Partitions and Permutations

Size: px
Start display at page:

Download "Partitions and Permutations"

Transcription

1 Chapter 5 Partitions and Permutations 5.1 Stirling Subset Numbers 5.2 Stirling Cycle Numbers 5.3 Inversions and Ascents 5.4 Derangements 5.5 Exponential Generating Functions 5.6 Posets and Lattices 1

2 2 Chapter 5 Partitions and Permutations

3 Section 5.1 Stirling Subset Numbers STIRLING SUBSET NUMBERS Non-Distinctness of Cells of a Partition

4 4 Chapter 5 Partitions and Permutations

5 Section 5.1 Stirling Subset Numbers 5

6 6 Chapter 5 Partitions and Permutations Every Cell of a Partition is Non-Empty

7 Section 5.1 Stirling Subset Numbers 7 Distinctness of Objects

8 8 Chapter 5 Partitions and Permutations The Type of a Partition

9 Section 5.1 Stirling Subset Numbers 9 Stirling s Subset Number Recurrence

10 10 Chapter 5 Partitions and Permutations Stirling s Triangle for Subset Numbers Table 5.1.1

11 Section 5.1 Stirling Subset Numbers 11 Rows Are Log-Concave Fig 5.1.1

12 12 Chapter 5 Partitions and Permutations

13 Section 5.1 Stirling Subset Numbers 13 Bell Numbers

14 14 Chapter 5 Partitions and Permutations

15 Section 5.1 Stirling Subset Numbers 15

16 16 Chapter 5 Partitions and Permutations Column-Sum Formulas

17 Section 5.1 Stirling Subset Numbers 17

18 18 Chapter 5 Partitions and Permutations

19 Section 5.1 Stirling Subset Numbers 19 Southeast Diagonal Sum

20 20 Chapter 5 Partitions and Permutations Stirling Numbers of the Second Kind

21 Section 5.1 Stirling Subset Numbers 21

22 22 Chapter 5 Partitions and Permutations

23 Section 5.1 Stirling Subset Numbers 23 Table 5.1.2

24 24 Chapter 5 Partitions and Permutations

25 Section 5.2 Stirling Cycle Numbers STIRLING CYCLE NUMBERS

26 26 Chapter 5 Partitions and Permutations

27 Section 5.2 Stirling Cycle Numbers 27 Non-Distinctness of the Cycles Stirling s Cycle Number Recurrence

28 28 Chapter 5 Partitions and Permutations Stirling s Triangle for Cycle Numbers

