, since 4 5 = 0 (mod 20), making 4 a zero divisor modulo 20.

11 Is Guess and Check the Only Way to Find Zero Divisors? When determining if 12 (mod 19) or 3 (mod 20) were zero divisors, we had to multiply by every nonzero number to see if we got zero. There must be a better way! Definition (Factor/Divisor) A factor (or divisor) of an integer n is any number a that has a partner b with a b = n. Put another way, a is a factor of n if n a is a whole number. Note Let n = 0 in the first definition above. Does it look familiar? That s where the name zero-divisor comes from! Since 3 8 = 24, the integer n = 24 has factors a = 3 and b = 8. Other factors for n = 24 are 1, 2, 4, 6, and 12. The integer n = 17 only has factors 1 and 17.

12 Related Idea: Zero-Divisor Unit Factor Connection Theorem Let a and n be integers. If a and n share a factor which isn t 1, then a is a zero-divisor modulo n. Otherwise, a is a unit modulo n. (Identifying zero-divisors and units mod n) The theorem above allows us to easily list out zero-divisors and units by using factors. Let s consider mod 12. Factors of 12 not equal to 1 are 22, 33, 44, 66, 1212, and the nonzero numbers mod 12 are 1, 2 2, 3 3, 4 4, 5, 6 6, 7, 8 8, 9 9, 10 10, 11. Even numbers have a factor of 2. Numbers 3 and 9 have a factor of 3. Factors 4, 6, and 12 don t pick off any extra numbers. The slashed numbers are the zero divisors modulo 12, and the untouched numbers are the units modulo 12.

13 English Times Cipher Recall our first Times Cipher example: 3 (mod 26) =. (A C, B F, C I,...) Is 3 (mod 26) a unit? Why or why not? What is 3 9 (mod 26)? Where does the modular equation 9 (mod 26) = send the letter C? Letter F? Letter I? As a pair, 3 (mod 26) and 9 (mod 26) have a special name in modular arithmetic...

14 Related Idea: Multiplicative Inverse Definition (Multiplicative Inverse) The unit a (mod n) has multiplicative inverse b (mod n) if a b = 1 (mod n). This also says the multiplicative inverse of b (mod n) is a (mod n). In (mod 10), the units are 1, 3, 7, 9. (Verify this!) Notice that 1 1 = 1 (mod 10), so 1 is the multiplicative inverse of 1 (This is true for all n.) 3 7 = 21 (mod 10) = 1 (mod 10), so 3 and 7 are multiplicative inverses modulo = 81 (mod 10) = 1 (mod 10), so 9 is the multiplicative inverse of itself modulo 10! Keep in mind! Only units have multiplicative inverses!

15 Drill Time: Multiplicative Inverse Answer these questions, then check your answers with a neighbor! Is 3 the multiplicative inverse to 2 (mod 5)? Is 3 the multiplicative inverse to 7 (mod 11)? Does 4 (mod 7) have a multiplicative inverse?

16 Finding Multiplicative Inverses, Method 1 Remember, only units have multiplicative inverses. This leads to our first method for finding multiplicative inverses. Theorem (Finding Multiplicative Inverses by Guess and Check) To find the multiplicative inverse of a unit a (mod n), do the following: (i) Make a list of ALL units b (mod n). This list will always start with 1 and end with n 1. (ii) For each value b (mod n) in the list above, calculate a b (mod n). If a b (mod n) = 1 then b is the multiplicative inverse of a. If a b (mod n) 1 then go to the next number in the list. For some values of n (like n = 12) there are very few units, so it is easy to quickly check all products a b (mod n).

17 of finding Multiplicative Inverses, Method 1 It is easy to check that the units modulo 26 are the odd values, excluding 13. You can easily use Method 1 above to find the multiplicative inverse of all units (mod 26): Unit Value Mult. Inverse Notice that multiplicative inverses come in pairs: 9 is the multiplicative inverse of 3 (mod 26) but this also says that 3 is the multiplicative inverse of 9 (mod 26)!

