Lecture 2. 1 Nondeterministic Communication Complexity

Size: px
Start display at page:

Download "Lecture 2. 1 Nondeterministic Communication Complexity"

Transcription

1 Communication Complexity 16:198:671 1/26/10 Lecture 2 Lecturer: Troy Lee Scribe: Luke Friedman 1 Nondeterministic Communication Complexity 1.1 Review D(f): The minimum over all deterministic protocols of the number of bits communicated between Alice and Bob to compute f in the worst case. C P (f): Protocol partition number. The minimum over all protocols of the number of leaves in the protocol tree. Equivalently the minimum size of a partition of the communication matrix into monochromatic rectangles by a protocol. C D (f): Partition number. The minimum size of a partition of the communication matrix into monochromatic rectangles, without the contstraint that the partition is derived from a protocol. We have the following inequalities: 1.2 Cover Number C D (f) C P (f) 2 D(f) The cover number for ones, denoted C 1 (f), is the minimum number of monochromatic-1 rectangles needed to cover all the 1s in the communication matrix, with overlaps between the rectangles allowed. Formally C 1 (f) = min R Each R i R is a 1-monochromatic rectangle For all (x, y) with f(x, y) = 1 there exists R i R : (x, y) R i Immediately we have that C 1 (f) C D (f), because in a 1-cover the rectangles are allowed to overlap and we don t need to worry about covering the 0 s. The following example shows that sometimes C 1 (f) can be significantly less than C D (f). Define the Set Intersection Problem (SI n ) as follows: n SI n (x, y) = (x i y i ) = (x i y i ) (x 2 y 2 )... (x n y n ) i=1 We can use each (x i y i ) to define a rectangle in a 1-cover, which shows that C 1 (SI n ) n. However, last time we saw that the rank of M SIn is 2 n 1, so C D (SI n ) 2 n 1. 1

2 1.3 Nondeterministic Communication Complexity and Relation to Cover Number The nondeterministic communication complexity of a function f, denoted N 1 (f), is the size of the smallest string that can be used to convince both Alice and Bob that f(x, y) = 1. Formally, N 1 (f) = min k : There exists predicates A, B such that for all (x, y) : f(x, y) = 1 z {0, 1} k : A(x, z) = 1 B(y, z) = 1 f(x, y) = 0 z {0, 1} k : A(x, z) = 0 B(y, z) = 0 There is an analogous definition for the co-nodeterministic communication complexity, N 0 (f), as well. The following theorem shows the relationship between the cover number and nondeterministic communication complexity. Theorem 1. N 1 (f) = log C 1 (f) Proof. First we show that N 1 (f) log C 1 (f). Let k = C 1 (f), and let C be a cover of the communication matrix by k monochromatic-1 rectangles. Suppose f(x, y) = 1 and let z be a string identifying the rectangle in C containing (x, y). The length of z will be log(c 1 (f)) bits. Alice and Bob can both verify that the rectangle contains the row x and the column y respectively. If f(x, y) = 0, then no rectangle contains both the row x and the column y, so either Alice or Bob will reject. This shows that N 1 (f) log C 1 (f). Now we show that log C 1 (f) N 1 (f). Suppose N 1 (f) = k and let A, B be the predicates from the definition of nondeterministic communication complexity. For a given z {0, 1} k, define a rectangle C D with C = {x : A(x, z) = 1} and D = {y : B(y, z) = 1}. The union of all such rectangles is a 1-cover of the communication matrix M f, and there are 2 k such rectangles. This shows that log C 1 (f) N 1 (f). The nice combinatorial representation of nondeterministic communication complexity in terms of covers is a large part of the justification for considering the measure. 1.4 Relationship Between Deterministic and Nondeterministic Communication Complexity The following theorem shows that the deterministic commmunication complexity of a function is not too much greater than the maximium of the nondeterminstic and co-nondeterministic communication complexity of the function. Theorem 2. (Aho, Ullman, Yannakakis 83) D(f) (N 0 (f) + 1)(N 1 (f) + 1) 2

