. B 0. (5) Now we can define, B A. (6) Where A is magnetic vector potential. Substituting equation (6) in to equation (2),

Size: px
Start display at page:

Download ". B 0. (5) Now we can define, B A. (6) Where A is magnetic vector potential. Substituting equation (6) in to equation (2),"

Transcription

1 Research Paper INVESTIGATING THE EFFECT OF CURRENT SHAPE ON RAIL GUN DESIGN AT TRANSIENT CONDITIONS Murugan.R 1, Saravana Kumar M.N 2 and Azhagar Raj.M 3 Address for Correspondence 1 Professor, Department of Electrical and Electronics Engineering, Easwari Engineering College, Chennai, Tamil Nadu, India 2 Research Scholar, Department of Electrical and Electronics Engineering, St Peters University, Chennai, Tamil Nadu, India 3 Department of Electrical and Electronics Engineering, Hibrise Technologies Pvt. Ltd, Chennai, Tamil Nadu, India ABSTRACT The performance parameters of the rail gun such as force and velocity acting on the armature, induced voltage, power loss and current density distribution and magnetic field distribution over rail and armature are greatly affected by the current distribution. These parameters depend on rail and armature dimension, shape, and the magnitude of current as well as the shape of the current supplied to rails. The rising, working and dropping characteristics of the current shape is greatly affecting current distribution on the rail and armature. So, understanding the profile of the current distribution on rail and armature due to various pulsed current shapes are essential to analyze the effect on the above performance characteristic parameters during transient conditions. In this paper the performance of rail gun is analyzed by exciting the rail with different current wave shapes using a 3-dimensional magnetic field simulator called ANSYS. The simulator uses finite element method to predict the magnetic field distribution. Pulsed mode current shape has been considered for this study. KEYWORDS - Current density, Current shape, Induced voltage, Power loss, Force. I. INTRODUCTION The rail gun is a type of electro mechanical projectile missile which accelerates the projectile to a higher velocity by converting the electrical energy into mechanical energy. Fig. 1. Structure of Rail gun [1]. Rail guns use very basic laws of the Lorentz force to accelerate the projectile. A specific amount of current is used to generate a magnetic field by which the projectile is accelerated. In its simplest appearance shown in Fig.1, a rail gun consists of two parallel conducting plates called rails between which the projectile closes the electrical circuit. The electrical current starts to flow through one rail, across the projectile and down the rail and forms a current loop [2]. The current distribution in the rails plays an significant role in rail gun design as it determine the force and velocity acting on the armature, induced voltage, power loss and current density distribution and magnetic field distribution over rail and armature. Examine the current distribution characteristics in the rails and armatures are critical to the design and development of rail guns. The current distribution in the rail and armature mainly depends on rail and armature dimension, shape of rail and armature and the magnitude of current as well as the shape of current supplied to rails [4]. Due to the rapid movement of the armature, it is very difficult to evaluate e the exact current distribution over the rail and armature. For the past several year numerical codes were developed to carry out the performance of rail gun systems [5-9]. In this work study is carried out to analyze the performance of rail gun by varying the current shape which is supplied to the rails using ANSYS. The force acting on the armature, induced voltage solid loss in the armature, magnetic field distribution and current density distribution over a rail and armature are calculated by varying the shape of current pulse. II. TRANSIENT ANALYSIS The following Maxwell s equation is relevant to transient application,[11] H J, (1) Where, E is Electric field intensity (V/m), H is magnetic field intensity (A/m), J is current density A/m 2 B E. (2) t J ( E B. (3) 1 B ( E) 0. (4) t. B 0. (5) Now we can define, B A. (6) Where A is magnetic vector potential. Substituting equation (6) in to equation (2), A E 0 t. (7) This equation has a solution of A E t, (8) Where φ is a random function that constitute the scalar potential contribution to the electric field. Substituting equation (3), (6) and (8) in to equation (1), A A A A t (9) The magnetic vector potential is calculated by solving the above equation then the electromagnetic field are calculated by using the A. The induced voltage can be derived from the following equation, d e B. ds dt. (V) (10) Force acting on the armature is given as, F J X Bdv. (N) (11) The instantaneous joule losses is given as, 2 p J dv. (W) (12)