18 Drill Time: Multiplicative Inverse Answer these questions, then check your answers with a neighbor! What is the multiplicative inverse to 3 (mod 10)? What is the multiplicative inverse to 7 (mod 11)? What is the multiplicative inverse to 5 (mod 12)?

19 Finding Multiplicative Inverses, Method 2 Theorem To find the multiplicative inverse to a (mod n), make two lists: (i) Make multiples of the value n: {n, 2n, 3n, 4n,...} (ii) Add 1 to every member of the list from step (i): {n + 1, 2n + 1, 3n + 1, 4n + 1,...} Starting with n + 1, divide each number from Step (ii) by a. If the result is a whole number, that result is the multiplicative inverse for a. Otherwise, move to the next number on the list. Check Your Understanding Each number in the list from step (ii) is equal to (mod n)?

20 of finding Multiplicative Inverses, Method 2 The Ancient Roman Alphabet had only 23 letters. For this language we would use mod 23. Because there are so many units, it is much easier to find multiplicative inverses by Method 2. Let s find the multiplicative inverse of 7 (mod 23). We start by making our lists: (i) Make multiples of the value 23: {23, 46, 69, 92, 115, 138, 161, 184, 207, 230,...} (ii) Add 1 to every member of the list from step (i): {24, 47, 70, 93, 116, 139, 162, 185, 208, 231,...} Now divide each number in list (ii) by 7. On the third number we get 70 7 = 10. This says that 10 (mod 23) is the multiplicative inverse of 7 (mod 23). We can check that 7 10 (mod 23) = 1.

21 Decryption Method: Times Cipher Definition (Decryption: Times Cipher) A Times Cipher in a language with n letters (mod n) =. can be decrypted by finding a value (called snowflake) so that = 1 (mod n) Decryption can be described completely as (mod n) =. Note: and are multiplicative inverses! For an English Times Cipher (mod n) =, to decrypt we must find the multiplicative inverse of (mod 26). This number is, and the decryption equation is (mod 26) =.

22 Big Connection: Which General Times Ciphers Work? Theorem (Units and Times Cipher Decryption) The Times Cipher (mod n) = is only valid when is a unit modulo n. (Why?) Decryption of this Times Cipher is given by =, where is the multiplicative inverse to. (A Language with 18 Characters) The values that can be in a language with 18 characters are... 1, 5, 7, 11, 13, 17 A Curious Fact In any language with more than 2 characters, there are always an even number of valid values of!

23 Times Ciphers in Different Languages Greek Alphabet Alien # $ % & Q Σ Ψ Does = 5 give a valid times cipher for the English alphabet? If so, what is the decryption key? Does = 4 give a valid times cipher for the Greek alphabet? If so, what is the decryption key? Does = 8 give a valid times cipher for the Alien alphabet? If so, what is the decryption key?

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext Cryptography Codes Lecture 4: The Times Cipher, Factors, Zero Divisors, and Multiplicative Inverses Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler New Cipher Times Enemy

More information

Drill Time: Remainders from Long Division

Drill Time: Remainders from Long Division Drill Time: Remainders from Long Division Example (Drill Time: Remainders from Long Division) Get some practice finding remainders. Use your calculator (if you want) then check your answers with a neighbor.

More information

MA 111, Topic 2: Cryptography

MA 111, Topic 2: Cryptography MA 111, Topic 2: Cryptography Our next topic is something called Cryptography, the mathematics of making and breaking Codes! In the most general sense, Cryptography is the mathematical ideas behind changing

More information

Cryptography Lecture 1: Remainders and Modular Arithmetic Spring 2014 Morgan Schreffler Office: POT 902

Cryptography Lecture 1: Remainders and Modular Arithmetic Spring 2014 Morgan Schreffler Office: POT 902 Cryptography Lecture 1: Remainders and Modular Arithmetic Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Topic Idea: Cryptography Our next topic is something called Cryptography,

More information

Classical Cryptography

Classical Cryptography Classical Cryptography CS 6750 Lecture 1 September 10, 2009 Riccardo Pucella Goals of Classical Cryptography Alice wants to send message X to Bob Oscar is on the wire, listening to all communications Alice

More information

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 7 Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 Cryptography studies techniques for secure communication in the presence of third parties. A typical

More information

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Chapter 0: Introduction Number Theory enjoys a very long history in short, number theory is a study of integers. Mathematicians over

More information

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator.