3 Proof. Let C 0 be a minimal cover of the 0 values in M f of size at most 2 N 0 (f), and let C 1 be a minimal cover of the 1 values in M f of size 2 N 1 (f). Let C be a cover that is the union of all the rectangles in C 0 and C 1. Note that since the monochromatic-0 rectangles are disjoint from the monochromatic-1 rectangles in C, no monochromatic-0 rectangle and monochromatic-1 rectangle can share both a column and a row. We will give a deterministic protocol P that computes F and uses at most (N 0 (f) + 1)(N 1 (F ) + 1) bits of communication: Alice and Bob will assume f(x, y) = 1 and try to prove this by showing that no monochromatic-0 rectangle in C contains the input (x, y). At all times during the prototcol there is an active set of monochromatic-0 rectangles from C that could possibly still contain the input (x, y). Initially all monochromatic-0 rectangles in C are active. Alice and Bob then repeat the following steps until the protocol terminates: 1. If the active set of rectangles is empty, Alice and Bob output f(x, y) = 1 and the protocol ends. Otherwise, Alice looks for a monochromatic-1 rectangle which intersects x and overlaps in rows with at most half of the active 0 rectangles. If she finds such a rectangle r, she says the name of the rectangle, which takes N 1 (f) = log C 1 (f) bits. Alice and Bob then eliminate all the 0 rectangles that do not overlap in rows with r from the active group of rectangles, which cuts the set of active rectangles down by at least half. Otherwise, if Alice does not find such a rectangle r, she says no. 2. If Alice said no, then Bob looks for a monochromatic-1 rectangle which intersects y and overlaps with at most half of the active 0 rectangles. If he finds such a rectangle s, he says the name of the rectangle, which takes N 1 (f) = log C 1 (f) bits. Alice and Bob then eliminate all the 0 rectangles that do not overlap in columns with s from the active group. Otherwise, if Bob does not find such a rectangle s, he answers that f(x, y) = 0 and the protocol ends To show proof of correctness, let R C be a rectangle that contains the input (x, y). If f(x, y) = 1 then because R cannot intersect any monochromatic-0 rectangle on both a row and a column, it must be the case that either Alice or Bob successfully finds a rectangle with the specified properties in steps 1 and 2. Therefore the protocol will continue until all the 0 rectangles are eliminated, and they will correctly output that f(x, y) = 1. If f(x, y) = 0 then the rectangle R will never be eliminated and so as the process terminates in a finite number of steps at some point the condition in item (2) will fail and the players will output 0. During each round, at least half of the 0 rectangles are eliminated from the active set, so there can be at most log(c 0 (f)) + 1 = N 0 (f) + 1 rounds. During each round, at most N 1 (f) + 1 bits are communicated, so altogether the protocol takes (N 0 (f) + 1)(N 1 (f) + 1) bits to execute in the worst case As an example of the usefulness of this theorem, consider again the Set Intersection 3

4 Problem (SI n ), where SI n (x, y) = n x i y i We have seen previously that D(SI n ) = n + 1. and N 1 (SI n ) (log n). From that we can immediately conclude that N 0 (SI n ) n/ log(n). (In fact it turns out that N 0 (SI n ) n), as we will see next. i=1 1.5 Fooling Set Method A 1-fooling set for a function f is a set of inputs that map to 1 but such that any pair from the set cannot mutually lie in a 1-monochromatic rectangle. Formally for a fooling set F we have that (x, y) F : f(x, y) = 1 (x, y), (x, y ) F : F (x, y ) = 0 F (x, y) = 0 A fooling set can be used to get a lower bound on the nondeterministic communication complexity of f: immediately for any fooling set F for f we have that C 1 (f) F. One can analogously define a 0-fooling set to show lower bounds on C 0 (f). Let us use this to show that N 0 (SI n ) n. Consider the set of pairs F = {(x, x) : x {0, 1} n }. Here x denotes the bitwise complement of x. Clearly, SI n (x, x) = 0 for all x {0, 1} n. Now consider two distinct pairs (x, x), (y, ȳ). As x y we may assume, renaming and reordering as necessary, that x 1 = 0, y 1 = 1. But then ( x, y) intersect on the first bit and so SI n ( x, y) = 1. Thus we find C 0 (SI n ) 2 n and N 0 (SI n ) n. 2 Linear Programming Bounds for N 1 (f) Linear programming is an important tool in computer science, and we can use it to help derive bounds in communication complexity. The following program is an alternative characterization of the measure C 1 (f), where we assume that there is a variable W r for every 1-monochromatic rectangle r in the communication matrix M f : C 1 (f) = min Wr {W r} such that (x, y) : f(x, y) = 1 W r 1 r W r {0, 1} 4

5 Suppose we relax the constraint W r {0, 1} to W r 0. Then we have a linear program, which we denote by C 1 (f). Since C 1 is a relaxation, immediately we have that C 1 (f) C 1 (f). The following theorem shows that C 1 (f) is in fact a good approximation to C 1 (f). Theorem 3. C 1 (f) 2n C 1 (f) Proof. Let f be a function f : {0, 1} n {0, 1} n {0, 1} and consider the following dual program: C 1 (f) = max {α x,y} f=1 α x,y monochromatic 1 rectangles r : α x,y 0 α x,y 1 Lemma 4. C 1 (f) C 1 (f) Proof. Let {α x,y } be a feasible solution to the dual and {W r } an optimal solution to the primal. α x,y α x,y f=1 f=1 = r W r r α x,y W r r W r = C 1 (f) Thus we have C 1 (f) C 1 (f) C 1 (f). To finish the proof of the theorem, we will show that C 1 (f) C 1 (f) 2n. We will do this by constructing in a greedy way a cover and a feasible solution to the dual, and bounding the ratio of these solutions. In each stage of the greedy algorithm we choose R i which covers the largest number of currently uncovered elements and add it to the covering. Let R i be the number of elements 5