2 III. SIMULATION RESULTS Fig. 2. Geometric model of rail gun[12]. Fig.2 shows the geometric model of rail gun used in simulation. We assumed that the armature and rails are made up of copper and the dimensions of rails and armature used in simulation are given in Table 1. Table 1: Rail gun geometry parameter The rail gun parameters such as force and velocity acting on the armature, induced voltage, power loss and current density and magnetic flux over rail and armature are calculated by exciting the rail with different pulsed current shapes at transient conditions. The current pulse shown in Fig.3 given to the rail gun has three portions namely, a) Pulse rise time b) Pulse working time c) Pulse fall time The current supplied to the rail, Lorentz force developed in the armature, induced voltage over the armature and the power loss over armature obtained from the simulation for a various rise times are shown in Fig.4 to Fig 6. From the figure Fig.4 (a) Fig.4 (b) and Fig.4c it is observed that the shape of input current and force acting on the armature power loss over the armature are same. It validates that the force acting the projectile and power loss over the armature is directly proportional to the square of the current supplied to rails. It is also observed that as the rise time of current pulse increases force acting on the armature decrease. It is also observed that the induced voltage has positive value during the rise time and it maintain constant voltage during working time and it has negative value during fall time. It is validate that the induced voltage is directly proportional to the rate of change of current. It is also observed that as the rate of change of current is positive the induced voltage has positive value and for the rate of change of current is negative voltage will be negative. It is also observed that as the rise time of current pulse is increased the induced voltage in the armature decreased. B. Pulse working time variation The working time of the current pulse supplied to the rail gun varied for different duration s namely small working time, medium working time and large working time and characteristics of working time given Table 3. The induced current in the rail, Lorentz force developed in the armature, induced voltage over the armature, solid loss over armature obtained from the simulation for various rise shown in Fig7 to Fig 9.It is observed that as the working time increases the force acting on the armature increases. It is also observed that as the working time increases the induced voltage in the armature increases. Fig. 3. Current pulse given to the rail gun [2]. The current distribution changes significantly in rails and armature during the rising, working time and falls time of the exciting current source. Investigating the current distribution in rails and armature is useful to study the inductance gradient and to realize the current distribution in armature. Estimating the current distribution in armature is essential to analyze its stress, temperature rise, contact with rails, and motion characteristics. A. Pulse rise time variation The rise time of the current pulse supplied to the rail gun is varied for different duration s namely small rise time, medium rise time and large rise time, and the characteristic of rise time given in Table 2. Table 2: Characteristic of Rise time Fig. 4. Performance of Rail gun for small rise time.

3 Fig. 5. Performance of Rail gun for medium rise time. Fig. 7. Performance of Rail gun for small working time. Fig. 6. Performance of Rail gun for large rise time. Fig. 8. Performance of Rail gun for medium working time.

4 rise time. 1.54Tesla for medium rise time and 1.25 Tesla for large rise time of input current. It has been concluded that as the rise time of current pulse increases magnetic flux density over the rail and armature decreases. Fig. 10. (a). Small rise time. Fig. 10. (b). Medium rise time. Fig. 9. Performance of Rail gun for large working time. Table 3: Characteristics of working time Fig. 10. (c). Large rise time. Fig.10. Comparative plot of current density vector fields and magnitude fields. Fig. 11. (a). Small rise time. IV. ANALYSIS OF TRANSIENT RESULTS A. Rise time analysis The current density magnitude and vector plots obtained from the simulation for a different rise times are shown in Fig.10. All the results are compared at same time frame at 0.08ms. It is observed that the current density magnitude is high in corners where armature and rails cross. The peak average current density for small rise time is A/m 2, for the medium rise time it is A/m 2, and for the same condition in large rise time is 6.46X10 7 A/m 2.It has been concluded that as the rise time of current pulse increases the current density values over the rail and armature decreases Fig.11 shows the magnitude and vector plots of magnetic flux density over the rail and armature for a different rise time. It is observed that the magnetic flux density maintain a value of 1.55 Tesla for small Fig. 11. (b). Medium rise time. Fig. 11. (c). Large rise time. Fig.11 Comparative plot of Magnetic flux density vector fields and magnitude.