29 Section 5.2 Stirling Cycle Numbers 29 Table 5.2.1

30 30 Chapter 5 Partitions and Permutations

31 Section 5.2 Stirling Cycle Numbers 31 Rows are Log-Concave

32 32 Chapter 5 Partitions and Permutations

33 Section 5.2 Stirling Cycle Numbers 33 Fig Row Sums

34 34 Chapter 5 Partitions and Permutations

35 Section 5.2 Stirling Cycle Numbers 35

36 36 Chapter 5 Partitions and Permutations

37 Section 5.2 Stirling Cycle Numbers 37

38 38 Chapter 5 Partitions and Permutations

39 Section 5.2 Stirling Cycle Numbers 39 Columns

40 40 Chapter 5 Partitions and Permutations

41 Section 5.2 Stirling Cycle Numbers 41 Southeast Diagonal

42 42 Chapter 5 Partitions and Permutations Stirling Numbers of the First Kind

43 Section 5.2 Stirling Cycle Numbers 43

44 44 Chapter 5 Partitions and Permutations

45 Section 5.2 Stirling Cycle Numbers 45 Table 5.2.2

46 46 Chapter 5 Partitions and Permutations

47 Section 5.3 Inversions and Ascents INVERSIONS AND ASCENTS Inversions

48 48 Chapter 5 Partitions and Permutations

49 Section 5.3 Inversions and Ascents 49 Table 5.3.1

50 50 Chapter 5 Partitions and Permutations

51 Section 5.3 Inversions and Ascents 51

52 52 Chapter 5 Partitions and Permutations Ascents

53 Section 5.3 Inversions and Ascents 53 Eulerian Numbers

54 54 Chapter 5 Partitions and Permutations Table 5.3.2

55 Section 5.3 Inversions and Ascents 55

56 56 Chapter 5 Partitions and Permutations 5.4 DERANGEMENTS

57 Section 5.4 Derangements 57 Table 5.4.1

58 58 Chapter 5 Partitions and Permutations

59 Section 5.4 Derangements 59

60 60 Chapter 5 Partitions and Permutations 5.5 EXPONENTIAL GEN FUNCTIONS

61 Section 5.5 Exponential Gen Functions 61

62 62 Chapter 5 Partitions and Permutations

63 Section 5.5 Exponential Gen Functions 63 Counting Ordered Selections

64 64 Chapter 5 Partitions and Permutations

65 Section 5.5 Exponential Gen Functions 65

66 66 Chapter 5 Partitions and Permutations Counting Certain Kinds of Strings

67 Section 5.5 Exponential Gen Functions 67

68 68 Chapter 5 Partitions and Permutations

69 Section 5.5 Exponential Gen Functions 69

70 70 Chapter 5 Partitions and Permutations An Application To Stirling Subset #s

71 Section 5.5 Exponential Gen Functions 71

72 72 Chapter 5 Partitions and Permutations An EGF for Derangement Numbers

73 Section 5.5 Exponential Gen Functions 73

74 74 Chapter 5 Partitions and Permutations

75 Section 5.5 Exponential Gen Functions 75

76 76 Chapter 5 Partitions and Permutations 5.6 POSETS AND LATTICES

77 Section 5.6 Posets and Lattices 77 Products of Sets Cover Digraph

78 78 Chapter 5 Partitions and Permutations Fig The Boolean Poset

79 Section 5.6 Posets and Lattices 79 Fig The Divisibility Poset

80 80 Chapter 5 Partitions and Permutations Fig The Partition Poset

81 Section 5.6 Posets and Lattices 81 Fig 5.6.4

82 82 Chapter 5 Partitions and Permutations Inversion-Dominance Ordering on Perms

83 Section 5.6 Posets and Lattices 83 Fig 5.6.5

84 84 Chapter 5 Partitions and Permutations Minimal and Maximal Elements Fig 5.6.6

85 Section 5.6 Posets and Lattices 85 Lattice Property

86 86 Chapter 5 Partitions and Permutations

87 Section 5.6 Posets and Lattices 87 Fig 5.6.7

88 88 Chapter 5 Partitions and Permutations Fig Poset Isomorphism

89 Section 5.6 Posets and Lattices 89 Fig 5.6.9

90 90 Chapter 5 Partitions and Permutations Fig Chains and Antichains

91 Section 5.6 Posets and Lattices 91

92 92 Chapter 5 Partitions and Permutations

93 Section 5.6 Posets and Lattices 93 Fig

94 94 Chapter 5 Partitions and Permutations Ranked Posets

95 Section 5.6 Posets and Lattices 95 Fig

96 96 Chapter 5 Partitions and Permutations Linear Extensions

97 Section 5.6 Posets and Lattices 97 Algorithm 5.6.1:

98 98 Chapter 5 Partitions and Permutations Dilworth s Theorem

99 Section 5.6 Posets and Lattices 99

100 100 Chapter 5 Partitions and Permutations

101 Section 5.6 Posets and Lattices 101 Fig

102 102 Chapter 5 Partitions and Permutations

11 Chain and Antichain Partitions

11 Chain and Antichain Partitions November 14, 2017 11 Chain and Antichain Partitions William T. Trotter trotter@math.gatech.edu A Chain of Size 4 Definition A chain is a subset in which every pair is comparable. A Maximal Chain of Size

More information

Chained Permutations. Dylan Heuer. North Dakota State University. July 26, 2018

Chained Permutations. Dylan Heuer. North Dakota State University. July 26, 2018 Chained Permutations Dylan Heuer North Dakota State University July 26, 2018 Three person chessboard Three person chessboard Three person chessboard Three person chessboard - Rearranged Two new families

More information

BMT 2018 Combinatorics Test Solutions March 18, 2018

BMT 2018 Combinatorics Test Solutions March 18, 2018 . Bob has 3 different fountain pens and different ink colors. How many ways can he fill his fountain pens with ink if he can only put one ink in each pen? Answer: 0 Solution: He has options to fill his

More information

JIGSAW ACTIVITY, TASK # Make sure your answer in written in the correct order. Highest powers of x should come first, down to the lowest powers.

JIGSAW ACTIVITY, TASK # Make sure your answer in written in the correct order. Highest powers of x should come first, down to the lowest powers. JIGSAW ACTIVITY, TASK #1 Your job is to multiply and find all the terms in ( 1) Recall that this means ( + 1)( + 1)( + 1)( + 1) Start by multiplying: ( + 1)( + 1) x x x x. x. + 4 x x. Write your answer

More information

Enumeration of Two Particular Sets of Minimal Permutations

Enumeration of Two Particular Sets of Minimal Permutations 3 47 6 3 Journal of Integer Sequences, Vol. 8 (05), Article 5.0. Enumeration of Two Particular Sets of Minimal Permutations Stefano Bilotta, Elisabetta Grazzini, and Elisa Pergola Dipartimento di Matematica

More information

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other.

