HIT3002: Introduction to Artificial Intelligence

Size: px
Start display at page:

Download "HIT3002: Introduction to Artificial Intelligence"

Transcription

1 HIT3002: Introduction to Artificial Intelligence Intelligent Agents Outline Agents and environments. The vacuum-cleaner world The concept of rational behavior. Environments. Agent structure. Swinburne University of Technology 1

2 Agents and environments Agents include human, robots, softbots, thermostats, etc. The agent function maps percept sequence to actions An agent can perceive its own actions, but not always it effects. f : P* A Agents and environments The agent function will internally be represented by the agent program. The agent program runs on the physical architecture to produce f. Swinburne University of Technology 2

3 The vacuum-cleaner world An example Environment: squares A and B Percepts: [location and content] e.g. [A, Dirty] Actions: left, right, suck, and no-op The vacuum-cleaner world Agent function Percept sequence [A,Clean] [A, Dirty] [B, Clean] [B, Dirty] [A, Clean],[A, Clean] [A, Clean],[A, Dirty] Action Right Suck Left Suck Right Suck Swinburne University of Technology 3

4 The vacuum-cleaner world An agent program function REFLEX-VACUUM-AGENT ([location, status]) return an action if status == Dirty then return Suck else if location == A then return Right else if location == B then return Left What is the right function? Can it be implemented in a small agent program? The concept of rationality A rational agent is one that does the right thing. Every entry in the table is filled out correctly. What is the right thing? Approximation: the most successful agent. Measure of success? Performance measure should be objective E.g. the amount of dirt cleaned within a certain time. E.g. how clean the floor is. Performance measure according to what is wanted in the environment instead of how the agents should behave. Swinburne University of Technology 4

5 Rationality What is rational at a given time depends on four things: Performance measure, Prior environment knowledge, Actions, Percept sequence to date (sensors). DEF: A rational agent chooses whichever action that maximizes the expected value of the performance measure given the percept sequence to date and prior environment knowledge. Rationality Rationality omniscience An omniscient agent knows the actual outcome of its actions. Rationality perfection Rationality maximizes expected performance, while perfection maximizes actual performance. Swinburne University of Technology 5

6 Rationality The proposed definition requires: Information gathering/exploration To maximize future rewards Learn from percepts Extending prior knowledge Agent autonomy Compensate for incorrect prior knowledge Is the vacuum cleaner agent rational? Depend! For example, it s rational under the following assumptions: Performance measure: 1 point for each clean square over lifetime of 1000 steps geography known but dirt distribution, initial position of agent not known Clean squares stay clean, sucking cleans squares Left and Right don t take agent outside environment Available actions: Left, Right, Suck, NoOp Agent knows where it is and whether that location contains dirt Swinburne University of Technology 6

7 Environments To design a rational agent we must specify its task environment. PEAS description of the environment: Performance Environment Actuators Sensors Environments E.g. Fully automated taxi: PEAS description of the environment: Performance Safety, destination, profits, legality, comfort Environment Streets/freeways, other traffic, pedestrians, weather, Actuators Steering, accelerating, brake, horn, speaker/display, Sensors Video, sonar, speedometer, engine sensors, keyboard, GPS, Swinburne University of Technology 7

8 Environment types Environment types Fully vs. partially observable: an environment is full observable when the sensors can detect all aspects that are relevant to the choice of action. Swinburne University of Technology 8

9 Environment types Fully vs. partially observable: an environment is full observable when the sensors can detect all aspects that are relevant to the choice of action. Environment types Deterministic vs. stochastic: if the next environment state is completely determined by the current state the executed action then the environment is deterministic. Swinburne University of Technology 9

10 Environment types Deterministic vs. stochastic: if the next environment state is completely determined by the current state the executed action then the environment is deterministic. Environment types Episodic vs. sequential: In an episodic environment the agent s experience can be divided into atomic steps where the agents perceives and then performs A single action. The choice of action depends only on the episode itself Swinburne University of Technology 10

11 Environment types Episodic vs. sequential: In an episodic environment the agent s experience can be divided into atomic steps where the agents perceives and then performs A single action. The choice of action depends only on the episode itself Environment types Static vs. dynamic: If the environment can change while the agent is choosing an action, the environment is dynamic. Semi-dynamic if the agent s performance changes even when the environment remains the same. Swinburne University of Technology 11

12 Environment types Static vs. dynamic: If the environment can change while the agent is choosing an action, the environment is dynamic. Semi-dynamic if the agent s performance changes even when the environment remains the same. SEMI Environment types Discrete vs. continuous: This distinction can be applied to the state of the environment, the way time is handled and to the percepts/actions of the agent. SEMI Swinburne University of Technology 12

13 Environment types Discrete vs. continuous: This distinction can be applied to the state of the environment, the way time is handled and to the percepts/actions of the agent. SEMI Environment types Single vs. multi-agent: Does the environment contain other agents who are also maximizing some performance measure that depends on the current agent s actions? SEMI Swinburne University of Technology 13