6 in R i not yet covered before this round. We set α x,y = 1 R i b for all (x, y) R i that have not yet been set, with b a constant to be determined later. In each round the size of the covering increases by 1 and the value of the dual solution increases by 1/b, so their ratio will be at most b. All that remains is to show that we can choose b to be at most 2n without violating the constraints of the dual. The next key claim bounds the weight in any rectangle r. Lemma 5. α x,y 1 b + 1 2b r b ln( r ) + O(1) b Proof. Consider the kth to last element (x, y) of r that is assigned during the greedy algorithm. We have that α x,y 1, since at this point R has at least k many elements uncovered, k b and the rectangle greedily chosen at this step thus must have at least k many elements. Let R be the size of the largest rectangle in M f. By Lemma 5, we can satisfy the constraints of the dual by choosing b such that ln(r)/b 1. Since R 2 2n, we can safely choose b to be 2n. 6

Stanford University CS261: Optimization Handout 9 Luca Trevisan February 1, 2011

Stanford University CS261: Optimization Handout 9 Luca Trevisan February 1, 2011 Stanford University CS261: Optimization Handout 9 Luca Trevisan February 1, 2011 Lecture 9 In which we introduce the maximum flow problem. 1 Flows in Networks Today we start talking about the Maximum Flow

More information

X = {1, 2,...,n} n 1f 2f 3f... nf

X = {1, 2,...,n} n 1f 2f 3f... nf Section 11 Permutations Definition 11.1 Let X be a non-empty set. A bijective function f : X X will be called a permutation of X. Consider the case when X is the finite set with n elements: X {1, 2,...,n}.

More information

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1 TOPOLOGY, LIMITS OF COMPLEX NUMBERS Contents 1. Topology and limits of complex numbers 1 1. Topology and limits of complex numbers Since we will be doing calculus on complex numbers, not only do we need

More information

Tiling Problems. This document supersedes the earlier notes posted about the tiling problem. 1 An Undecidable Problem about Tilings of the Plane

Tiling Problems. This document supersedes the earlier notes posted about the tiling problem. 1 An Undecidable Problem about Tilings of the Plane Tiling Problems This document supersedes the earlier notes posted about the tiling problem. 1 An Undecidable Problem about Tilings of the Plane The undecidable problems we saw at the start of our unit

More information

BMT 2018 Combinatorics Test Solutions March 18, 2018

BMT 2018 Combinatorics Test Solutions March 18, 2018 . Bob has 3 different fountain pens and different ink colors. How many ways can he fill his fountain pens with ink if he can only put one ink in each pen? Answer: 0 Solution: He has options to fill his

More information

Greedy Flipping of Pancakes and Burnt Pancakes

Greedy Flipping of Pancakes and Burnt Pancakes Greedy Flipping of Pancakes and Burnt Pancakes Joe Sawada a, Aaron Williams b a School of Computer Science, University of Guelph, Canada. Research supported by NSERC. b Department of Mathematics and Statistics,

More information

18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY

18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY 18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY 1. Three closed boxes lie on a table. One box (you don t know which) contains a $1000 bill. The others are empty. After paying an entry fee, you play the following

More information

Lecture 7: The Principle of Deferred Decisions

Lecture 7: The Principle of Deferred Decisions Randomized Algorithms Lecture 7: The Principle of Deferred Decisions Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 7 1 / 20 Overview

More information

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES FLORIAN BREUER and JOHN MICHAEL ROBSON Abstract We introduce a game called Squares where the single player is presented with a pattern of black and white

More information

Yale University Department of Computer Science

Yale University Department of Computer Science LUX ETVERITAS Yale University Department of Computer Science Secret Bit Transmission Using a Random Deal of Cards Michael J. Fischer Michael S. Paterson Charles Rackoff YALEU/DCS/TR-792 May 1990 This work

More information

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games May 17, 2011 Summary: We give a winning strategy for the counter-taking game called Nim; surprisingly, it involves computations

More information

Game Theory and Randomized Algorithms

Game Theory and Randomized Algorithms Game Theory and Randomized Algorithms Guy Aridor Game theory is a set of tools that allow us to understand how decisionmakers interact with each other. It has practical applications in economics, international

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Invertible matrices Theorem. 1. An elementary matrix is invertible. 2.