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator. Lecture 32 Instructor s Comments: This is a make up lecture. You can choose to cover many extra problems if you wish or head towards cryptography. I will probably include the square and multiply algorithm

More information

B. Substitution Ciphers, continued. 3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the ciphertext alphabet.

B. Substitution Ciphers, continued. 3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the ciphertext alphabet. B. Substitution Ciphers, continued 3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the ciphertext alphabet. Non-periodic case: Running key substitution ciphers use a known text (in

More information

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence.

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence. Section 4.4 Linear Congruences Definition: A congruence of the form ax b (mod m), where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence. The solutions

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013 MODULE: (Title & Code) CA642 Cryptography and Number Theory COURSE: M.Sc. in Security and Forensic Computing YEAR: 1 EXAMINERS: (Including Telephone

More information

The number theory behind cryptography

The number theory behind cryptography The University of Vermont May 16, 2017 What is cryptography? Cryptography is the practice and study of techniques for secure communication in the presence of adverse third parties. What is cryptography?

More information

EE 418 Network Security and Cryptography Lecture #3

EE 418 Network Security and Cryptography Lecture #3 EE 418 Network Security and Cryptography Lecture #3 October 6, 2016 Classical cryptosystems. Lecture notes prepared by Professor Radha Poovendran. Tamara Bonaci Department of Electrical Engineering University

More information

Data security (Cryptography) exercise book

Data security (Cryptography) exercise book University of Debrecen Faculty of Informatics Data security (Cryptography) exercise book 1 Contents 1 RSA 4 1.1 RSA in general.................................. 4 1.2 RSA background.................................

More information

Math 1111 Math Exam Study Guide

Math 1111 Math Exam Study Guide Math 1111 Math Exam Study Guide The math exam will cover the mathematical concepts and techniques we ve explored this semester. The exam will not involve any codebreaking, although some questions on the

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the Inverse

More information

MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION

MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION MATH CIRCLE (BEGINNERS) 02/05/2012 Modular arithmetic. Two whole numbers a and b are said to be congruent modulo n, often written a b (mod n), if they give

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 5b September 11, 2013 CPSC 467, Lecture 5b 1/11 Stream ciphers CPSC 467, Lecture 5b 2/11 Manual stream ciphers Classical stream ciphers

More information

Cryptography. Module in Autumn Term 2016 University of Birmingham. Lecturers: Mark D. Ryan and David Galindo

Cryptography. Module in Autumn Term 2016 University of Birmingham. Lecturers: Mark D. Ryan and David Galindo Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 1 Cryptography Module in Autumn Term 2016 University of Birmingham Lecturers: Mark D. Ryan and David Galindo Slides originally written

More information

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 Name: Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 INSTRUCTIONS Read Carefully Time: 50 minutes There are 5 problems. Write your name legibly at the top of this page. No calculators

More information

Cryptography, Number Theory, and RSA

Cryptography, Number Theory, and RSA Cryptography, Number Theory, and RSA Joan Boyar, IMADA, University of Southern Denmark November 2015 Outline Symmetric key cryptography Public key cryptography Introduction to number theory RSA Modular

More information

Grade 7 & 8 Math Circles October 12, 2011 Modular Arithmetic

Grade 7 & 8 Math Circles October 12, 2011 Modular Arithmetic 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7 & 8 Math Circles October 12, 2011 Modular Arithmetic To begin: Before learning about modular arithmetic

More information

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, CS1800 Discrete Structures Midterm Version C

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, CS1800 Discrete Structures Midterm Version C CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, 2016 CS1800 Discrete Structures Midterm Version C Instructions: 1. The exam is closed book and closed notes.

More information

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1 Cryptography CS 555 Topic 20: Other Public Key Encryption Schemes Topic 20 1 Outline and Readings Outline Quadratic Residue Rabin encryption Goldwasser-Micali Commutative encryption Homomorphic encryption

More information

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson TITLE PAGE FAMILY NAME: (Print in ink) GIVEN NAME(S): (Print in ink) STUDENT NUMBER: SEAT NUMBER: SIGNATURE: (in ink) (I understand that cheating is a serious offense) INSTRUCTIONS TO STUDENTS: This is

More information

Sheet 1: Introduction to prime numbers.