14 Environment types Single vs. multi-agent: Does the environment contain other agents who are also maximizing some performance measure that depends on the current agent s actions? SEMI Environment types The simplest environment is Fully observable, deterministic, episodic, static, discrete and single-agent. Most real situations are: Partially observable, stochastic, sequential, dynamic, continuous and multi-agent. Swinburne University of Technology 14

15 Agent types How does the inside of the agent work? Agent = architecture + program All agents have the same skeleton: Input = current percepts Output = action Program= manipulates input to produce output Note difference with agent function. Agent types Function TABLE-DRIVEN_AGENT(percept) returns an action static: percepts, a sequence initially empty table, a table of actions, indexed by percept sequence append percept to the end of percepts action LOOKUP(percepts, table) return action This approach is doomed to failure Swinburne University of Technology 15

16 Agent types Four basic kind of agent programs will be discussed: Simple reflex agents Model-based reflex agents Goal-based agents Utility-based agents All these can be turned into learning agents. Agent types; simple reflex Select action on the basis of only the current percept. E.g. the vacuum-agent Large reduction in possible percept/action situations(next page). Implemented through condition-action rules If dirty then suck Swinburne University of Technology 16

17 The vacuum-cleaner world function REFLEX-VACUUM-AGENT ([location, status]) return an action if status == Dirty then return Suck else if location == A then return Right else if location == B then return Left Reduction from 4 T to 4 entries Agent types; simple reflex function SIMPLE-REFLEX-AGENT(percept) returns an action static: rules, a set of condition-action rules state INTERPRET-INPUT(percept) rule RULE-MATCH(state, rule) action RULE-ACTION[rule] return action Will only work if the environment is fully observable otherwise infinite loops may occur. Swinburne University of Technology 17

18 Agent types; reflex and state To tackle partially observable environments. Maintain internal state Over time update state using world knowledge How does the world change. How do actions affect world. Model of World Agent types; reflex and state function REFLEX-AGENT-WITH-STATE(percept) returns an action static: rules, a set of condition-action rules state, a description of the current world state action, the most recent action. state UPDATE-STATE(state, action, percept) rule RULE-MATCH(state, rule) action RULE-ACTION[rule] return action Swinburne University of Technology 18

19 Agent types; goal-based The agent needs a goal to know which situations are desirable. Things become difficult when long sequences of actions are required to find the goal. Typically investigated in search and planning research. Major difference: future is taken into account Is more flexible since knowledge is represented explicitly and can be manipulated. Agent types; utility-based Certain goals can be reached in different ways. Some are better, have a higher utility. Utility function maps a (sequence of) state(s) onto a real number. Improves on goals: Selecting between conflicting goals Select appropriately between several goals based on likelihood of success. Swinburne University of Technology 19

20 Agent types; learning All previous agentprograms describe methods for selecting actions. Yet it does not explain the origin of these programs. Learning mechanisms can be used to perform this task. Teach them instead of instructing them. Advantage is the robustness of the program toward initially unknown environments. Agent types; learning Learning element: introduce improvements in performance element. Critic provides feedback on agents performance based on fixed performance standard. Performance element: selecting actions based on percepts. Corresponds to the previous agent programs Problem generator: suggests actions that will lead to new and informative experiences. Exploration vs. exploitation Swinburne University of Technology 20

21 Summary: Agents An agent perceives and acts in an environment, has an architecture, and is implemented by an agent program. Task environment PEAS (Performance, Environment, Actuators, Sensors) An ideal agent always chooses the action which maximizes its expected performance, given its percept sequence so far. An autonomous learning agent uses its own experience rather than built-in knowledge of the environment by the designer. An agent program maps from percept to action and updates internal state. Reflex agents respond immediately to percepts. Goal-based agents act in order to achieve their goal(s). Utility-based agents maximize their own utility function. Representing knowledge is important for successful agent design. The most challenging environments are not fully observable, nondeterministic, dynamic, and continuous Swinburne University of Technology 21

Intelligent Agents p.1/25. Intelligent Agents. Chapter 2

Intelligent Agents p.1/25. Intelligent Agents. Chapter 2 Intelligent Agents p.1/25 Intelligent Agents Chapter 2 Intelligent Agents p.2/25 Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types

More information

Agent. Pengju Ren. Institute of Artificial Intelligence and Robotics

Agent. Pengju Ren. Institute of Artificial Intelligence and Robotics Agent Pengju Ren Institute of Artificial Intelligence and Robotics pengjuren@xjtu.edu.cn 1 Review: What is AI? Artificial intelligence (AI) is intelligence exhibited by machines. In computer science, the

More information

Administrivia. CS 188: Artificial Intelligence Spring Agents and Environments. Today. Vacuum-Cleaner World. A Reflex Vacuum-Cleaner

Administrivia. CS 188: Artificial Intelligence Spring Agents and Environments. Today. Vacuum-Cleaner World. A Reflex Vacuum-Cleaner CS 188: Artificial Intelligence Spring 2006 Lecture 2: Agents 1/19/2006 Administrivia Reminder: Drop-in Python/Unix lab Friday 1-4pm, 275 Soda Hall Optional, but recommended Accommodation issues Project

More information

Plan for the 2nd hour. What is AI. Acting humanly: The Turing test. EDAF70: Applied Artificial Intelligence Agents (Chapter 2 of AIMA)