5 Fig. 12. (a). Small working time. Fig. 12. (b). Medium working time. Fig. 12. (c). Large working time. Fig.12 Comparative plot of Current density Vector fields and magnitude fields. Fig. 13. (a). Small working time. Fig. 13. (b). Medium working time. Fig. 13. (c). Large working time Fig.13. Comparative plot of Magnetic flux density vector fields and magnitude fields B. Working time analysis The working time variation is varied from small working time to large steady time. The analysis is studied in same time frame of 0.36ms. Fig.12 shows the current density distribution over rail and armature for different working time. From the figures it is observed that maximum current density over the armature for small working time is 3.44X10 7 A/m 2, for the medium working time it is 5.16X107 A/m 2 and for the same condition in larger working time it is 7.45X10 7 A/m 2. It has been concluded that as the working time of current pulse increases the current density over a rail and armature increases. Fig.13 shows the magnetic flux density distribution over rail and armature for different working time. From the figures it is observed that maximum magnetic flux density over the armature for small working time is 0.67 Tesla, Tesla and 1.45 Tesla for the medium and large working time respectively. It has been concluded that as the working time of current pulse increases the magnetic flux density over armature increases. V. CONCLUSIONS The performance characteristics parameters of the rail gun such as force and velocity acting on the armature, induced voltage, power loss and B field plots over rail and armature are greatly affected by its current distribution. In this paper the performance of rail gun is analyzed by exciting the rail with different current wave shape using 3-dimensional magnetic field simulator. Pulsed mode current shape has been considered for this study. The rise and working time of current pulse is varied and performance of rail gun is analyzed. It is also observed that as the rise time of current pulse increases force acting on the armature decreases. It is also observed that as the rise time of current pulse is increased the induced voltage in the armature decreased. For varying working time of current pulse, it is observed that as the working time of current pulse increases the force acting on the armature increases. It is also observed that as the working time increases the induced voltage in the armature increases. It is also observed that varying the time period of current pulse does not give any effects on solid loss over armature. The current density and magnetic flux density over a rail and armature are obtained for different rise and working time of current pulse. It is observed that current density and magnetic flux density decreases as the rise time of current pulse increases and increases as the working time of current pulse increases. It also been observed that current density distribution are greatly affected by working time comparing to rising time of current pulse. Thus the results hereby prove that the working time of input pulse is essential as it decides design parameters of the rail gun system. REFERENCES [1] Asghar Keshtkar, Sadjad Bayati and Ahmad Keshtkar, Derivation of a formula for inductance gradient using intelligent estimation method, IEEE Trans. Magnetics, Vol. 45, No. 1, pp , [2] Nikolaos Pratikakis Mathematical Modeling Of Rail Gun M.S. Thesis,Naval Postgraduate School, Monterey, California pp [3] C. G. Hodge and J. O. Flower, A Comparison of Co Energy and Lorenz Force Based Simulations Of Rail Guns BMT Defence Services Ltd., pp. 1-6, April [4] Peng Zuo, Jun Li, Xiangqian Song, and Jiansheng Yuan Characteristics of Current Distribution in Rails and Armature With Different Section Shape Rails IEEE Trans. Plasma Sci., vol. 41, no. 5,Jan [5] S. Hundertmark and M. Roch Transient 3-d Simulation of an experimental rail gun using

6 Finite Element Methods 16 th Electromagnetic launcher symposium pp.1-5 May [6] Tao Huang, Jiangjun Ruan, Yujiao Zhang, Yadong Zhang, JunpengLiao, and Yuanchao Hu Effect of Geometry Change on the Deformation in C- Shaped Armatures Through 3-D Magnetic-Structural Coupling FE Analysis IEEE Trans. Plasma Sci., vol. 41, no. 4, pp.71-74, Jan [7] Asghar Keshtkar, Shahab Mozaffari, and Ahmad Keshtkar Effect of Rail Tapering on the Inductance Gradient Versus Armature Position by 3D- FEM IEEE Trans. Plasma Sci., vol. 39, no. 1, pp.71-74, Jan [8] Gallant, Parametric study of augmented railguns, IEEE Trans. Magn., vol. 39, no. 1, pp , Jan [9] A. Musolino, M. Raugi, R. Rizzo, and A. Tellini, Analysis of the performance of a multistage railgun, IEEE Trans. Magn., vol. 39, no. 1, pp , Jan [10] Peng Zuo, Jun Li, Member, IEEE, Xiangqian Song, and Jiansheng Yuan Characteristics of Current Distribution in Rails and Armature With Different Section Shape Rails IEEE Trans. Plasma Sci., vol. 41, no. 5,Jan [11] John D, Powell and Alexander E. Zielinski Two dimensional Current Diffusion in the Rails of a Railgun Army research laboratory October 2008 [12] Inaki caldicoury and Pierre L Eplattenier Simulation of a rail gun: A contribution to the validation of the electromagnetism module in LS-DYNA v th International conference.

Prediction Of Lorenz Force On The Armature Of Magnetic Railgun Through Parametric Analysis

Prediction Of Lorenz Force On The Armature Of Magnetic Railgun Through Parametric Analysis 2014 1 st International Congress on Computer, Electronics, Electrical, and Communication Engineering (ICCEECE2014) IPCSIT vol. 59 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2014.V59.10 Prediction

More information

AN electromagnetic launcher system can accelerate a projectile

AN electromagnetic launcher system can accelerate a projectile 4434 IEEE TRANSACTIONS ON MAGNETICS, VOL. 33, NO. 6, NOVEMBER 1997 Hyper Velocity Acceleration by a Pulsed Coilgun Using Traveling Magnetic Field Katsumi Masugata, Member, IEEE Abstract A method is proposed

More information

[2009] IEEE. Reprinted, with permission, from Guo, Liuming; Guo, Ningning; Wang, Shuhong; Qiu, Jie; Zhu, Jianguo; Guo, Youguang; Wang, Yi.