Sheet 1: Introduction to prime numbers. Option A Hand in at least one question from at least three sheets Sheet 1: Introduction to prime numbers. [provisional date for handing in: class 2.] 1. Use Sieve of Eratosthenes to find all prime numbers

More information

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete

More information

Distribution of Primes

Distribution of Primes Distribution of Primes Definition. For positive real numbers x, let π(x) be the number of prime numbers less than or equal to x. For example, π(1) = 0, π(10) = 4 and π(100) = 25. To use some ciphers, we

More information

Week 3: Block ciphers

Week 3: Block ciphers Week 3: Block ciphers Jay Daigle Occidental College September 13, 2018 Jay Daigle (Occidental College) Week 3: September 13, 2018 1 / 12 Jay Daigle (Occidental College) Week 3: September 13, 2018 2 / 12

More information

Fermat s little theorem. RSA.

Fermat s little theorem. RSA. .. Computing large numbers modulo n (a) In modulo arithmetic, you can always reduce a large number to its remainder a a rem n (mod n). (b) Addition, subtraction, and multiplication preserve congruence:

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

Practice Midterm 2 Solutions

Practice Midterm 2 Solutions Practice Midterm 2 Solutions May 30, 2013 (1) We want to show that for any odd integer a coprime to 7, a 3 is congruent to 1 or 1 mod 7. In fact, we don t need the assumption that a is odd. By Fermat s

More information

Groups, Modular Arithmetic and Geometry

Groups, Modular Arithmetic and Geometry Groups, Modular Arithmetic and Geometry Pupil Booklet 2012 The Maths Zone www.themathszone.co.uk Modular Arithmetic Modular arithmetic was developed by Euler and then Gauss in the late 18th century and

More information

Math 1111 Math Exam Study Guide

Math 1111 Math Exam Study Guide Math 1111 Math Exam Study Guide The math exam will cover the mathematical concepts and techniques we ve explored this semester. The exam will not involve any codebreaking, although some questions on the

More information

Overview. The Big Picture... CSC 580 Cryptography and Computer Security. January 25, Math Basics for Cryptography

Overview. The Big Picture... CSC 580 Cryptography and Computer Security. January 25, Math Basics for Cryptography CSC 580 Cryptography and Computer Security Math Basics for Cryptography January 25, 2018 Overview Today: Math basics (Sections 2.1-2.3) To do before Tuesday: Complete HW1 problems Read Sections 3.1, 3.2

More information

ElGamal Public-Key Encryption and Signature

ElGamal Public-Key Encryption and Signature ElGamal Public-Key Encryption and Signature Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.org Winter 2017 1 / 10 ElGamal Cryptosystem and Signature Scheme Taher ElGamal, originally from Egypt,

More information

EE 418: Network Security and Cryptography

EE 418: Network Security and Cryptography EE 418: Network Security and Cryptography Homework 3 Solutions Assigned: Wednesday, November 2, 2016, Due: Thursday, November 10, 2016 Instructor: Tamara Bonaci Department of Electrical Engineering University

More information

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00 18.781 Solutions to Problem Set 6 - Fall 008 Due Tuesday, Oct. 1 at 1:00 1. (Niven.8.7) If p 3 is prime, how many solutions are there to x p 1 1 (mod p)? How many solutions are there to x p 1 (mod p)?