Plan for the 2nd hour. What is AI. Acting humanly: The Turing test. EDAF70: Applied Artificial Intelligence Agents (Chapter 2 of AIMA) Plan for the 2nd hour EDAF70: Applied Artificial Intelligence (Chapter 2 of AIMA) Jacek Malec Dept. of Computer Science, Lund University, Sweden January 17th, 2018 What is an agent? PEAS (Performance measure,

More information

Structure of Intelligent Agents. Examples of Agents 1. Examples of Agents 2. Intelligent Agents and their Environments. An agent:

Structure of Intelligent Agents. Examples of Agents 1. Examples of Agents 2. Intelligent Agents and their Environments. An agent: Intelligent Agents and their Environments Michael Rovatsos University of Edinburgh Structure of Intelligent Agents An agent: Perceives its environment, Through its sensors, Then achieves its goals By acting

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS 9/25/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Do you think a machine can be made that replicates

More information

Outline. Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types

Outline. Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Intelligent Agents Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Agents An agent is anything that can be viewed as

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Chapter 1 Chapter 1 1 Outline What is AI? A brief history The state of the art Chapter 1 2 What is AI? Systems that think like humans Systems that think rationally Systems that

More information

Intelligent Agents & Search Problem Formulation. AIMA, Chapters 2,

Intelligent Agents & Search Problem Formulation. AIMA, Chapters 2, Intelligent Agents & Search Problem Formulation AIMA, Chapters 2, 3.1-3.2 Outline for today s lecture Intelligent Agents (AIMA 2.1-2) Task Environments Formulating Search Problems CIS 421/521 - Intro to

More information

CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS Santiago Ontañón so367@drexel.edu Outline What is an Agent? Rationality Agents and Environments Agent Types (these slides are adapted from Russel & Norvig

More information

Last Time: Acting Humanly: The Full Turing Test

Last Time: Acting Humanly: The Full Turing Test Last Time: Acting Humanly: The Full Turing Test Alan Turing's 1950 article Computing Machinery and Intelligence discussed conditions for considering a machine to be intelligent Can machines think? Can

More information

CMSC 372 Artificial Intelligence What is AI? Thinking Like Acting Like Humans Humans Thought Processes Behaviors

CMSC 372 Artificial Intelligence What is AI? Thinking Like Acting Like Humans Humans Thought Processes Behaviors CMSC 372 Artificial Intelligence Fall 2017 What is AI? Machines with minds Decision making and problem solving Machines with actions Robots Thinking Like Humans Acting Like Humans Cognitive modeling/science

More information

Inf2D 01: Intelligent Agents and their Environments

Inf2D 01: Intelligent Agents and their Environments Inf2D 01: Intelligent Agents and their Environments School of Informatics, University of Edinburgh 16/01/18 Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann Structure of Intelligent

More information

Overview Agents, environments, typical components

Overview Agents, environments, typical components Overview Agents, environments, typical components CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami January 23, 2017 Outline 1 Autonomous robots 2 Agents

More information

Artificial Intelligence: Definition

Artificial Intelligence: Definition Lecture Notes Artificial Intelligence: Definition Dae-Won Kim School of Computer Science & Engineering Chung-Ang University What are AI Systems? Deep Blue defeated the world chess champion Garry Kasparov

More information

CISC 1600 Lecture 3.4 Agent-based programming

CISC 1600 Lecture 3.4 Agent-based programming CISC 1600 Lecture 3.4 Agent-based programming Topics: Agents and environments Rationality Performance, Environment, Actuators, Sensors Four basic types of agents Multi-agent systems NetLogo Agents interact

More information

Course Info. CS 486/686 Artificial Intelligence. Outline. Artificial Intelligence (AI)

Course Info. CS 486/686 Artificial Intelligence. Outline. Artificial Intelligence (AI) Course Info CS 486/686 Artificial Intelligence May 2nd, 2006 University of Waterloo cs486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart 1 Instructor: Pascal Poupart Email: cs486@students.cs.uwaterloo.ca

More information

CS 486/686 Artificial Intelligence

CS 486/686 Artificial Intelligence CS 486/686 Artificial Intelligence Sept 15th, 2009 University of Waterloo cs486/686 Lecture Slides (c) 2009 K. Larson and P. Poupart 1 Course Info Instructor: Pascal Poupart Email: ppoupart@cs.uwaterloo.ca

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. Week 2. Classifying AI Tasks

COMP9414/ 9814/ 3411: Artificial Intelligence. Week 2. Classifying AI Tasks COMP9414/ 9814/ 3411: Artificial Intelligence Week 2. Classifying AI Tasks Russell & Norvig, Chapter 2. COMP9414/9814/3411 18s1 Tasks & Agent Types 1 Examples of AI Tasks Week 2: Wumpus World, Robocup

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 2. Environment Types. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 2. Environment Types. UNSW c Alan Blair, COMP9414/ 9814/ 3411: rtificial Intelligence 2. Environment Types COMP9414/9814/3411 16s1 Environments 1 gent Model sensors environment percepts actions? agent actuators COMP9414/9814/3411 16s1 Environments

More information

Introduction to Multiagent Systems

Introduction to Multiagent Systems Introduction to Multiagent Systems Michal Jakob Agent Technology Center, Dept. of Cybernetics, FEE Czech Technical University A4M33MAS Autumn 2010 - Lect. 1 Michal Jakob (Agent Technology Center, Dept.