More information

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors?

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? What can we count? In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? In how many different ways 10 books can be arranged

More information

37 Game Theory. Bebe b1 b2 b3. a Abe a a A Two-Person Zero-Sum Game

37 Game Theory. Bebe b1 b2 b3. a Abe a a A Two-Person Zero-Sum Game 37 Game Theory Game theory is one of the most interesting topics of discrete mathematics. The principal theorem of game theory is sublime and wonderful. We will merely assume this theorem and use it to

More information

Reading 14 : Counting

Reading 14 : Counting CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 14 : Counting In this reading we discuss counting. Often, we are interested in the cardinality

More information

Permutations with short monotone subsequences

Permutations with short monotone subsequences Permutations with short monotone subsequences Dan Romik Abstract We consider permutations of 1, 2,..., n 2 whose longest monotone subsequence is of length n and are therefore extremal for the Erdős-Szekeres

More information

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE The inclusion-exclusion principle (also known as the sieve principle) is an extended version of the rule of the sum. It states that, for two (finite) sets, A

More information

Definitions and claims functions of several variables

Definitions and claims functions of several variables Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

More information

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter.

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter. Three Pile Nim with Move Blocking Arthur Holshouser 3600 Bullard St Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@emailunccedu

More information

Introduction to Combinatorial Mathematics

Introduction to Combinatorial Mathematics Introduction to Combinatorial Mathematics George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 300 George Voutsadakis (LSSU) Combinatorics April 2016 1 / 97

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

Class 8 - Sets (Lecture Notes)

Class 8 - Sets (Lecture Notes) Class 8 - Sets (Lecture Notes) What is a Set? A set is a well-defined collection of distinct objects. Example: A = {1, 2, 3, 4, 5} What is an element of a Set? The objects in a set are called its elements.

More information

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter.

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter. 28,800 Extremely Magic 5 5 Squares Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@uncc.edu

More information

Tutorial 1. (ii) There are finite many possible positions. (iii) The players take turns to make moves.

Tutorial 1. (ii) There are finite many possible positions. (iii) The players take turns to make moves. 1 Tutorial 1 1. Combinatorial games. Recall that a game is called a combinatorial game if it satisfies the following axioms. (i) There are 2 players. (ii) There are finite many possible positions. (iii)

More information

Fast Sorting and Pattern-Avoiding Permutations

Fast Sorting and Pattern-Avoiding Permutations Fast Sorting and Pattern-Avoiding Permutations David Arthur Stanford University darthur@cs.stanford.edu Abstract We say a permutation π avoids a pattern σ if no length σ subsequence of π is ordered in

More information

arxiv: v1 [cs.cc] 21 Jun 2017

arxiv: v1 [cs.cc] 21 Jun 2017 Solving the Rubik s Cube Optimally is NP-complete Erik D. Demaine Sarah Eisenstat Mikhail Rudoy arxiv:1706.06708v1 [cs.cc] 21 Jun 2017 Abstract In this paper, we prove that optimally solving an n n n Rubik

More information

6.1 Basics of counting

6.1 Basics of counting 6.1 Basics of counting CSE2023 Discrete Computational Structures Lecture 17 1 Combinatorics: they study of arrangements of objects Enumeration: the counting of objects with certain properties (an important

More information

Column Generation. A short Introduction. Martin Riedler. AC Retreat

Column Generation. A short Introduction. Martin Riedler. AC Retreat Column Generation A short Introduction Martin Riedler AC Retreat Contents 1 Introduction 2 Motivation 3 Further Notes MR Column Generation June 29 July 1 2 / 13 Basic Idea We already heard about Cutting

More information

Edge-disjoint tree representation of three tree degree sequences

Edge-disjoint tree representation of three tree degree sequences Edge-disjoint tree representation of three tree degree sequences Ian Min Gyu Seong Carleton College seongi@carleton.edu October 2, 208 Ian Min Gyu Seong (Carleton College) Trees October 2, 208 / 65 Trees

More information

From Wireless Network Coding to Matroids. Rico Zenklusen

From Wireless Network Coding to Matroids. Rico Zenklusen From Wireless Network Coding to Matroids Rico Zenklusen A sketch of my research areas/interests Computer Science Combinatorial Optimization Matroids & submodular funct. Rounding algorithms Applications

More information

The tenure game. The tenure game. Winning strategies for the tenure game. Winning condition for the tenure game

The tenure game. The tenure game. Winning strategies for the tenure game. Winning condition for the tenure game The tenure game The tenure game is played by two players Alice and Bob. Initially, finitely many tokens are placed at positions that are nonzero natural numbers. Then Alice and Bob alternate in their moves