More information

Symmetric-key encryption scheme based on the strong generating sets of permutation groups

Symmetric-key encryption scheme based on the strong generating sets of permutation groups Symmetric-key encryption scheme based on the strong generating sets of permutation groups Ara Alexanyan Faculty of Informatics and Applied Mathematics Yerevan State University Yerevan, Armenia Hakob Aslanyan

More information

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 Deartment of Mathematical and Statistical Sciences University of Alberta Question 1. Find integers

More information

MA/CSSE 473 Day 9. The algorithm (modified) N 1

MA/CSSE 473 Day 9. The algorithm (modified) N 1 MA/CSSE 473 Day 9 Primality Testing Encryption Intro The algorithm (modified) To test N for primality Pick positive integers a 1, a 2,, a k < N at random For each a i, check for a N 1 i 1 (mod N) Use the

More information

1 Introduction to Cryptology

1 Introduction to Cryptology U R a Scientist (CWSF-ESPC 2017) Mathematics and Cryptology Patrick Maidorn and Michael Kozdron (Department of Mathematics & Statistics) 1 Introduction to Cryptology While the phrase making and breaking

More information

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh Public-Key Cryptosystem Based on Composite Degree Residuosity Classes aka Paillier Cryptosystem Harmeet Singh Harmeet Singh Winter 2018 1 / 26 Background s Background Foundation of public-key encryption

More information

Classification of Ciphers

Classification of Ciphers Classification of Ciphers A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Technology by Pooja Maheshwari to the Department of Computer Science & Engineering Indian

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography How mathematics allows us to send our most secret messages quite openly without revealing their contents - except only to those who are supposed to read them The mathematical ideas

More information

Solutions for the 2nd Practice Midterm

Solutions for the 2nd Practice Midterm Solutions for the 2nd Practice Midterm 1. (a) Use the Euclidean Algorithm to find the greatest common divisor of 44 and 17. The Euclidean Algorithm yields: 44 = 2 17 + 10 17 = 1 10 + 7 10 = 1 7 + 3 7 =

More information

Dr. V.U.K.Sastry Professor (CSE Dept), Dean (R&D) SreeNidhi Institute of Science & Technology, SNIST Hyderabad, India. P = [ p

Dr. V.U.K.Sastry Professor (CSE Dept), Dean (R&D) SreeNidhi Institute of Science & Technology, SNIST Hyderabad, India. P = [ p Vol., No., A Block Cipher Involving a Key Bunch Matrix and an Additional Key Matrix, Supplemented with XOR Operation and Supported by Key-Based Permutation and Substitution Dr. V.U.K.Sastry Professor (CSE

More information

Block Ciphers Security of block ciphers. Symmetric Ciphers

Block Ciphers Security of block ciphers. Symmetric Ciphers Lecturers: Mark D. Ryan and David Galindo. Cryptography 2016. Slide: 26 Assume encryption and decryption use the same key. Will discuss how to distribute key to all parties later Symmetric ciphers unusable

More information

Assignment 2. Due: Monday Oct. 15, :59pm

Assignment 2. Due: Monday Oct. 15, :59pm Introduction To Discrete Math Due: Monday Oct. 15, 2012. 11:59pm Assignment 2 Instructor: Mohamed Omar Math 6a For all problems on assignments, you are allowed to use the textbook, class notes, and other

More information

Modular Arithmetic. Kieran Cooney - February 18, 2016

Modular Arithmetic. Kieran Cooney - February 18, 2016 Modular Arithmetic Kieran Cooney - kieran.cooney@hotmail.com February 18, 2016 Sums and products in modular arithmetic Almost all of elementary number theory follows from one very basic theorem: Theorem.

More information

Number Theory and Security in the Digital Age

Number Theory and Security in the Digital Age Number Theory and Security in the Digital Age Lola Thompson Ross Program July 21, 2010 Lola Thompson (Ross Program) Number Theory and Security in the Digital Age July 21, 2010 1 / 37 Introduction I have

More information

Modular Arithmetic: refresher.

Modular Arithmetic: refresher. Lecture 7. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!! 3. Euclid s GCD Algorithm. A little tricky here! Clock Math If it is 1:00

More information

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Clock Math If it is 1:00 now. What time is it in 5 hours?