More information

3.1 Agents. Foundations of Artificial Intelligence. 3.1 Agents. 3.2 Rationality. 3.3 Summary. Introduction: Overview. 3. Introduction: Rational Agents

3.1 Agents. Foundations of Artificial Intelligence. 3.1 Agents. 3.2 Rationality. 3.3 Summary. Introduction: Overview. 3. Introduction: Rational Agents Foundations of Artificial Intelligence February 26, 2016 3. Introduction: Rational Agents Foundations of Artificial Intelligence 3. Introduction: Rational Agents 3.1 Agents Malte Helmert Universität Basel

More information

Introduction to Multi-Agent Systems. Michal Pechoucek & Branislav Bošanský AE4M36MAS Autumn Lect. 1

Introduction to Multi-Agent Systems. Michal Pechoucek & Branislav Bošanský AE4M36MAS Autumn Lect. 1 Introduction to Multi-Agent Systems Michal Pechoucek & Branislav Bošanský AE4M36MAS Autumn 2016 - Lect. 1 General Information Lecturers: Prof. Michal Pěchouček and Dr. Branislav Bošanský Tutorials: Branislav

More information

2. Environment Types. COMP9414/ 9814/ 3411: Artificial Intelligence. Agent Model. Agents as functions. The PEAS model of an Agent

2. Environment Types. COMP9414/ 9814/ 3411: Artificial Intelligence. Agent Model. Agents as functions. The PEAS model of an Agent COM9414/9814/3411 15s1 Environments 1 COM9414/ 9814/ 3411: rtificial Intelligence 2. Environment Types gent Model sensors environment percepts actions? agent actuators COM9414/9814/3411 15s1 Environments

More information

CPS331 Lecture: Intelligent Agents last revised July 25, 2018

CPS331 Lecture: Intelligent Agents last revised July 25, 2018 CPS331 Lecture: Intelligent Agents last revised July 25, 2018 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents Materials: 1. Projectable of Russell and Norvig

More information

Informatics 2D: Tutorial 1 (Solutions)

Informatics 2D: Tutorial 1 (Solutions) Informatics 2D: Tutorial 1 (Solutions) Agents, Environment, Search Week 2 1 Agents and Environments Consider the following agents: A robot vacuum cleaner which follows a pre-set route around a house and

More information

Our 2-course meal for this evening

Our 2-course meal for this evening 1 CSEP 573 Applications of Artificial Intelligence (AI) Rajesh Rao (Instructor) Abe Friesen (TA) http://www.cs.washington.edu/csep573 UW CSE AI faculty Our 2-course meal for this evening Part I Goals Logistics

More information

Artificial Intelligence (Introduction to)

Artificial Intelligence (Introduction to) Artificial Intelligence (Introduction to) 2003-2004 Instructor Dr Sergio Tessaris Researcher, faculty of Computer Science Contact web page: tina.inf.unibz.it/~tessaris email: phone: 0471 315 652 room 229

More information

Outline. Introduction to AI. Artificial Intelligence. What is an AI? What is an AI? Agents Environments

Outline. Introduction to AI. Artificial Intelligence. What is an AI? What is an AI? Agents Environments Outline Introduction to AI ECE457 Applied Artificial Intelligence Fall 2007 Lecture #1 What is an AI? Russell & Norvig, chapter 1 Agents s Russell & Norvig, chapter 2 ECE457 Applied Artificial Intelligence

More information

Instructor. Artificial Intelligence (Introduction to) What is AI? Introduction. Dr Sergio Tessaris

Instructor. Artificial Intelligence (Introduction to) What is AI? Introduction. Dr Sergio Tessaris Instructor Dr Sergio Tessaris Artificial Intelligence (Introduction to) Researcher, faculty of Computer Science Contact web page: tina.inf.unibz.it/~tessaris email: phone: 0471 016 125 room 229 (2nd floor,

More information

CPS331 Lecture: Agents and Robots last revised April 27, 2012

CPS331 Lecture: Agents and Robots last revised April 27, 2012 CPS331 Lecture: Agents and Robots last revised April 27, 2012 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents 3. To introduce the subsumption architecture

More information

CS343 Artificial Intelligence

CS343 Artificial Intelligence CS343 Artificial Intelligence Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Questions about

More information

CPS331 Lecture: Agents and Robots last revised November 18, 2016

CPS331 Lecture: Agents and Robots last revised November 18, 2016 CPS331 Lecture: Agents and Robots last revised November 18, 2016 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents 3. To introduce the subsumption architecture

More information

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence Introduction to Artificial Intelligence Kalev Kask ICS 271 Fall 2017 http://www.ics.uci.edu/~kkask/fall-2017 CS271/ Course requirements Assignments: There will be weekly homework assignments, a project,