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other. A.Miller M475 Fall 2010 Homewor problems are due in class one wee from the day assigned (which is in parentheses. Please do not hand in the problems early. 1. (1-20 W A boo shelf holds 5 different English

More information

MA 524 Midterm Solutions October 16, 2018

MA 524 Midterm Solutions October 16, 2018 MA 524 Midterm Solutions October 16, 2018 1. (a) Let a n be the number of ordered tuples (a, b, c, d) of integers satisfying 0 a < b c < d n. Find a closed formula for a n, as well as its ordinary generating

More information

Pattern Avoidance in Poset Permutations

Pattern Avoidance in Poset Permutations Pattern Avoidance in Poset Permutations Sam Hopkins and Morgan Weiler Massachusetts Institute of Technology and University of California, Berkeley Permutation Patterns, Paris; July 5th, 2013 1 Definitions

More information

Quarter Turn Baxter Permutations

Quarter Turn Baxter Permutations North Dakota State University June 26, 2017 Outline 1 2 Outline 1 2 What is a Baxter Permutation? Definition A Baxter permutation is a permutation that, when written in one-line notation, avoids the generalized

More information

Chapter 6.1. Cycles in Permutations

Chapter 6.1. Cycles in Permutations Chapter 6.1. Cycles in Permutations Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 6.1. Cycles in Permutations Math 184A / Fall 2017 1 / 27 Notations for permutations Consider a permutation in 1-line

More information

Solutions to Exercises Chapter 6: Latin squares and SDRs

Solutions to Exercises Chapter 6: Latin squares and SDRs Solutions to Exercises Chapter 6: Latin squares and SDRs 1 Show that the number of n n Latin squares is 1, 2, 12, 576 for n = 1, 2, 3, 4 respectively. (b) Prove that, up to permutations of the rows, columns,

More information

Elementary Combinatorics

Elementary Combinatorics 184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are

More information

Staircase Rook Polynomials and Cayley s Game of Mousetrap

Staircase Rook Polynomials and Cayley s Game of Mousetrap Staircase Rook Polynomials and Cayley s Game of Mousetrap Michael Z. Spivey Department of Mathematics and Computer Science University of Puget Sound Tacoma, Washington 98416-1043 USA mspivey@ups.edu Phone:

More information

Crossings and patterns in signed permutations

Crossings and patterns in signed permutations Crossings and patterns in signed permutations Sylvie Corteel, Matthieu Josuat-Vergès, Jang-Soo Kim Université Paris-sud 11, Université Paris 7 Permutation Patterns 1/28 Introduction A crossing of a permutation

More information

Strings. A string is a list of symbols in a particular order.

Strings. A string is a list of symbols in a particular order. Ihor Stasyuk Strings A string is a list of symbols in a particular order. Strings A string is a list of symbols in a particular order. Examples: 1 3 0 4 1-12 is a string of integers. X Q R A X P T is a

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25. Homework #1. ( Due: Oct 10 ) Figure 1: The laser game.

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25. Homework #1. ( Due: Oct 10 ) Figure 1: The laser game. CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25 Homework #1 ( Due: Oct 10 ) Figure 1: The laser game. Task 1. [ 60 Points ] Laser Game Consider the following game played on an n n board,

More information

Evacuation and a Geometric Construction for Fibonacci Tableaux

Evacuation and a Geometric Construction for Fibonacci Tableaux Evacuation and a Geometric Construction for Fibonacci Tableaux Kendra Killpatrick Pepperdine University 24255 Pacific Coast Highway Malibu, CA 90263-4321 Kendra.Killpatrick@pepperdine.edu August 25, 2004

More information

Solution Algorithm to the Sam Loyd (n 2 1) Puzzle

Solution Algorithm to the Sam Loyd (n 2 1) Puzzle Solution Algorithm to the Sam Loyd (n 2 1) Puzzle Kyle A. Bishop Dustin L. Madsen December 15, 2009 Introduction The Sam Loyd puzzle was a 4 4 grid invented in the 1870 s with numbers 0 through 15 on each

More information

7.4 Permutations and Combinations

7.4 Permutations and Combinations 7.4 Permutations and Combinations The multiplication principle discussed in the preceding section can be used to develop two additional counting devices that are extremely useful in more complicated counting

More information

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap European Journal of Combinatorics 30 (2009) 532 539 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Staircase rook polynomials

More information

Heuristic Search with Pre-Computed Databases

Heuristic Search with Pre-Computed Databases Heuristic Search with Pre-Computed Databases Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract Use pre-computed partial results to improve the efficiency of heuristic