More information

#27: Number Theory, Part II: Modular Arithmetic and Cryptography May 1, 2009

#27: Number Theory, Part II: Modular Arithmetic and Cryptography May 1, 2009 #27: Number Theory, Part II: Modular Arithmetic and Cryptography May 1, 2009 This week you will study modular arithmetic arithmetic where we make the natural numbers wrap around by only considering their

More information

6.2 Modular Arithmetic

6.2 Modular Arithmetic 6.2 Modular Arithmetic Every reader is familiar with arithmetic from the time they are three or four years old. It is the study of numbers and various ways in which we can combine them, such as through

More information

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., Binary exponentiation An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., What are the last two digits of the number 2 284? In the absence

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic 1 Integers modulo n 1.1 Preliminaries Introduction to Modular Arithmetic Definition 1.1.1 (Equivalence relation). Let R be a relation on the set A. Recall that a relation R is a subset of the cartesian

More information

TMA4155 Cryptography, Intro

TMA4155 Cryptography, Intro Trondheim, December 12, 2006. TMA4155 Cryptography, Intro 2006-12-02 Problem 1 a. We need to find an inverse of 403 modulo (19 1)(31 1) = 540: 540 = 1 403 + 137 = 17 403 50 540 + 50 403 = 67 403 50 540

More information

MAT 302: ALGEBRAIC CRYPTOGRAPHY. Department of Mathematical and Computational Sciences University of Toronto, Mississauga.

MAT 302: ALGEBRAIC CRYPTOGRAPHY. Department of Mathematical and Computational Sciences University of Toronto, Mississauga. MAT 302: ALGEBRAIC CRYPTOGRAPHY Department of Mathematical and Computational Sciences University of Toronto, Mississauga February 27, 2013 Mid-term Exam INSTRUCTIONS: The duration of the exam is 100 minutes.

More information

Chapter 4 The Data Encryption Standard

Chapter 4 The Data Encryption Standard Chapter 4 The Data Encryption Standard History of DES Most widely used encryption scheme is based on DES adopted by National Bureau of Standards (now National Institute of Standards and Technology) in

More information

Secure Function Evaluation

Secure Function Evaluation Secure Function Evaluation 1) Use cryptography to securely compute a function/program. 2) Secure means a) Participant s inputs stay secret even though they are used in the computation. b) No participant

More information

Modular Arithmetic and Doomsday

Modular Arithmetic and Doomsday Modular Arithmetic and Doomsday Blake Thornton Much of this is due directly to Joshua Zucker and Paul Zeitz. 1. Subtraction Magic Trick. While blindfolded, a magician asks a member from the audience to

More information

Application: Public Key Cryptography. Public Key Cryptography

Application: Public Key Cryptography. Public Key Cryptography Application: Public Key Cryptography Suppose I wanted people to send me secret messages by snail mail Method 0. I send a padlock, that only I have the key to, to everyone who might want to send me a message.

More information

Number Theory and Public Key Cryptography Kathryn Sommers

Number Theory and Public Key Cryptography Kathryn Sommers Page!1 Math 409H Fall 2016 Texas A&M University Professor: David Larson Introduction Number Theory and Public Key Cryptography Kathryn Sommers Number theory is a very broad and encompassing subject. At

More information

Grade 7 and 8 Math Circles March 19th/20th/21st. Cryptography

Grade 7 and 8 Math Circles March 19th/20th/21st. Cryptography Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7 and 8 Math Circles March 19th/20th/21st Cryptography Introduction Before we begin, it s important

More information

Network Security: Secret Key Cryptography

Network Security: Secret Key Cryptography 1 Network Security: Secret Key Cryptography Henning Schulzrinne Columbia University, New York schulzrinne@cs.columbia.edu Columbia University, Fall 2000 cfl1999-2000, Henning Schulzrinne Last modified

More information

Math 255 Spring 2017 Solving x 2 a (mod n)

Math 255 Spring 2017 Solving x 2 a (mod n) Math 255 Spring 2017 Solving x 2 a (mod n) Contents 1 Lifting 1 2 Solving x 2 a (mod p k ) for p odd 3 3 Solving x 2 a (mod 2 k ) 5 4 Solving x 2 a (mod n) for general n 9 1 Lifting Definition 1.1. Let

More information

Towards a Cryptanalysis of Scrambled Spectral-Phase Encoded OCDMA

Towards a Cryptanalysis of Scrambled Spectral-Phase Encoded OCDMA Towards a Cryptanalysis of Scrambled Spectral-Phase Encoded OCDMA Sharon Goldberg* Ron Menendez **, Paul R. Prucnal* *, **Telcordia Technologies OFC 27, Anaheim, CA, March 29, 27 Secret key Security for