More information

The Complexity of Connectivity in Wireless Networks

The Complexity of Connectivity in Wireless Networks The Complexity of Connectivity in Wireless Networks Thomas Moscibroda Computer Engineering and Networks Laboratory ETH Zurich, Switzerland moscitho@tik.ee.ethz.ch Roger Wattenhofer Computer Engineering

More information

Solutions to Exercises Chapter 6: Latin squares and SDRs

Solutions to Exercises Chapter 6: Latin squares and SDRs Solutions to Exercises Chapter 6: Latin squares and SDRs 1 Show that the number of n n Latin squares is 1, 2, 12, 576 for n = 1, 2, 3, 4 respectively. (b) Prove that, up to permutations of the rows, columns,

More information

Dominant and Dominated Strategies

Dominant and Dominated Strategies Dominant and Dominated Strategies Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Junel 8th, 2016 C. Hurtado (UIUC - Economics) Game Theory On the

More information

PRIMES STEP Plays Games

PRIMES STEP Plays Games PRIMES STEP Plays Games arxiv:1707.07201v1 [math.co] 22 Jul 2017 Pratik Alladi Neel Bhalla Tanya Khovanova Nathan Sheffield Eddie Song William Sun Andrew The Alan Wang Naor Wiesel Kevin Zhang Kevin Zhao

More information

Constructions of Coverings of the Integers: Exploring an Erdős Problem

Constructions of Coverings of the Integers: Exploring an Erdős Problem Constructions of Coverings of the Integers: Exploring an Erdős Problem Kelly Bickel, Michael Firrisa, Juan Ortiz, and Kristen Pueschel August 20, 2008 Abstract In this paper, we study necessary conditions

More information

Counting and Probability Math 2320

Counting and Probability Math 2320 Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A

More information

Lecture 18 - Counting

Lecture 18 - Counting Lecture 18 - Counting 6.0 - April, 003 One of the most common mathematical problems in computer science is counting the number of elements in a set. This is often the core difficulty in determining a program

More information

MATHEMATICS ON THE CHESSBOARD

MATHEMATICS ON THE CHESSBOARD MATHEMATICS ON THE CHESSBOARD Problem 1. Consider a 8 8 chessboard and remove two diametrically opposite corner unit squares. Is it possible to cover (without overlapping) the remaining 62 unit squares

More information

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions PRINT Your Name: Oski Bear SIGN Your Name: OS K I PRINT Your Student ID: CIRCLE your exam room: Pimentel

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

Tile Number and Space-Efficient Knot Mosaics

Tile Number and Space-Efficient Knot Mosaics Tile Number and Space-Efficient Knot Mosaics Aaron Heap and Douglas Knowles arxiv:1702.06462v1 [math.gt] 21 Feb 2017 February 22, 2017 Abstract In this paper we introduce the concept of a space-efficient

More information

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m.

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m. Great Theoretical Ideas In Computer Science Steven Rudich CS - Spring Lecture Feb, Carnegie Mellon University Modular Arithmetic and the RSA Cryptosystem p- p MAX(a,b) + MIN(a,b) = a+b n m means that m

More information

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules Lecture 2: Sum rule, partition method, difference method, bijection method, product rules References: Relevant parts of chapter 15 of the Math for CS book. Discrete Structures II (Summer 2018) Rutgers

More information

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other.

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other. A.Miller M475 Fall 2010 Homewor problems are due in class one wee from the day assigned (which is in parentheses. Please do not hand in the problems early. 1. (1-20 W A boo shelf holds 5 different English

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

Noisy Index Coding with Quadrature Amplitude Modulation (QAM)

Noisy Index Coding with Quadrature Amplitude Modulation (QAM) Noisy Index Coding with Quadrature Amplitude Modulation (QAM) Anjana A. Mahesh and B Sundar Rajan, arxiv:1510.08803v1 [cs.it] 29 Oct 2015 Abstract This paper discusses noisy index coding problem over Gaussian

More information

Minimal tilings of a unit square

Minimal tilings of a unit square arxiv:1607.00660v1 [math.mg] 3 Jul 2016 Minimal tilings of a unit square Iwan Praton Franklin & Marshall College Lancaster, PA 17604 Abstract Tile the unit square with n small squares. We determine the

More information

Modeling, Analysis and Optimization of Networks. Alberto Ceselli

Modeling, Analysis and Optimization of Networks. Alberto Ceselli Modeling, Analysis and Optimization of Networks Alberto Ceselli alberto.ceselli@unimi.it Università degli Studi di Milano Dipartimento di Informatica Doctoral School in Computer Science A.A. 2015/2016

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 25.1 Introduction Today we re going to spend some time discussing game