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #22: Generalized Permutations and Combinations Based on materials developed by Dr. Adam Lee Counting

More information

Counting in Algorithms

Counting in Algorithms Counting Counting in Algorithms How many comparisons are needed to sort n numbers? How many steps to compute the GCD of two numbers? How many steps to factor an integer? Counting in Games How many different

More information

Classes of permutations avoiding 231 or 321

Classes of permutations avoiding 231 or 321 Classes of permutations avoiding 231 or 321 Nik Ruškuc nik.ruskuc@st-andrews.ac.uk School of Mathematics and Statistics, University of St Andrews Dresden, 25 November 2015 Aim Introduce the area of pattern

More information

Permutation Tableaux and the Dashed Permutation Pattern 32 1

Permutation Tableaux and the Dashed Permutation Pattern 32 1 Permutation Tableaux and the Dashed Permutation Pattern William Y.C. Chen, Lewis H. Liu, Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 7, P.R. China chen@nankai.edu.cn, lewis@cfc.nankai.edu.cn

More information

BIJECTIONS FOR PERMUTATION TABLEAUX

BIJECTIONS FOR PERMUTATION TABLEAUX BIJECTIONS FOR PERMUTATION TABLEAUX SYLVIE CORTEEL AND PHILIPPE NADEAU Authors affiliations: LRI, CNRS et Université Paris-Sud, 945 Orsay, France Corresponding author: Sylvie Corteel Sylvie. Corteel@lri.fr

More information

Topics to be covered

Topics to be covered Basic Counting 1 Topics to be covered Sum rule, product rule, generalized product rule Permutations, combinations Binomial coefficients, combinatorial proof Inclusion-exclusion principle Pigeon Hole Principle

More information

Weighted Polya Theorem. Solitaire

Weighted Polya Theorem. Solitaire Weighted Polya Theorem. Solitaire Sasha Patotski Cornell University ap744@cornell.edu December 15, 2015 Sasha Patotski (Cornell University) Weighted Polya Theorem. Solitaire December 15, 2015 1 / 15 Cosets

More information

COMBINATORICS ON BIGRASSMANNIAN PERMUTATIONS AND ESSENTIAL SETS

COMBINATORICS ON BIGRASSMANNIAN PERMUTATIONS AND ESSENTIAL SETS COMBINATORICS ON BIGRASSMANNIAN PERMUTATIONS AND ESSENTIAL SETS MASATO KOBAYASHI Contents 1. Symmetric groups 2 Introduction 2 S n as a Coxeter group 3 Bigrassmannian permutations? 4 Bigrassmannian statistics

More information

Chapter 2. Permutations and Combinations

Chapter 2. Permutations and Combinations 2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find

More information

ON THE ENUMERATION OF MAGIC CUBES*

ON THE ENUMERATION OF MAGIC CUBES* 1934-1 ENUMERATION OF MAGIC CUBES 833 ON THE ENUMERATION OF MAGIC CUBES* BY D. N. LEHMER 1. Introduction. Assume the cube with one corner at the origin and the three edges at that corner as axes of reference.

More information

Inversions on Permutations Avoiding Consecutive Patterns

Inversions on Permutations Avoiding Consecutive Patterns Inversions on Permutations Avoiding Consecutive Patterns Naiomi Cameron* 1 Kendra Killpatrick 2 12th International Permutation Patterns Conference 1 Lewis & Clark College 2 Pepperdine University July 11,

More information

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter.

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter. 28,800 Extremely Magic 5 5 Squares Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@uncc.edu

More information

DISCRETE STRUCTURES COUNTING

DISCRETE STRUCTURES COUNTING DISCRETE STRUCTURES COUNTING LECTURE2 The Pigeonhole Principle The generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least N/k of the

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Review Questions Multiple Choice Questions for Review 1. Suppose there are 12 students, among whom are three students, M, B, C (a Math Major, a Biology Major, a Computer Science Major. We want to send

More information

PARTICIPANT Guide. Unit 2

PARTICIPANT Guide. Unit 2 PARTICIPANT Guide Unit 2 UNIT 02 participant Guide ACTIVITIES NOTE: At many points in the activities for Mathematics Illuminated, workshop participants will be asked to explain, either verbally or in

More information

Math 3012 Applied Combinatorics Lecture 2

Math 3012 Applied Combinatorics Lecture 2 August 20, 2015 Math 3012 Applied Combinatorics Lecture 2 William T. Trotter trotter@math.gatech.edu The Road Ahead Alert The next two to three lectures will be an integrated approach to material from