More information

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = =

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = = Math 115 Discrete Math Final Exam December 13, 2000 Your name It is important that you show your work. 1. Use the Euclidean algorithm to solve the decanting problem for decanters of sizes 199 and 98. In

More information

Math 319 Problem Set #7 Solution 18 April 2002

Math 319 Problem Set #7 Solution 18 April 2002 Math 319 Problem Set #7 Solution 18 April 2002 1. ( 2.4, problem 9) Show that if x 2 1 (mod m) and x / ±1 (mod m) then 1 < (x 1, m) < m and 1 < (x + 1, m) < m. Proof: From x 2 1 (mod m) we get m (x 2 1).

More information

MAT199: Math Alive Cryptography Part 2

MAT199: Math Alive Cryptography Part 2 MAT199: Math Alive Cryptography Part 2 1 Public key cryptography: The RSA algorithm After seeing several examples of classical cryptography, where the encoding procedure has to be kept secret (because

More information

Discrete Square Root. Çetin Kaya Koç Winter / 11

Discrete Square Root. Çetin Kaya Koç  Winter / 11 Discrete Square Root Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2017 1 / 11 Discrete Square Root Problem The discrete square root problem is defined as the computation

More information

Modular arithmetic Math 2320

Modular arithmetic Math 2320 Modular arithmetic Math 220 Fix an integer m 2, called the modulus. For any other integer a, we can use the division algorithm to write a = qm + r. The reduction of a modulo m is the remainder r resulting

More information

Diffie-Hellman key-exchange protocol

Diffie-Hellman key-exchange protocol Diffie-Hellman key-exchange protocol This protocol allows two users to choose a common secret key, for DES or AES, say, while communicating over an insecure channel (with eavesdroppers). The two users

More information

Introduction to Cryptography CS 355

Introduction to Cryptography CS 355 Introduction to Cryptography CS 355 Lecture 25 Mental Poker And Semantic Security CS 355 Fall 2005 / Lecture 25 1 Lecture Outline Review of number theory The Mental Poker Protocol Semantic security Semantic

More information

Math 412: Number Theory Lecture 6: congruence system and

Math 412: Number Theory Lecture 6: congruence system and Math 412: Number Theory Lecture 6: congruence system and classes Gexin Yu gyu@wm.edu College of William and Mary Chinese Remainder Theorem Chinese Remainder Theorem: let m 1, m 2,..., m k be pairwise coprimes.

More information

Purple. Used by Japanese government. Not used for tactical military info. Used to send infamous 14-part message

Purple. Used by Japanese government. Not used for tactical military info. Used to send infamous 14-part message Purple Purple 1 Purple Used by Japanese government o Diplomatic communications o Named for color of binder cryptanalysts used o Other Japanese ciphers: Red, Coral, Jade, etc. Not used for tactical military

More information

Xor. Isomorphisms. CS70: Lecture 9. Outline. Is public key crypto possible? Cryptography... Public key crypography.

Xor. Isomorphisms. CS70: Lecture 9. Outline. Is public key crypto possible? Cryptography... Public key crypography. CS70: Lecture 9. Outline. 1. Public Key Cryptography 2. RSA system 2.1 Efficiency: Repeated Squaring. 2.2 Correctness: Fermat s Theorem. 2.3 Construction. 3. Warnings. Cryptography... m = D(E(m,s),s) Alice

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013/2014 MODULE: CA642/A Cryptography and Number Theory PROGRAMME(S): MSSF MCM ECSA ECSAO MSc in Security & Forensic Computing M.Sc. in Computing Study

More information

Cryptanalysis on short messages encrypted with M-138 cipher machine

Cryptanalysis on short messages encrypted with M-138 cipher machine Cryptanalysis on short messages encrypted with M-138 cipher machine Tsonka Baicheva Miroslav Dimitrov Institute of Mathematics and Informatics Bulgarian Academy of Sciences 10-14 July, 2017 Sofia Introduction