[2009] IEEE. Reprinted, with permission, from Guo, Liuming; Guo, Ningning; Wang, Shuhong; Qiu, Jie; Zhu, Jianguo; Guo, Youguang; Wang, Yi. [9] IEEE. Reprinted, with permission, from Guo, Liuming; Guo, Ningning; Wang, Shuhong; Qiu, Jie; Zhu, Jianguo; Guo, Youguang; Wang, Yi. 9, Optimization for capacitor-driven coilgun based on equivalent

More information

Parametric Analyses Using a Computational System Model of an Electromagnetic Railgun

Parametric Analyses Using a Computational System Model of an Electromagnetic Railgun Parametric Analyses Using a Computational System Model of an Electromagnetic Railgun NDIA Joint Armaments Conference: Unconventional & Emerging Armaments Session 16 May 2012 Ms. Vanessa Lent Aerospace

More information

"OPTIMAL SIMULATION TECHNIQUES FOR DISTRIBUTED ENERGY STORE RAILGUNS WITH SOLID STATE SWITCHES"

OPTIMAL SIMULATION TECHNIQUES FOR DISTRIBUTED ENERGY STORE RAILGUNS WITH SOLID STATE SWITCHES "OPTIMAL SIMULATION TECHNIQUES FOR DISTRIBUTED ENERGY STORE RAILGUNS WITH SOLID STATE SWITCHES" James B. Cornette USAF Wright Laboratory WL/MNMW c/o Institute for Advanced Technology The University of

More information

Structure Analysis of Transmitter Coil in Electromagnetic Launch Interceptors

Structure Analysis of Transmitter Coil in Electromagnetic Launch Interceptors International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015) Structure Analysis of Transmitter Coil in Electromagnetic Launch Interceptors Zhu Liangming 1a, Cao

More information

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION 18 CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION 2.1 INTRODUCTION Transformers are subjected to a variety of electrical, mechanical and thermal stresses during normal life time and they fail when these

More information

Research Article Transformer Winding Deformation Profile using Modified Electrical Equivalent Circuit

Research Article Transformer Winding Deformation Profile using Modified Electrical Equivalent Circuit Research Journal of Applied Sciences, Engineering and Technology 9(4): 288-295, 215 DOI:1.1926/rjaset.9.147 ISSN: 24-7459; e-issn: 24-7467 215 Maxwell Scientific Publication Corp. Submitted: August 13,

More information

Design, Construction, and Testing of an Inductive Pulsed-Power Supply for a Small Railgun

Design, Construction, and Testing of an Inductive Pulsed-Power Supply for a Small Railgun Design, Construction, and Testing of an Inductive Pulsed-Power Supply for a Small Railgun A. Sitzman, D. Surls, and J. Mallick Institute for Advanced Technology, The University of Texas at Austin Abstract

More information

A New AC Servo Motor Load Disturbance Method

A New AC Servo Motor Load Disturbance Method , pp.313-317 http://dx.doi.org/10.14257/astl.2016. A New AC Servo Motor Load Disturbance Method Xiao Qianjun 1 and Zhang Xiaoqin 1, 1 Chongqing Industry Polytechnic College, Chongqing 401120, China Abstract.

More information

Simulating the Difference between a DES and a Simple Railgun using SPICE

Simulating the Difference between a DES and a Simple Railgun using SPICE Simulating the Difference between a DES and a Simple Railgun using SPICE S. Hundertmark French-German Research Institute of Saint-Louis, France arxiv:1602.04973v1 [physics.plasm-ph] 16 Feb 2016 Abstract

More information

Estimation of Core Losses in an Induction Motor under PWM Voltage Excitations Using Core Loss Curves Tested by Epstein Specimens

Estimation of Core Losses in an Induction Motor under PWM Voltage Excitations Using Core Loss Curves Tested by Epstein Specimens International Forum on Systems and Mechatronics, 7 Estimation of Core Losses in an Induction Motor under PWM Voltage Excitations Using Core Loss Curves Tested by Epstein Specimens Wen-Chang Tsai Department

More information

Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn

Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn R K Pradeep, S Sriram, S Premnath Department of Mechanical Engineering, PSG College of Technology, Coimbatore, India 641004 Abstract

More information

Combined analytical and FEM method for prediction of synchronous generator no-load voltage waveform