More information

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 CS 730/830: Intro AI Prof. Wheeler Ruml TA Bence Cserna Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 Wheeler Ruml (UNH) Lecture 1, CS 730 1 / 23 My Definition

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 2 February, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 2 February, 2018 DIT411/TIN175, Artificial Intelligence Chapters 4 5: Non-classical and adversarial search CHAPTERS 4 5: NON-CLASSICAL AND ADVERSARIAL SEARCH DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 2 February,

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Berlin Chen 2005 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 3 AI - Berlin Chen 1 Introduction Problem-Solving Agents vs. Reflex

More information

Multi-Robot Teamwork Cooperative Multi-Robot Systems

Multi-Robot Teamwork Cooperative Multi-Robot Systems Multi-Robot Teamwork Cooperative Lecture 1: Basic Concepts Gal A. Kaminka galk@cs.biu.ac.il 2 Why Robotics? Basic Science Study mechanics, energy, physiology, embodiment Cybernetics: the mind (rather than

More information

Artificial Intelligence: An overview

Artificial Intelligence: An overview Artificial Intelligence: An overview Thomas Trappenberg January 4, 2009 Based on the slides provided by Russell and Norvig, Chapter 1 & 2 What is AI? Systems that think like humans Systems that act like

More information

Russell and Norvig: an active, artificial agent. continuum of physical configurations and motions

Russell and Norvig: an active, artificial agent. continuum of physical configurations and motions Chapter 8 Robotics Christian Jacob jacob@cpsc.ucalgary.ca Department of Computer Science University of Calgary 8.5 Robot Institute of America defines a robot as a reprogrammable, multifunction manipulator

More information

CMPT 310 Assignment 1

CMPT 310 Assignment 1 CMPT 310 Assignment 1 October 16, 2017 100 points total, worth 10% of the course grade. Turn in on CourSys. Submit a compressed directory (.zip or.tar.gz) with your solutions. Code should be submitted

More information

Planning in autonomous mobile robotics

Planning in autonomous mobile robotics Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Planning in autonomous mobile robotics Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

Lecture Overview. c D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 1.1, Page 1 1 / 15

Lecture Overview. c D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 1.1, Page 1 1 / 15 Lecture Overview What is Artificial Intelligence? Agents acting in an environment Learning objectives: at the end of the class, you should be able to describe what an intelligent agent is identify the

More information

CS494/594: Software for Intelligent Robotics

CS494/594: Software for Intelligent Robotics CS494/594: Software for Intelligent Robotics Spring 2007 Tuesday/Thursday 11:10 12:25 Instructor: Dr. Lynne E. Parker TA: Rasko Pjesivac Outline Overview syllabus and class policies Introduction to class:

More information

Introduction to Computer Science

Introduction to Computer Science Introduction to Computer Science CSCI 109 Andrew Goodney Fall 2017 China Tianhe-2 Robotics Nov. 20, 2017 Schedule 1 Robotics ì Acting on the physical world 2 What is robotics? uthe study of the intelligent

More information

Logical Agents (AIMA - Chapter 7)

Logical Agents (AIMA - Chapter 7) Logical Agents (AIMA - Chapter 7) CIS 391 - Intro to AI 1 Outline 1. Wumpus world 2. Logic-based agents 3. Propositional logic Syntax, semantics, inference, validity, equivalence and satifiability Next

More information

11/18/2015. Outline. Logical Agents. The Wumpus World. 1. Automating Hunt the Wumpus : A different kind of problem

11/18/2015. Outline. Logical Agents. The Wumpus World. 1. Automating Hunt the Wumpus : A different kind of problem Outline Logical Agents (AIMA - Chapter 7) 1. Wumpus world 2. Logic-based agents 3. Propositional logic Syntax, semantics, inference, validity, equivalence and satifiability Next Time: Automated Propositional

More information

CITS3001. Algorithms, Agents and Artificial Intelligence. Semester 1, 2015

CITS3001. Algorithms, Agents and Artificial Intelligence. Semester 1, 2015 CITS3001 Algorithms, Agents and Artificial Intelligence Semester 1, 2015 Wei Liu School of Computer Science & Software Eng. The University of Western Australia 5. Agents and introduction to AI AIMA, Chs.

More information

Behaviour-Based Control. IAR Lecture 5 Barbara Webb

Behaviour-Based Control. IAR Lecture 5 Barbara Webb Behaviour-Based Control IAR Lecture 5 Barbara Webb Traditional sense-plan-act approach suggests a vertical (serial) task decomposition Sensors Actuators perception modelling planning task execution motor

More information

Agents and Introduction to AI

Agents and Introduction to AI Agents and Introduction to AI CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2017, Semester 2

More information

CMU-Q Lecture 20:

CMU-Q Lecture 20: CMU-Q 15-381 Lecture 20: Game Theory I Teacher: Gianni A. Di Caro ICE-CREAM WARS http://youtu.be/jilgxenbk_8 2 GAME THEORY Game theory is the formal study of conflict and cooperation in (rational) multi-agent