More information

arxiv: v2 [math.ho] 23 Aug 2018

arxiv: v2 [math.ho] 23 Aug 2018 Mathematics of a Sudo-Kurve arxiv:1808.06713v2 [math.ho] 23 Aug 2018 Tanya Khovanova Abstract Wayne Zhao We investigate a type of a Sudoku variant called Sudo-Kurve, which allows bent rows and columns,

More information

Simple Counting Problems

Simple Counting Problems Appendix F Counting Principles F1 Appendix F Counting Principles What You Should Learn 1 Count the number of ways an event can occur. 2 Determine the number of ways two or three events can occur using

More information

CS1802 Week 3: Counting Next Week : QUIZ 1 (30 min)

CS1802 Week 3: Counting Next Week : QUIZ 1 (30 min) CS1802 Discrete Structures Recitation Fall 2018 September 25-26, 2018 CS1802 Week 3: Counting Next Week : QUIZ 1 (30 min) Permutations and Combinations i. Evaluate the following expressions. 1. P(10, 4)

More information

Solutions to Exercises on Page 86

Solutions to Exercises on Page 86 Solutions to Exercises on Page 86 #. A number is a multiple of, 4, 5 and 6 if and only if it is a multiple of the greatest common multiple of, 4, 5 and 6. The greatest common multiple of, 4, 5 and 6 is

More information

Standard Sudoku point. 1 point. P a g e 1

Standard Sudoku point. 1 point. P a g e 1 P a g e 1 Standard 1-2 Place a digit from 1 to 6 in each empty cell so that each digit appears exactly once in each row, column and 2X box. 1 point A 6 2 6 2 1 5 1 point B 5 2 2 4 1 1 6 5 P a g e 2 Standard

More information

INFLUENCE OF ENTRIES IN CRITICAL SETS OF ROOM SQUARES

INFLUENCE OF ENTRIES IN CRITICAL SETS OF ROOM SQUARES INFLUENCE OF ENTRIES IN CRITICAL SETS OF ROOM SQUARES Ghulam Chaudhry and Jennifer Seberry School of IT and Computer Science, The University of Wollongong, Wollongong, NSW 2522, AUSTRALIA We establish

More information

Review I. October 14, 2008

Review I. October 14, 2008 Review I October 14, 008 If you put n + 1 pigeons in n pigeonholes then at least one hole would have more than one pigeon. If n(r 1 + 1 objects are put into n boxes, then at least one of the boxes contains

More information

MA/CSSE 473 Day 14. Permutations wrap-up. Subset generation. (Horner s method) Permutations wrap up Generating subsets of a set

MA/CSSE 473 Day 14. Permutations wrap-up. Subset generation. (Horner s method) Permutations wrap up Generating subsets of a set MA/CSSE 473 Day 14 Permutations wrap-up Subset generation (Horner s method) MA/CSSE 473 Day 14 Student questions Monday will begin with "ask questions about exam material time. Exam details are Day 16

More information

Domino Fibonacci Tableaux

Domino Fibonacci Tableaux Domino Fibonacci Tableaux Naiomi Cameron Department of Mathematical Sciences Lewis and Clark College ncameron@lclark.edu Kendra Killpatrick Department of Mathematics Pepperdine University Kendra.Killpatrick@pepperdine.edu

More information

completing Magic Squares

completing Magic Squares University of Liverpool Maths Club November 2014 completing Magic Squares Peter Giblin (pjgiblin@liv.ac.uk) 1 First, a 4x4 magic square to remind you what it is: 8 11 14 1 13 2 7 12 3 16 9 6 10 5 4 15

More information

FOURTH LECTURE : SEPTEMBER 18, 2014

FOURTH LECTURE : SEPTEMBER 18, 2014 FOURTH LECTURE : SEPTEMBER 18, 01 MIKE ZABROCKI I started off by listing the building block numbers that we have already seen and their combinatorial interpretations. S(n, k = the number of set partitions

More information

Permutations with short monotone subsequences

Permutations with short monotone subsequences Permutations with short monotone subsequences Dan Romik Abstract We consider permutations of 1, 2,..., n 2 whose longest monotone subsequence is of length n and are therefore extremal for the Erdős-Szekeres

More information

Permutations. = f 1 f = I A

Permutations. = f 1 f = I A Permutations. 1. Definition (Permutation). A permutation of a set A is a bijective function f : A A. The set of all permutations of A is denoted by Perm(A). 2. If A has cardinality n, then Perm(A) has

More information

A Coloring Problem. Ira M. Gessel 1 Department of Mathematics Brandeis University Waltham, MA Revised May 4, 1989

A Coloring Problem. Ira M. Gessel 1 Department of Mathematics Brandeis University Waltham, MA Revised May 4, 1989 A Coloring Problem Ira M. Gessel Department of Mathematics Brandeis University Waltham, MA 02254 Revised May 4, 989 Introduction. Awell-known algorithm for coloring the vertices of a graph is the greedy

More information

Introductory Probability

Introductory Probability Introductory Probability Combinations Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Assigning Objects to Identical Positions Denitions Committee Card Hands Coin Toss Counts

More information

Permutations. describes the permutation which sends 1! 2, 2! 1, 3! 3.