Combined analytical and FEM method for prediction of synchronous generator no-load voltage waveform Combined analytical and FEM method for prediction of synchronous generator no-load voltage waveform 1. INTRODUCTION It is very important for the designer of salient pole synchronous generators to be able

More information

Advanced electromagnetism and electromagnetic induction

Advanced electromagnetism and electromagnetic induction Advanced electromagnetism and electromagnetic induction This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Investigation of Magnetic Field and Radial Force Harmonics in a Hydrogenerator Connected to a Three-Level NPC Converter

Investigation of Magnetic Field and Radial Force Harmonics in a Hydrogenerator Connected to a Three-Level NPC Converter Investigation of Magnetic Field and Radial Force Harmonics in a Hydrogenerator Connected to a Three-Level NPC Converter Mostafa Valavi, Arne Nysveen, and Roy Nilsen Department of Electric Power Engineering

More information

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 22 CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 2.1 INTRODUCTION For the accurate analysis of synchronous machines using the two axis frame models, the d-axis and q-axis magnetic characteristics

More information

Control Strategies and Inverter Topologies for Stabilization of DC Grids in Embedded Systems

Control Strategies and Inverter Topologies for Stabilization of DC Grids in Embedded Systems Control Strategies and Inverter Topologies for Stabilization of DC Grids in Embedded Systems Nicolas Patin, The Dung Nguyen, Guy Friedrich June 1, 9 Keywords PWM strategies, Converter topologies, Embedded

More information

Shielding Effect of High Frequency Power Transformers for DC/DC Converters used in Solar PV Systems

Shielding Effect of High Frequency Power Transformers for DC/DC Converters used in Solar PV Systems Shielding Effect of High Frequency Power Transformers for DC/DC Converters used in Solar PV Systems Author Stegen, Sascha, Lu, Junwei Published 2010 Conference Title Proceedings of IEEE APEMC2010 DOI https://doiorg/101109/apemc20105475521

More information

Chapter 4 Sliding Contact Coilguns

Chapter 4 Sliding Contact Coilguns Chapter 4 Sliding Contact Coilguns Phil Putman July 2006 Sliding contact coilguns were first investigated by Thom and Norwood in 1961, were revived by Mongeau in the 1980s, and are currently being studied

More information

A Novel Harmonics-Free Fuzzy Logic based Controller Design for Switched Reluctance Motor Drive

A Novel Harmonics-Free Fuzzy Logic based Controller Design for Switched Reluctance Motor Drive International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 3 (2012), pp. 351-358 International Research Publication House http://www.irphouse.com A Novel Harmonics-Free Fuzzy Logic

More information

Electrical Engineering / Electromagnetics

Electrical Engineering / Electromagnetics Electrical Engineering / Electromagnetics. Plot voltage versus time and current versus time for the circuit with the following substitutions: A. esistor B. Capacitor C. Inductor t = 0 A/B/C A. I t t B.

More information

LABORATORY PROJECT NO. 1 ELECTROMAGNETIC PROJECTILE LAUNCHER. 350 scientists and engineers from the United States and 60 other countries attended

LABORATORY PROJECT NO. 1 ELECTROMAGNETIC PROJECTILE LAUNCHER. 350 scientists and engineers from the United States and 60 other countries attended 2260 LABORATORY PROJECT NO. 1 ELECTROMAGNETIC PROJECTILE LAUNCHER 1. Introduction 350 scientists and engineers from the United States and 60 other countries attended the 1992 Symposium on Electromagnetic

More information

Estimation of Vibrations in Switched Reluctance Motor Drives

Estimation of Vibrations in Switched Reluctance Motor Drives American Journal of Applied Sciences 2 (4): 79-795, 2005 ISS 546-9239 Science Publications, 2005 Estimation of Vibrations in Switched Reluctance Motor Drives S. Balamurugan and R. Arumugam Power System

More information

DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions

DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions P Kamalchandran 1, A.L.Kumarappan 2 PG Scholar, Sri Sairam Engineering College,

More information

ELECTROMAGNETIC FORCE, JERK, AND ELECTRIC \ GUN PROJECTILES

ELECTROMAGNETIC FORCE, JERK, AND ELECTRIC \ GUN PROJECTILES \ \ ', ELECTROMAGNETIC FORCE, JERK, AND ELECTRIC \ GUN PROJECTILES Prepared by R. C. Zowarka and J. P. Kajs Presented at The 6th Electromagnetic Launch Symposium The Institute for Advanced Technology Austin,