More information

Grade 7/8 Math Circles Winter March 24/25 Cryptography

Grade 7/8 Math Circles Winter March 24/25 Cryptography Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Winter 2015 - March 24/25 Cryptography What is Cryptography? Cryptography is the

More information

Final exam. Question Points Score. Total: 150

Final exam. Question Points Score. Total: 150 MATH 11200/20 Final exam DECEMBER 9, 2016 ALAN CHANG Please present your solutions clearly and in an organized way Answer the questions in the space provided on the question sheets If you run out of room

More information

Chapter 10 Error Detection and Correction 10.1

Chapter 10 Error Detection and Correction 10.1 Data communication and networking fourth Edition by Behrouz A. Forouzan Chapter 10 Error Detection and Correction 10.1 Note Data can be corrupted during transmission. Some applications require that errors

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic and the RSA Public Key Cryptosystem Jeremy R. Johnson 1 Introduction Objective: To understand what a public key cryptosystem is and

More information

PROPERTIES OF MERSENNE NUMBERS AND PRIMES

PROPERTIES OF MERSENNE NUMBERS AND PRIMES PROPERTIES OF MERSEE UMBERS AD PRIMES If one looks at the sequence of numbers- = 3, 7, 31, 127, 2047, 8291, 131071, 524287 one notices that its elements are, with the exception of 2047, prime numbers defined

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Chapter 5: Cryptographic Algorithms Common Encryption Algorithms RSA

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let m and n be two relatively prime positive integers. Let a and b be any two integers. Then the two congruences x a (mod m) x b (mod n) have common solutions. Any

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1: Introduction Instructor: Omkant Pandey Spring 2018 (CSE390) Instructor: Omkant Pandey Lecture 1: Introduction Spring 2018 (CSE390) 1 / 13 Cryptography Most of us rely on cryptography everyday

More information

Outcome 9 Review Foundations and Pre-Calculus 10

Outcome 9 Review Foundations and Pre-Calculus 10 Outcome 9 Review Foundations and Pre-Calculus 10 Level 2 Example: Writing an equation in slope intercept form Slope-Intercept Form: y = mx + b m = slope b = y-intercept Ex : Write the equation of a line

More information

CRYPTANALYSIS OF THE PERMUTATION CIPHER OVER COMPOSITION MAPPINGS OF BLOCK CIPHER

CRYPTANALYSIS OF THE PERMUTATION CIPHER OVER COMPOSITION MAPPINGS OF BLOCK CIPHER CRYPTANALYSIS OF THE PERMUTATION CIPHER OVER COMPOSITION MAPPINGS OF BLOCK CIPHER P.Sundarayya 1, M.M.Sandeep Kumar 2, M.G.Vara Prasad 3 1,2 Department of Mathematics, GITAM, University, (India) 3 Department

More information

University of British Columbia. Math 312, Midterm, 6th of June 2017

University of British Columbia. Math 312, Midterm, 6th of June 2017 University of British Columbia Math 312, Midterm, 6th of June 2017 Name (please be legible) Signature Student number Duration: 90 minutes INSTRUCTIONS This test has 7 problems for a total of 100 points.

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

Chapter 10 Error Detection and Correction

Chapter 10 Error Detection and Correction Chapter 10 Error Detection and Correction 10.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 10.2 Note Data can be corrupted during transmission. Some applications

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let n 1,..., n r be r positive integers relatively prime in pairs. (That is, gcd(n i, n j ) = 1 whenever 1 i < j r.) Let a 1,..., a r be any r integers. Then the

More information

Cryptography s Application in Numbers Station

Cryptography s Application in Numbers Station Cryptography s Application in Numbers Station Jacqueline - 13512074 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

More information

Error Detection and Correction

Error Detection and Correction . Error Detection and Companies, 27 CHAPTER Error Detection and Networks must be able to transfer data from one device to another with acceptable accuracy. For most applications, a system must guarantee

More information

#A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS. Thomas A. Plick

#A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS. Thomas A. Plick #A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS Thomas A. Plick tomplick@gmail.com Received: 10/5/14, Revised: 9/17/16, Accepted: 1/23/17, Published: 2/13/17 Abstract We show that out of the

More information