Permutations. describes the permutation which sends 1! 2, 2! 1, 3! 3. Math 103A Winter,2001 Professor John J Wavrik Permutations A permutation of {1,, n } is a 1-1, onto mapping of the set to itself. Most books initially use a bulky notation to describe a permutation: The

More information

Finite homomorphism-homogeneous permutations via edge colourings of chains

Finite homomorphism-homogeneous permutations via edge colourings of chains Finite homomorphism-homogeneous permutations via edge colourings of chains Igor Dolinka dockie@dmi.uns.ac.rs Department of Mathematics and Informatics, University of Novi Sad First of all there is Blue.

More information

Counting. Chapter 6. With Question/Answer Animations

Counting. Chapter 6. With Question/Answer Animations . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Counting Chapter

More information

A C E. Answers Investigation 4. Applications. Dimensions of 39 Square Unit Rectangles and Partitions. Small Medium Large

A C E. Answers Investigation 4. Applications. Dimensions of 39 Square Unit Rectangles and Partitions. Small Medium Large Answers Applications 1. An even number minus an even number will be even. Students may use examples, tiles, the idea of groups of two, or the inverse relationship between addition and subtraction. Using

More information

The Symmetric Traveling Salesman Problem by Howard Kleiman

The Symmetric Traveling Salesman Problem by Howard Kleiman I. INTRODUCTION The Symmetric Traveling Salesman Problem by Howard Kleiman Let M be an nxn symmetric cost matrix where n is even. We present an algorithm that extends the concept of admissible permutation

More information

CSE 1400 Applied Discrete Mathematics Permutations

CSE 1400 Applied Discrete Mathematics Permutations CSE 1400 Applied Discrete Mathematics Department of Computer Sciences College of Engineering Florida Tech Fall 2011 1 Cyclic Notation 2 Re-Order a Sequence 2 Stirling Numbers of the First Kind 2 Problems

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 Massachusetts Institute of Technology 6.4J/8.6J, Fall 5: Mathematics for Computer Science November 9 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised November 3, 5, 3 minutes Solutions to Problem

More information

PATTERN AVOIDANCE IN PERMUTATIONS ON THE BOOLEAN LATTICE

PATTERN AVOIDANCE IN PERMUTATIONS ON THE BOOLEAN LATTICE PATTERN AVOIDANCE IN PERMUTATIONS ON THE BOOLEAN LATTICE SAM HOPKINS AND MORGAN WEILER Abstract. We extend the concept of pattern avoidance in permutations on a totally ordered set to pattern avoidance

More information

Week 1. 1 What Is Combinatorics?

Week 1. 1 What Is Combinatorics? 1 What Is Combinatorics? Week 1 The question that what is combinatorics is similar to the question that what is mathematics. If we say that mathematics is about the study of numbers and figures, then combinatorics

More information

Mathematics Competition Practice Session 6. Hagerstown Community College: STEM Club November 20, :00 pm - 1:00 pm STC-170

Mathematics Competition Practice Session 6. Hagerstown Community College: STEM Club November 20, :00 pm - 1:00 pm STC-170 2015-2016 Mathematics Competition Practice Session 6 Hagerstown Community College: STEM Club November 20, 2015 12:00 pm - 1:00 pm STC-170 1 Warm-Up (2006 AMC 10B No. 17): Bob and Alice each have a bag

More information

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n Chapter 5 Chapter Summary 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.5 Generalized Permutations and Combinations Section 5.1 The Product Rule The Product

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Invertible matrices Theorem. 1. An elementary matrix is invertible. 2.