More information

CHAPTER 3 SHORT CIRCUIT WITHSTAND CAPABILITY OF POWER TRANSFORMERS

CHAPTER 3 SHORT CIRCUIT WITHSTAND CAPABILITY OF POWER TRANSFORMERS 38 CHAPTER 3 SHORT CIRCUIT WITHSTAND CAPABILITY OF POWER TRANSFORMERS 3.1 INTRODUCTION Addition of more generating capacity and interconnections to meet the ever increasing power demand are resulted in

More information

Synchronous Generator Subtransient Reactance Prediction Using Transient Circuit Coupled Electromagnetic Analyses & Odd Periodic Symmetry

Synchronous Generator Subtransient Reactance Prediction Using Transient Circuit Coupled Electromagnetic Analyses & Odd Periodic Symmetry Synchronous Generator Subtransient Reactance Prediction Using Transient Circuit Coupled Electromagnetic Analyses & Odd Periodic Symmetry Joshua Lorenz Kato Engineering Inc., North Mankato, MN John T. Fowler

More information

VARIATION OF LOW VOLTAGE POWER CABLES ELECTRICAL PARAMETERS DUE TO CURRENT FREQUENCY AND EARTH PRESENCE

VARIATION OF LOW VOLTAGE POWER CABLES ELECTRICAL PARAMETERS DUE TO CURRENT FREQUENCY AND EARTH PRESENCE VARATON OF LOW VOLTAGE POWER CABLES ELECTRCAL PARAMETERS DUE TO CURRENT FREQUENCY AND EARTH PRESENCE G.T. Andreou, D.P. Labridis, F.A. Apostolou, G.A. Karamanou, M.P. Lachana Aristotle University of Thessaloniki

More information

Three Phase Power Transformer Modeling Using FEM for Accurate Prediction of Core and Winding Loss

Three Phase Power Transformer Modeling Using FEM for Accurate Prediction of Core and Winding Loss Kalpa Publications in Engineering Volume 1, 2017, Pages 75 80 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Engineering Three

More information

Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line

Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line NATIONAL POWER SYSTEMS CONFERENCE NPSC22 563 Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line P. Durai Kannu and M. Joy Thomas Abstract This paper analyses the voltages

More information

EXPERIMENTAL INVESTIGATION ON LASER BENDING OF METAL SHEETS USING PARABOLIC IRRADIATIONS

EXPERIMENTAL INVESTIGATION ON LASER BENDING OF METAL SHEETS USING PARABOLIC IRRADIATIONS 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India EXPERIMENTAL INVESTIGATION ON LASER BENDING

More information

Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. B = B A (8.

Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. B = B A (8. Chapter 8 Induction - Faraday s Law Name: Lab Partner: Section: 8.1 Purpose The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. 8.2 Introduction It

More information

Laboratory Project 2: Electromagnetic Projectile Launcher

Laboratory Project 2: Electromagnetic Projectile Launcher 2240 Laboratory Project 2: Electromagnetic Projectile Launcher K. Durney and N. E. Cotter Electrical and Computer Engineering Department University of Utah Salt Lake City, UT 84112 Abstract-You will build

More information

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System MISS. KINJAL G. PATEL P.G. Student, Department of Electrical Engineering SSSRGI, Vadasma, Mehsana MR. CHIRAG V. PATEL Assistant Professor,

More information

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor Lydia Anu Jose 1, K. B.Karthikeyan 2 PG Student, Dept. of EEE, Rajagiri School of Engineering and Technology,

More information

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 5, May -216 PI Controller for Switched Reluctance Motor Dr Mrunal

More information

Comprehensive Study on Magnetization Current Harmonics of Power Transformers due to GICs

Comprehensive Study on Magnetization Current Harmonics of Power Transformers due to GICs Comprehensive Study on Magnetization Current Harmonics of Power Transformers due to GICs S. A. Mousavi, C. Carrander, G. Engdahl Abstract-- This paper studies the effect of DC magnetization of power transformers

More information

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Anguru Sraveen Babu M.Tech Student Scholar Dept of Electrical & Electronics Engineering, Baba Institute

More information

Research on High Power Railguns at the Naval Research Laboratory

Research on High Power Railguns at the Naval Research Laboratory Research on High Power Railguns at the Naval Research Laboratory R.A. Meger, J. Neri, R.J. Allen, R.B. Hoffman, C.N. Boyer [a], B.M. Huhman [a] Plasma Physics Division K.P. Cooper, H. Jones, J. Sprague,

More information

Sensorless Control of a Novel IPMSM Based on High-Frequency Injection

Sensorless Control of a Novel IPMSM Based on High-Frequency Injection Sensorless Control of a Novel IPMSM Based on High-Frequency Injection Xiaocan Wang*,Wei Xie**, Ralph Kennel*, Dieter Gerling** Institute for Electrical Drive Systems and Power Electronics,Technical University