More information

An Algorithm for Packing Squares

An Algorithm for Packing Squares Journal of Combinatorial Theory, Series A 82, 4757 (997) Article No. TA972836 An Algorithm for Packing Squares Marc M. Paulhus Department of Mathematics, University of Calgary, Calgary, Alberta, Canada

More information

DVA325 Formal Languages, Automata and Models of Computation (FABER)

DVA325 Formal Languages, Automata and Models of Computation (FABER) DVA325 Formal Languages, Automata and Models of Computation (FABER) Lecture 1 - Introduction School of Innovation, Design and Engineering Mälardalen University 11 November 2014 Abu Naser Masud FABER November

More information

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1: Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

More information

More Great Ideas in Theoretical Computer Science. Lecture 1: Sorting Pancakes

More Great Ideas in Theoretical Computer Science. Lecture 1: Sorting Pancakes 15-252 More Great Ideas in Theoretical Computer Science Lecture 1: Sorting Pancakes January 19th, 2018 Question If there are n pancakes in total (all in different sizes), what is the max number of flips

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

Permutations and codes:

Permutations and codes: Hamming distance Permutations and codes: Polynomials, bases, and covering radius Peter J. Cameron Queen Mary, University of London p.j.cameron@qmw.ac.uk International Conference on Graph Theory Bled, 22

More information

Gateways Placement in Backbone Wireless Mesh Networks

Gateways Placement in Backbone Wireless Mesh Networks I. J. Communications, Network and System Sciences, 2009, 1, 1-89 Published Online February 2009 in SciRes (http://www.scirp.org/journal/ijcns/). Gateways Placement in Backbone Wireless Mesh Networks Abstract

More information

TILING RECTANGLES AND HALF STRIPS WITH CONGRUENT POLYOMINOES. Michael Reid. Brown University. February 23, 1996

TILING RECTANGLES AND HALF STRIPS WITH CONGRUENT POLYOMINOES. Michael Reid. Brown University. February 23, 1996 Published in Journal of Combinatorial Theory, Series 80 (1997), no. 1, pp. 106 123. TILING RECTNGLES ND HLF STRIPS WITH CONGRUENT POLYOMINOES Michael Reid Brown University February 23, 1996 1. Introduction

More information

ON THE ENUMERATION OF MAGIC CUBES*

ON THE ENUMERATION OF MAGIC CUBES* 1934-1 ENUMERATION OF MAGIC CUBES 833 ON THE ENUMERATION OF MAGIC CUBES* BY D. N. LEHMER 1. Introduction. Assume the cube with one corner at the origin and the three edges at that corner as axes of reference.

More information

On Drawn K-In-A-Row Games

On Drawn K-In-A-Row Games On Drawn K-In-A-Row Games Sheng-Hao Chiang, I-Chen Wu 2 and Ping-Hung Lin 2 National Experimental High School at Hsinchu Science Park, Hsinchu, Taiwan jiang555@ms37.hinet.net 2 Department of Computer Science,

More information

CS188 Spring 2010 Section 3: Game Trees

CS188 Spring 2010 Section 3: Game Trees CS188 Spring 2010 Section 3: Game Trees 1 Warm-Up: Column-Row You have a 3x3 matrix of values like the one below. In a somewhat boring game, player A first selects a row, and then player B selects a column.

More information

The Classification of Quadratic Rook Polynomials of a Generalized Three Dimensional Board

The Classification of Quadratic Rook Polynomials of a Generalized Three Dimensional Board Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 3 (2017), pp. 1091-1101 Research India Publications http://www.ripublication.com The Classification of Quadratic Rook Polynomials

More information

A Lower Bound for Comparison Sort

A Lower Bound for Comparison Sort A Lower Bound for Comparison Sort Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) A Lower Bound for Comparison Sort 2014/2015 1 / 9 On this lecture Upper and lower bound problems Notion of comparison-based

More information

Analysis of Don't Break the Ice

Analysis of Don't Break the Ice Rose-Hulman Undergraduate Mathematics Journal Volume 18 Issue 1 Article 19 Analysis of Don't Break the Ice Amy Hung Doane University Austin Uden Doane University Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

More information

Universiteit Leiden Opleiding Informatica

Universiteit Leiden Opleiding Informatica Universiteit Leiden Opleiding Informatica An Analysis of Dominion Name: Roelof van der Heijden Date: 29/08/2014 Supervisors: Dr. W.A. Kosters (LIACS), Dr. F.M. Spieksma (MI) BACHELOR THESIS Leiden Institute

More information

Generating trees and pattern avoidance in alternating permutations

Generating trees and pattern avoidance in alternating permutations Generating trees and pattern avoidance in alternating permutations Joel Brewster Lewis Massachusetts Institute of Technology jblewis@math.mit.edu Submitted: Aug 6, 2011; Accepted: Jan 10, 2012; Published:

More information

Three of these grids share a property that the other three do not. Can you find such a property? + mod

Three of these grids share a property that the other three do not. Can you find such a property? + mod PPMTC 22 Session 6: Mad Vet Puzzles Session 6: Mad Veterinarian Puzzles There is a collection of problems that have come to be known as "Mad Veterinarian Puzzles", for reasons which will soon become obvious.