More information

on the distribution of non-attacking bishops on a chessboard c

on the distribution of non-attacking bishops on a chessboard c Revista de Matemática: Teoría y Aplicaciones 2001 8(1 : 47 62 cimpa ucr ccss issn: 1409-2433 on the distribution of non-attacking bishops on a chessboard c Shanaz Ansari Wahid Received: 24 September 1999

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set CSE21: Lecture 3 1 Reminder Piazza forum address: http://piazza.com/ucsd/summer2013/cse21/hom e Notes on

More information

Solutions to the 2004 CMO written March 31, 2004

Solutions to the 2004 CMO written March 31, 2004 Solutions to the 004 CMO written March 31, 004 1. Find all ordered triples (x, y, z) of real numbers which satisfy the following system of equations: xy = z x y xz = y x z yz = x y z Solution 1 Subtracting

More information

Sudoku an alternative history

Sudoku an alternative history Sudoku an alternative history Peter J. Cameron p.j.cameron@qmul.ac.uk Talk to the Archimedeans, February 2007 Sudoku There s no mathematics involved. Use logic and reasoning to solve the puzzle. Instructions

More information

Lecture 2. 1 Nondeterministic Communication Complexity

Lecture 2. 1 Nondeterministic Communication Complexity Communication Complexity 16:198:671 1/26/10 Lecture 2 Lecturer: Troy Lee Scribe: Luke Friedman 1 Nondeterministic Communication Complexity 1.1 Review D(f): The minimum over all deterministic protocols

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

A GEOMETRIC LITTLEWOOD-RICHARDSON RULE

A GEOMETRIC LITTLEWOOD-RICHARDSON RULE A GEOMETRIC LITTLEWOOD-RICHARDSON RULE RAVI VAKIL ABSTRACT. We describe an explicit geometric Littlewood-Richardson rule, interpreted as deforming the intersection of two Schubert varieties so that they

More information

Counting Things Solutions

Counting Things Solutions Counting Things Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 7, 006 Abstract These are solutions to the Miscellaneous Problems in the Counting Things article at:

More information

The Art of Counting. Bijections, Double Counting. Peng Shi. September 16, Department of Mathematics Duke University

The Art of Counting. Bijections, Double Counting. Peng Shi. September 16, Department of Mathematics Duke University The Art of Counting Bijections, Double Counting Peng Shi Department of Mathematics Duke University September 16, 2009 What we focus on in this talk? Enumerative combinatorics is a huge branch of mathematics,

More information

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel RESTRICTED PERMUTATIONS AND POLYGONS Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, 905 Haifa, Israel {gferro,toufik}@mathhaifaacil abstract Several authors have examined

More information

Automatic Generation of Constraints for Partial Symmetry Breaking

Automatic Generation of Constraints for Partial Symmetry Breaking Automatic Generation of Constraints for Partial Symmetry Breaking Karen Petrie and Christopher Jefferson Overview How to break symmetries. How to find symmetries. How to choose which symmetries to break.

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously Pseudorandom Functions and Permutaitons Modes of Operation Pseudorandom Functions Functions that look like random

More information

MA/CSSE 473 Day 13. Student Questions. Permutation Generation. HW 6 due Monday, HW 7 next Thursday, Tuesday s exam. Permutation generation

MA/CSSE 473 Day 13. Student Questions. Permutation Generation. HW 6 due Monday, HW 7 next Thursday, Tuesday s exam. Permutation generation MA/CSSE 473 Day 13 Permutation Generation MA/CSSE 473 Day 13 HW 6 due Monday, HW 7 next Thursday, Student Questions Tuesday s exam Permutation generation 1 Exam 1 If you want additional practice problems

More information

CMPS 12A Introduction to Programming Programming Assignment 5 In this assignment you will write a Java program that finds all solutions to the n-queens problem, for. Begin by reading the Wikipedia article

More information

Permutation Generation Method on Evaluating Determinant of Matrices

Permutation Generation Method on Evaluating Determinant of Matrices Article International Journal of Modern Mathematical Sciences, 2013, 7(1): 12-25 International Journal of Modern Mathematical Sciences Journal homepage:www.modernscientificpress.com/journals/ijmms.aspx

More information

Variations of Rank Modulation for Flash Memories

Variations of Rank Modulation for Flash Memories Variations of Rank Modulation for Flash Memories Zhiying Wang Joint work with Anxiao(Andrew) Jiang Jehoshua Bruck Flash Memory Control Gate Floating Gate Source Drain Substrate Block erasure X Flash Memory

More information

Algebra. Recap: Elements of Set Theory.

Algebra. Recap: Elements of Set Theory. January 14, 2018 Arrangements and Derangements. Algebra. Recap: Elements of Set Theory. Arrangements of a subset of distinct objects chosen from a set of distinct objects are permutations [order matters]

More information

Probability of Derangements

Probability of Derangements Probability of Derangements Brian Parsonnet Revised Feb 21, 2011 bparsonnet@comcast.net Ft Collins, CO 80524 Brian Parsonnet Page 1 Table of Contents Introduction... 3 A136300... 7 Formula... 8 Point 1:

More information

From permutations to graphs

From permutations to graphs From permutations to graphs well-quasi-ordering and infinite antichains Robert Brignall Joint work with Atminas, Korpelainen, Lozin and Vatter 28th November 2014 Orderings on Structures Pick your favourite

More information

GLOSSARY. a * (b * c) = (a * b) * c. A property of operations. An operation * is called associative if:

GLOSSARY. a * (b * c) = (a * b) * c. A property of operations. An operation * is called associative if: Associativity A property of operations. An operation * is called associative if: a * (b * c) = (a * b) * c for every possible a, b, and c. Axiom For Greek geometry, an axiom was a 'self-evident truth'.