More information

Accurate Models for Spiral Resonators

Accurate Models for Spiral Resonators MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Accurate Models for Spiral Resonators Ellstein, D.; Wang, B.; Teo, K.H. TR1-89 October 1 Abstract Analytically-based circuit models for two

More information

A Simple Sensor-less Vector Control System for Variable

A Simple Sensor-less Vector Control System for Variable Paper A Simple Sensor-less Vector Control System for Variable Speed Induction Motor Drives Student Member Hasan Zidan (Kyushu Institute of Technology) Non-member Shuichi Fujii (Kyushu Institute of Technology)

More information

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed Progress In Electromagnetics Research Letters, Vol. 60, 9 16, 2016 A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed Kai He 1, *, Peng Fei 2, and Shu-Xi Gong 1 Abstract By combining

More information

PERFORMANCE ANALYSIS OF SRM DRIVE USING ANN BASED CONTROLLING OF 6/4 SWITCHED RELUCTANCE MOTOR

PERFORMANCE ANALYSIS OF SRM DRIVE USING ANN BASED CONTROLLING OF 6/4 SWITCHED RELUCTANCE MOTOR PERFORMANCE ANALYSIS OF SRM DRIVE USING ANN BASED CONTROLLING OF 6/4 SWITCHED RELUCTANCE MOTOR Vikas S. Wadnerkar * Dr. G. Tulasi Ram Das ** Dr. A.D.Rajkumar *** ABSTRACT This paper proposes and investigates

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 13.2.3 Leakage inductances + v 1 (t) i 1 (t) Φ l1 Φ M Φ l2 i 2 (t) + v 2 (t) Φ l1 Φ l2 i 1 (t)

More information

Optimized shield design for reduction of EMF from wireless power transfer systems

Optimized shield design for reduction of EMF from wireless power transfer systems This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.*, No.*, 1 9 Optimized shield design for reduction of EMF

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer Bahram Amin Induction Motors Analysis and Torque Control With 41 Figures and 50 diagrams (simulation plots) Springer 1 Main Parameters of Induction Motors 1.1 Introduction 1 1.2 Structural Elements of

More information

VIBRATION ESTIMATION, ASSESSMENT AND PROGNOSIS IN ELECTRICAL MACHINES

VIBRATION ESTIMATION, ASSESSMENT AND PROGNOSIS IN ELECTRICAL MACHINES National Journal on Electronic Sciences & Systems, Vol. 6 No. 2 October 2015. 10 VIBRATION ESTIMATION, ASSESSMENT AND PROGNOSIS IN ELECTRICAL MACHINES 1C.N. Gnanaprakasam, 2 K. Chitra 1 Research scholar

More information

Finite Element Analysis of Leakage Inductance of 3-Phase Shell-Type and Core Type Transformers

Finite Element Analysis of Leakage Inductance of 3-Phase Shell-Type and Core Type Transformers Research Journal of Applied Sciences, Engineering and Technology 4(12): 1721-1728, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: January 16, 2012 Accepted: February 06, 2012 Published:

More information

FEM SIMULATION FOR DESIGN AND EVALUATION OF AN EDDY CURRENT MICROSENSOR

FEM SIMULATION FOR DESIGN AND EVALUATION OF AN EDDY CURRENT MICROSENSOR FEM SIMULATION FOR DESIGN AND EVALUATION OF AN EDDY CURRENT MICROSENSOR Heri Iswahjudi and Hans H. Gatzen Institute for Microtechnology Hanover University Callinstrasse 30A, 30167 Hanover Germany E-mail:

More information

Study on Elimination of Lift-off Effect in Barkhausen Noise Detection

Study on Elimination of Lift-off Effect in Barkhausen Noise Detection International Symposium on Material, Energy and Environment Engineering (ISM3E 5) Study on Elimination of Lift-off Effect in Barkhausen Noise Detection Kai Huang, Ping Wang, Jianqin Xu, Jie Wu,Yihui Zhang,

More information

A Study on Core Losses of Non-oriented Electrical Steel Laminations under Sinusoidal, Non-sinusoidal and PWM Voltage Supplies

A Study on Core Losses of Non-oriented Electrical Steel Laminations under Sinusoidal, Non-sinusoidal and PWM Voltage Supplies A Study on Core Losses of on-oriented Electrical Steel Laminations under Sinusoidal, on-sinusoidal and PWM Voltage Supplies Wen-Chang Tsai Department of Electrical Engineering Kao Yuan University Luju

More information

287. The Transient behavior of rails used in electromagnetic railguns: numerical investigations at constant loading velocities