More information

With Question/Answer Animations. Chapter 6

With Question/Answer Animations. Chapter 6 With Question/Answer Animations Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and

More information

Formidable Fourteen Puzzle = 6. Boxing Match Example. Part II - Sums of Games. Sums of Games. Example Contd. Mathematical Games II Sums of Games

Formidable Fourteen Puzzle = 6. Boxing Match Example. Part II - Sums of Games. Sums of Games. Example Contd. Mathematical Games II Sums of Games K. Sutner D. Sleator* Great Theoretical Ideas In Computer Science Mathematical Games II Sums of Games CS 5-25 Spring 24 Lecture February 6, 24 Carnegie Mellon University + 4 2 = 6 Formidable Fourteen Puzzle

More information

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability Review: Main Theorems and Concepts Binomial Theorem: Principle of Inclusion-Exclusion

More information

The Sign of a Permutation Matt Baker

The Sign of a Permutation Matt Baker The Sign of a Permutation Matt Baker Let σ be a permutation of {1, 2,, n}, ie, a one-to-one and onto function from {1, 2,, n} to itself We will define what it means for σ to be even or odd, and then discuss

More information

arxiv: v2 [math.gt] 21 Mar 2018

arxiv: v2 [math.gt] 21 Mar 2018 Tile Number and Space-Efficient Knot Mosaics arxiv:1702.06462v2 [math.gt] 21 Mar 2018 Aaron Heap and Douglas Knowles March 22, 2018 Abstract In this paper we introduce the concept of a space-efficient

More information

Two-person symmetric whist

Two-person symmetric whist Two-person symmetric whist Johan Wästlund Linköping studies in Mathematics, No. 4, February 21, 2005 Series editor: Bengt Ove Turesson The publishers will keep this document on-line on the Internet (or

More information

Chapter 5. Drawing a cube. 5.1 One and two-point perspective. Math 4520, Spring 2015

Chapter 5. Drawing a cube. 5.1 One and two-point perspective. Math 4520, Spring 2015 Chapter 5 Drawing a cube Math 4520, Spring 2015 5.1 One and two-point perspective In Chapter 5 we saw how to calculate the center of vision and the viewing distance for a square in one or two-point perspective.

More information

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10?

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10? Chapter 5. Counting 5.1 The Basic of Counting What is counting? (how many ways of doing things) combinations: how many possible ways to choose 4 people from 10? how many license plates that start with

More information

Inputs. Outputs. Outputs. Inputs. Outputs. Inputs

Inputs. Outputs. Outputs. Inputs. Outputs. Inputs Permutation Admissibility in Shue-Exchange Networks with Arbitrary Number of Stages Nabanita Das Bhargab B. Bhattacharya Rekha Menon Indian Statistical Institute Calcutta, India ndas@isical.ac.in Sergei

More information

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday NON-OVERLAPPING PERMUTATION PATTERNS MIKLÓS BÓNA Abstract. We show a way to compute, to a high level of precision, the probability that a randomly selected permutation of length n is nonoverlapping. As

More information

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, AUGUST 20XX 1

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, AUGUST 20XX 1 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, AUGUST 0XX 1 Greenput: a Power-saving Algorithm That Achieves Maximum Throughput in Wireless Networks Cheng-Shang Chang, Fellow, IEEE, Duan-Shin Lee,

More information

16 Alternating Groups

16 Alternating Groups 16 Alternating Groups In this paragraph, we examine an important subgroup of S n, called the alternating group on n letters. We begin with a definition that will play an important role throughout this

More information

MA 524 Midterm Solutions October 16, 2018

MA 524 Midterm Solutions October 16, 2018 MA 524 Midterm Solutions October 16, 2018 1. (a) Let a n be the number of ordered tuples (a, b, c, d) of integers satisfying 0 a < b c < d n. Find a closed formula for a n, as well as its ordinary generating

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

Dominant and Dominated Strategies

Dominant and Dominated Strategies Dominant and Dominated Strategies Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu May 29th, 2015 C. Hurtado (UIUC - Economics) Game Theory On the

More information

THE PIGEONHOLE PRINCIPLE. MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin

THE PIGEONHOLE PRINCIPLE. MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin THE PIGEONHOLE PRINCIPLE MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin The Pigeonhole Principle: If n + 1 objects are placed into n boxes, then some box contains

More information

Index Terms Deterministic channel model, Gaussian interference channel, successive decoding, sum-rate maximization.