More information

Chapter 7. Intro to Counting

Chapter 7. Intro to Counting Chapter 7. Intro to Counting 7.7 Counting by complement 7.8 Permutations with repetitions 7.9 Counting multisets 7.10 Assignment problems: Balls in bins 7.11 Inclusion-exclusion principle 7.12 Counting

More information

9.5 Counting Subsets of a Set: Combinations. Answers for Test Yourself

9.5 Counting Subsets of a Set: Combinations. Answers for Test Yourself 9.5 Counting Subsets of a Set: Combinations 565 H 35. H 36. whose elements when added up give the same sum. (Thanks to Jonathan Goldstine for this problem. 34. Let S be a set of ten integers chosen from

More information

CONTENTS GRAPH THEORY

CONTENTS GRAPH THEORY CONTENTS i GRAPH THEORY GRAPH THEORY By Udit Agarwal M.Sc. (Maths), M.C.A. Sr. Lecturer, Rakshpal Bahadur Management Institute, Bareilly Umeshpal Singh (MCA) Director, Rotary Institute of Management and

More information

Yet Another Triangle for the Genocchi Numbers

Yet Another Triangle for the Genocchi Numbers Europ. J. Combinatorics (2000) 21, 593 600 Article No. 10.1006/eujc.1999.0370 Available online at http://www.idealibrary.com on Yet Another Triangle for the Genocchi Numbers RICHARD EHRENBORG AND EINAR

More information

Symmetric-key encryption scheme based on the strong generating sets of permutation groups

Symmetric-key encryption scheme based on the strong generating sets of permutation groups Symmetric-key encryption scheme based on the strong generating sets of permutation groups Ara Alexanyan Faculty of Informatics and Applied Mathematics Yerevan State University Yerevan, Armenia Hakob Aslanyan

More information

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST First Round For all Colorado Students Grades 7-12 October 31, 2009 You have 90 minutes no calculators allowed The average of n numbers is their sum divided

More information

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES MARK SHATTUCK AND TAMÁS WALDHAUSER Abstract. We give combinatorial proofs for some identities involving binomial sums that have no closed

More information

Binary, Permutation, Communication and Dominance Matrices

Binary, Permutation, Communication and Dominance Matrices Binary, Permutation, ommunication and Dominance Matrices Binary Matrices A binary matrix is a special type of matrix that has only ones and zeros as elements. Some examples of binary matrices; Permutation

More information

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Ira M. Gessel Department of Mathematics Brandeis University Sapienza Università di Roma July 10, 2013 Exponential generating functions

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

CSE 21: Midterm 1 Solution

CSE 21: Midterm 1 Solution CSE 21: Midterm 1 Solution August 16, 2007 No books, no calculators. Two double-sided 3x5 cards with handwritten notes allowed. Before starting the test, please write your test number on the top-right

More information

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m.

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m. Great Theoretical Ideas In Computer Science Steven Rudich CS - Spring Lecture Feb, Carnegie Mellon University Modular Arithmetic and the RSA Cryptosystem p- p MAX(a,b) + MIN(a,b) = a+b n m means that m

More information

Some Cryptanalysis of the Block Cipher BCMPQ

Some Cryptanalysis of the Block Cipher BCMPQ Some Cryptanalysis of the Block Cipher BCMPQ V. Dimitrova, M. Kostadinoski, Z. Trajcheska, M. Petkovska and D. Buhov Faculty of Computer Science and Engineering Ss. Cyril and Methodius University, Skopje,

More information

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations Chapter 1 The alternating groups 1.1 Introduction The most familiar of the finite (non-abelian) simple groups are the alternating groups A n, which are subgroups of index 2 in the symmetric groups S n.

More information

Department of Electrical Engineering, University of Leuven, Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium

Department of Electrical Engineering, University of Leuven, Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium Permutation Numbers Vincenzo De Florio Department of Electrical Engineering, University of Leuven, Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium This paper investigates some series of integers

More information

Distribution of Aces Among Dealt Hands

Distribution of Aces Among Dealt Hands Distribution of Aces Among Dealt Hands Brian Alspach 3 March 05 Abstract We provide details of the computations for the distribution of aces among nine and ten hold em hands. There are 4 aces and non-aces

More information