More information

Autonomous Agents and MultiAgent Systems* Lecture 2

Autonomous Agents and MultiAgent Systems* Lecture 2 * These slides are based on the book byinspitinpired Prof. M. Woodridge An Introduction to Multiagent Systems and the online slides compiled by Professor Jeffrey S. Rosenschein. Modifications introduced

More information

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Funzionalità per la navigazione di robot mobili Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Variability of the Robotic Domain UNIBG - Corso di Robotica - Prof. Brugali Tourist

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Games and game trees Multi-agent systems

More information

Characteristics of Routes in a Road Traffic Assignment

Characteristics of Routes in a Road Traffic Assignment Characteristics of Routes in a Road Traffic Assignment by David Boyce Northwestern University, Evanston, IL Hillel Bar-Gera Ben-Gurion University of the Negev, Israel at the PTV Vision Users Group Meeting

More information

Intro to Artificial Intelligence Lecture 1. Ahmed Sallam { }

Intro to Artificial Intelligence Lecture 1. Ahmed Sallam {   } Intro to Artificial Intelligence Lecture 1 Ahmed Sallam { http://sallam.cf } Purpose of this course Understand AI Basics Excite you about this field Definitions of AI Thinking Rationally Acting Humanly

More information

COMP5121 Mobile Robots

COMP5121 Mobile Robots COMP5121 Mobile Robots Foundations Dr. Mario Gongora mgongora@dmu.ac.uk Overview Basics agents, simulation and intelligence Robots components tasks general purpose robots? Environments structured unstructured

More information

Don t shoot until you see the whites of their eyes. Combat Policies for Unmanned Systems

Don t shoot until you see the whites of their eyes. Combat Policies for Unmanned Systems Don t shoot until you see the whites of their eyes Combat Policies for Unmanned Systems British troops given sunglasses before battle. This confuses colonial troops who do not see the whites of their eyes.

More information

WHAT THE COURSE IS AND ISN T ABOUT. Welcome to CIS 391. Introduction to Artificial Intelligence. Grading & Homework. Welcome to CIS 391

WHAT THE COURSE IS AND ISN T ABOUT. Welcome to CIS 391. Introduction to Artificial Intelligence. Grading & Homework. Welcome to CIS 391 Welcome to CIS 391 Introduction to Artificial Intelligence Lecturer: Mitch Marcus, mitch@ Levine 503 Office hours will be announced on Piazza Mitch Marcus CIS391 Fall, 2015 TA: Daniel Moroz,

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 16 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 16 January, 2018 DIT411/TIN175, Artificial Intelligence Russell & Norvig, Chapters 1 2: Introduction to AI RUSSELL & NORVIG, CHAPTERS 1 2: INTRODUCTION TO AI DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 16 January,

More information

HMM-based Error Recovery of Dance Step Selection for Dance Partner Robot

HMM-based Error Recovery of Dance Step Selection for Dance Partner Robot 27 IEEE International Conference on Robotics and Automation Roma, Italy, 1-14 April 27 ThA4.3 HMM-based Error Recovery of Dance Step Selection for Dance Partner Robot Takahiro Takeda, Yasuhisa Hirata,

More information

IN5480 vildehos Høst 2018

IN5480 vildehos Høst 2018 1. Three definitions of Ai The study of how to produce machines that have some of the qualities that the human mind has, such as the ability to understand language, recognize pictures, solve problems,

More information

MOBILITY RESEARCH NEEDS FROM THE GOVERNMENT PERSPECTIVE

MOBILITY RESEARCH NEEDS FROM THE GOVERNMENT PERSPECTIVE MOBILITY RESEARCH NEEDS FROM THE GOVERNMENT PERSPECTIVE First Annual 2018 National Mobility Summit of US DOT University Transportation Centers (UTC) April 12, 2018 Washington, DC Research Areas Cooperative

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

LECTURE 26: GAME THEORY 1

LECTURE 26: GAME THEORY 1 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 26: GAME THEORY 1 INSTRUCTOR: GIANNI A. DI CARO ICE-CREAM WARS http://youtu.be/jilgxenbk_8 2 GAME THEORY Game theory is the formal study of conflict and cooperation

More information

Cognitive Robotics 2017/2018

Cognitive Robotics 2017/2018 Cognitive Robotics 2017/2018 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

Appendices master s degree programme Artificial Intelligence

Appendices master s degree programme Artificial Intelligence Appendices master s degree programme Artificial Intelligence 2015-2016 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

Spring 19 Planning Techniques for Robotics Introduction; What is Planning for Robotics?