Index Terms Deterministic channel model, Gaussian interference channel, successive decoding, sum-rate maximization. 3798 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 58, NO 6, JUNE 2012 On the Maximum Achievable Sum-Rate With Successive Decoding in Interference Channels Yue Zhao, Member, IEEE, Chee Wei Tan, Member,

More information

Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 2010

Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 2010 Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 21 Peter Bro Miltersen November 1, 21 Version 1.3 3 Extensive form games (Game Trees, Kuhn Trees)

More information

Lectures: Feb 27 + Mar 1 + Mar 3, 2017

Lectures: Feb 27 + Mar 1 + Mar 3, 2017 CS420+500: Advanced Algorithm Design and Analysis Lectures: Feb 27 + Mar 1 + Mar 3, 2017 Prof. Will Evans Scribe: Adrian She In this lecture we: Summarized how linear programs can be used to model zero-sum

More information

Lecture 20 November 13, 2014

Lecture 20 November 13, 2014 6.890: Algorithmic Lower Bounds: Fun With Hardness Proofs Fall 2014 Prof. Erik Demaine Lecture 20 November 13, 2014 Scribes: Chennah Heroor 1 Overview This lecture completes our lectures on game characterization.

More information

The Capability of Error Correction for Burst-noise Channels Using Error Estimating Code

The Capability of Error Correction for Burst-noise Channels Using Error Estimating Code The Capability of Error Correction for Burst-noise Channels Using Error Estimating Code Yaoyu Wang Nanjing University yaoyu.wang.nju@gmail.com June 10, 2016 Yaoyu Wang (NJU) Error correction with EEC June

More information

SMT 2014 Advanced Topics Test Solutions February 15, 2014

SMT 2014 Advanced Topics Test Solutions February 15, 2014 1. David flips a fair coin five times. Compute the probability that the fourth coin flip is the first coin flip that lands heads. 1 Answer: 16 ( ) 1 4 Solution: David must flip three tails, then heads.

More information

Ma/CS 6a Class 16: Permutations

Ma/CS 6a Class 16: Permutations Ma/CS 6a Class 6: Permutations By Adam Sheffer The 5 Puzzle Problem. Start with the configuration on the left and move the tiles to obtain the configuration on the right. The 5 Puzzle (cont.) The game

More information

Asymptotic Results for the Queen Packing Problem

Asymptotic Results for the Queen Packing Problem Asymptotic Results for the Queen Packing Problem Daniel M. Kane March 13, 2017 1 Introduction A classic chess problem is that of placing 8 queens on a standard board so that no two attack each other. This

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificial Intelligence Spring 2007 Lecture 7: CSP-II and Adversarial Search 2/6/2007 Srini Narayanan ICSI and UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell or

More information

Greedy Algorithms. Kleinberg and Tardos, Chapter 4

Greedy Algorithms. Kleinberg and Tardos, Chapter 4 Greedy Algorithms Kleinberg and Tardos, Chapter 4 1 Selecting gas stations Road trip from Fort Collins to Durango on a given route with length L, and fuel stations at positions b i. Fuel capacity = C miles.

More information

Examples: Find the domain and range of the function f(x, y) = 1 x y 2.

Examples: Find the domain and range of the function f(x, y) = 1 x y 2. Multivariate Functions In this chapter, we will return to scalar functions; thus the functions that we consider will output points in space as opposed to vectors. However, in contrast to the majority of

More information

Online Frequency Assignment in Wireless Communication Networks

Online Frequency Assignment in Wireless Communication Networks Online Frequency Assignment in Wireless Communication Networks Francis Y.L. Chin Taikoo Chair of Engineering Chair Professor of Computer Science University of Hong Kong Joint work with Dr WT Chan, Dr Deshi

More information

Counting. Chapter 6. With Question/Answer Animations

Counting. Chapter 6. With Question/Answer Animations . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Counting Chapter

More information

Mathematics Competition Practice Session 6. Hagerstown Community College: STEM Club November 20, :00 pm - 1:00 pm STC-170

Mathematics Competition Practice Session 6. Hagerstown Community College: STEM Club November 20, :00 pm - 1:00 pm STC-170 2015-2016 Mathematics Competition Practice Session 6 Hagerstown Community College: STEM Club November 20, 2015 12:00 pm - 1:00 pm STC-170 1 Warm-Up (2006 AMC 10B No. 17): Bob and Alice each have a bag

More information

CS188 Spring 2010 Section 3: Game Trees

CS188 Spring 2010 Section 3: Game Trees CS188 Spring 2010 Section 3: Game Trees 1 Warm-Up: Column-Row You have a 3x3 matrix of values like the one below. In a somewhat boring game, player A first selects a row, and then player B selects a column.

More information