Spring 19 Planning Techniques for Robotics Introduction; What is Planning for Robotics? 16-350 Spring 19 Planning Techniques for Robotics Introduction; What is Planning for Robotics? Maxim Likhachev Robotics Institute Carnegie Mellon University About Me My Research Interests: - Planning,

More information

Reinforcement Learning Simulations and Robotics

Reinforcement Learning Simulations and Robotics Reinforcement Learning Simulations and Robotics Models Partially observable noise in sensors Policy search methods rather than value functionbased approaches Isolate key parameters by choosing an appropriate

More information

Agent-based/Robotics Programming Lab II

Agent-based/Robotics Programming Lab II cis3.5, spring 2009, lab IV.3 / prof sklar. Agent-based/Robotics Programming Lab II For this lab, you will need a LEGO robot kit, a USB communications tower and a LEGO light sensor. 1 start up RoboLab

More information

Master Artificial Intelligence

Master Artificial Intelligence Master Artificial Intelligence Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability to evaluate, analyze and interpret relevant

More information

STRATEGO EXPERT SYSTEM SHELL

STRATEGO EXPERT SYSTEM SHELL STRATEGO EXPERT SYSTEM SHELL Casper Treijtel and Leon Rothkrantz Faculty of Information Technology and Systems Delft University of Technology Mekelweg 4 2628 CD Delft University of Technology E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

More information

ADVANCES IN IT FOR BUILDING DESIGN

ADVANCES IN IT FOR BUILDING DESIGN ADVANCES IN IT FOR BUILDING DESIGN J. S. Gero Key Centre of Design Computing and Cognition, University of Sydney, NSW, 2006, Australia ABSTRACT Computers have been used building design since the 1950s.

More information

Game Tree Search. CSC384: Introduction to Artificial Intelligence. Generalizing Search Problem. General Games. What makes something a game?

Game Tree Search. CSC384: Introduction to Artificial Intelligence. Generalizing Search Problem. General Games. What makes something a game? CSC384: Introduction to Artificial Intelligence Generalizing Search Problem Game Tree Search Chapter 5.1, 5.2, 5.3, 5.6 cover some of the material we cover here. Section 5.6 has an interesting overview

More information

Cognitive Robotics 2016/2017

Cognitive Robotics 2016/2017 Cognitive Robotics 2016/2017 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

5a. Reactive Agents. COMP3411: Artificial Intelligence. Outline. History of Reactive Agents. Reactive Agents. History of Reactive Agents

5a. Reactive Agents. COMP3411: Artificial Intelligence. Outline. History of Reactive Agents. Reactive Agents. History of Reactive Agents COMP3411 15s1 Reactive Agents 1 COMP3411: Artificial Intelligence 5a. Reactive Agents Outline History of Reactive Agents Chemotaxis Behavior-Based Robotics COMP3411 15s1 Reactive Agents 2 Reactive Agents

More information

A SURVEY OF SOCIALLY INTERACTIVE ROBOTS

A SURVEY OF SOCIALLY INTERACTIVE ROBOTS A SURVEY OF SOCIALLY INTERACTIVE ROBOTS Terrence Fong, Illah Nourbakhsh, Kerstin Dautenhahn Presented By: Mehwish Alam INTRODUCTION History of Social Robots Social Robots Socially Interactive Robots Why

More information

Robotics and Autonomous Systems

Robotics and Autonomous Systems 1 / 41 Robotics and Autonomous Systems Lecture 1: Introduction Simon Parsons Department of Computer Science University of Liverpool 2 / 41 Acknowledgements The robotics slides are heavily based on those

More information

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS GARY B. PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu IVO I. PARASHKEVOV, CONNECTICUT COLLEGE, USA, iipar@conncoll.edu H. JOSEPH

More information

Problem solving. Chapter 3, Sections 1 3

Problem solving. Chapter 3, Sections 1 3 Problem solving Chapter 3, ections 1 3 Artificial Intelligence, spring 2013, Peter junglöf; based on AIMA lides c tuart ussel and Peter Norvig, 2004 Chapter 3, ections 1 3 1 Problem types Deterministic,

More information

What is AI? AI is the reproduction of human reasoning and intelligent behavior by computational methods. an attempt of. Intelligent behavior Computer

What is AI? AI is the reproduction of human reasoning and intelligent behavior by computational methods. an attempt of. Intelligent behavior Computer What is AI? an attempt of AI is the reproduction of human reasoning and intelligent behavior by computational methods Intelligent behavior Computer Humans 1 What is AI? (R&N) Discipline that systematizes

More information

Philosophy. AI Slides (5e) c Lin

Philosophy. AI Slides (5e) c Lin Philosophy 15 AI Slides (5e) c Lin Zuoquan@PKU 2003-2018 15 1 15 Philosophy 15.1 AI philosophy 15.2 Weak AI 15.3 Strong AI 15.4 Ethics 15.5 The future of AI AI Slides (5e) c Lin Zuoquan@PKU 2003-2018 15

More information

Intelligent Driving Agents

Intelligent Driving Agents Intelligent Driving Agents The agent approach to tactical driving in autonomous vehicles and traffic simulation Presentation Master s thesis Patrick Ehlert January 29 th, 2001 Imagine. Sensors Actuators

More information

MEM380 Applied Autonomous Robots I Winter Feedback Control USARSim

MEM380 Applied Autonomous Robots I Winter Feedback Control USARSim MEM380 Applied Autonomous Robots I Winter 2011 Feedback Control USARSim Transforming Accelerations into Position Estimates In a perfect world It s not a perfect world. We have noise and bias in our acceleration

More information

Stanford Center for AI Safety

Stanford Center for AI Safety Stanford Center for AI Safety Clark Barrett, David L. Dill, Mykel J. Kochenderfer, Dorsa Sadigh 1 Introduction Software-based systems play important roles in many areas of modern life, including manufacturing,

More information

Elements of Artificial Intelligence and Expert Systems

Elements of Artificial Intelligence and Expert Systems Elements of Artificial Intelligence and Expert Systems Master in Data Science for Economics, Business & Finance Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135 Milano (MI) Ufficio

More information

Foundations of AI. 3. Solving Problems by Searching. Problem-Solving Agents, Formulating Problems, Search Strategies

Foundations of AI. 3. Solving Problems by Searching. Problem-Solving Agents, Formulating Problems, Search Strategies Foundations of AI 3. Solving Problems by Searching Problem-Solving Agents, Formulating Problems, Search Strategies Luc De Raedt and Wolfram Burgard and Bernhard Nebel Contents Problem-Solving Agents Formulating

More information

TRB Workshop on the Future of Road Vehicle Automation

TRB Workshop on the Future of Road Vehicle Automation TRB Workshop on the Future of Road Vehicle Automation Steven E. Shladover University of California PATH Program ITFVHA Meeting, Vienna October 21, 2012 1 Outline TRB background Workshop organization Automation

More information

Robotics in Oil and Gas. Matt Ondler President / CEO

Robotics in Oil and Gas. Matt Ondler President / CEO Robotics in Oil and Gas Matt Ondler President / CEO 1 Agenda Quick background on HMI State of robotics Sampling of robotics projects in O&G Example of a transformative robotic application Future of robotics

More information

Autonomous Robotic (Cyber) Weapons?

Autonomous Robotic (Cyber) Weapons? Autonomous Robotic (Cyber) Weapons? Giovanni Sartor EUI - European University Institute of Florence CIRSFID - Faculty of law, University of Bologna Rome, November 24, 2013 G. Sartor (EUI-CIRSFID) Autonomous

More information

Artificial Intelligence Uninformed search

Artificial Intelligence Uninformed search Artificial Intelligence Uninformed search Peter Antal antal@mit.bme.hu A.I. Uninformed search 1 The symbols&search hypothesis for AI Problem-solving agents A kind of goal-based agent Problem types Single

More information

Foundations of AI. 3. Solving Problems by Searching. Problem-Solving Agents, Formulating Problems, Search Strategies

Foundations of AI. 3. Solving Problems by Searching. Problem-Solving Agents, Formulating Problems, Search Strategies Foundations of AI 3. Solving Problems by Searching Problem-Solving Agents, Formulating Problems, Search Strategies Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller SA-1 Contents

More information

ARTIFICIAL INTELLIGENCE UNIT I INTRODUCTION TO AI

ARTIFICIAL INTELLIGENCE UNIT I INTRODUCTION TO AI Introduction to AI Assistant Professor of ECM in SNIST ARTIFICIAL INTELLIGENCE UNIT I INTRODUCTION TO AI These notes are dedicated To My Father Mir Farooq Ali, Head of Department, Mathematics, Muffakham

More information

A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures

A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures D.M. Rojas Castro, A. Revel and M. Ménard * Laboratory of Informatics, Image and Interaction (L3I)

More information

Automatic Control Systems

Automatic Control Systems Automatic Control Systems Lecture-1 Basic Concepts of Classical control Emam Fathy Department of Electrical and Control Engineering email: emfmz@yahoo.com 1 What is Control System? A system Controlling

More information

Agent Models of 3D Virtual Worlds

Agent Models of 3D Virtual Worlds Agent Models of 3D Virtual Worlds Abstract P_130 Architectural design has relevance to the design of virtual worlds that create a sense of place through the metaphor of buildings, rooms, and inhabitable

More information

Using FMI/ SSP for Development of Autonomous Driving

Using FMI/ SSP for Development of Autonomous Driving Using FMI/ SSP for Development of Autonomous Driving presented by Jochen Köhler (ZF) FMI User Meeting 15.05.2017 Prague / Czech Republic H.M. Heinkel S.Rude P. R. Mai J. Köhler M. Rühl / A. Pillekeit Motivation

More information

Outline. What is AI? A brief history of AI State of the art

Outline. What is AI? A brief history of AI State of the art Introduction to AI Outline What is AI? A brief history of AI State of the art What is AI? AI is a branch of CS with connections to psychology, linguistics, economics, Goal make artificial systems solve

More information

The next level of intelligence: Artificial Intelligence. Innovation Day USA 2017 Princeton, March 27, 2017 Michael May, Siemens Corporate Technology

The next level of intelligence: Artificial Intelligence. Innovation Day USA 2017 Princeton, March 27, 2017 Michael May, Siemens Corporate Technology The next level of intelligence: Artificial Intelligence Innovation Day USA 2017 Princeton, March 27, 2017, Siemens Corporate Technology siemens.com/innovationusa Notes and forward-looking statements This

More information

CS7032: AI & Agents: Ms Pac-Man vs Ghost League - AI controller project

CS7032: AI & Agents: Ms Pac-Man vs Ghost League - AI controller project CS7032: AI & Agents: Ms Pac-Man vs Ghost League - AI controller project TIMOTHY COSTIGAN 12263056 Trinity College Dublin This report discusses various approaches to implementing an AI for the Ms Pac-Man

More information