287. The Transient behavior of rails used in electromagnetic railguns: numerical investigations at constant loading velocities 287. The Transient behavior o rails used in electromagnetic railguns: numerical investigations at constant loading velocities L. Tumonis 1, a, R. Kačianauskas 1,b, A. Kačeniauskas 2,c, M. Schneider 3,d

More information

Modal Analysis and Harmonic Analysis of a Conformal Antenna for Automobile Applications

Modal Analysis and Harmonic Analysis of a Conformal Antenna for Automobile Applications ISSN : 0974-5572 International Science Press Volume 10 Number 30 2017 Modal Analysis and Harmonic Analysis of a Conformal Antenna for Automobile Applications Ebenezer Abishek.B a Arun Raaza a Arul Stephen.C

More information

DC SERVO MOTOR CONTROL SYSTEM

DC SERVO MOTOR CONTROL SYSTEM DC SERVO MOTOR CONTROL SYSTEM MODEL NO:(PEC - 00CE) User Manual Version 2.0 Technical Clarification /Suggestion : / Technical Support Division, Vi Microsystems Pvt. Ltd., Plot No :75,Electronics Estate,

More information

18th EML SYMPOSIUM AGENDA

18th EML SYMPOSIUM AGENDA 18th EML SYMPOSIUM AGENDA Monday, October 24, 2016 2:00-9:00 PM 18TH EML REGISTRATION DESK OPENS 5:00-8:00 PM WELCOME RECEPTION 8:00-9:00 AM REGISTRATION 9:00-9:30 AM WELCOME ADDRESS Tuesday, October 25,

More information

Ac fundamentals and AC CIRCUITS. Q1. Explain and derive an expression for generation of AC quantity.

Ac fundamentals and AC CIRCUITS. Q1. Explain and derive an expression for generation of AC quantity. Ac fundamentals and AC CIRCUITS Q1. Explain and derive an expression for generation of AC quantity. According to Faradays law of electromagnetic induction when a conductor is moving within a magnetic field,

More information

Optimization of unipolar magnetic couplers for EV wireless power chargers

Optimization of unipolar magnetic couplers for EV wireless power chargers IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Optimization of unipolar magnetic couplers for EV wireless power chargers To cite this article: H Zeng et al 016 IOP Conf. Ser.:

More information

Construction of a Low Cost Asymmetric Bridge Converter for Switched Reluctance Motor Drive

Construction of a Low Cost Asymmetric Bridge Converter for Switched Reluctance Motor Drive Construction of a Low Cost Asymmetric Bridge Converter for Switched Reluctance Motor Drive E.Afjei 1, A.Siadatan 2 and M.Rafiee 3 1- Department of Electrical Eng., Faculty of Electrical & Computer Eng.,

More information

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Anguru Sraveen Babu M.Tech Student Scholar Department of Electrical & Electronics Engineering, Baba Institute

More information

S C Strength of Winding Exits and Leads : A critical area for Failure Prevention in Power Transformers

S C Strength of Winding Exits and Leads : A critical area for Failure Prevention in Power Transformers S C Strength of Winding Exits and Leads : A critical area for Failure Prevention in Power Transformers by MANAN PANDYA SIEMENS LTD. manan.pandya@siemens.com 1 Introduction Short circuit withstand capability

More information

DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN

DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2018 DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN Nihar S. Brahmbhatt Michigan

More information

Fatigue and Fretting Studies of Gas Compressor Blade Roots

Fatigue and Fretting Studies of Gas Compressor Blade Roots Fatigue and Fretting Studies of Gas Compressor Blade Roots Gautam N Hanjigimath 1, Anup M Upadhyaya 2, Sandeep Kumar 3 Stress Engineer, Brick and Byte Innovative Product Private Ltd, Bangalore, Karnataka,

More information

1. The induced current in the closed loop is largest in which one of these diagrams?

1. The induced current in the closed loop is largest in which one of these diagrams? PSI AP Physics C Electromagnetic Induction Multiple Choice Questions 1. The induced current in the closed loop is largest in which one of these diagrams? (A) (B) (C) (D) (E) 2. A loop of wire is placed

More information

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2492-2497 ISSN: 2249-6645 Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Praveen Kumar 1, Anurag Singh Tomer 2 1 (ME Scholar, Department of Electrical

More information

Innovative Science and Technology Publications

Innovative Science and Technology Publications Innovative Science and Technology Publications Manuscript Title SATURATION ANALYSIS ON CURRENT TRANSFORMER Thilepa R 1, Yogaraj J 2, Vinoth kumar C S 3, Santhosh P K 4, 1 Department of Electrical and Electronics

More information

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 16, NO. 1, MARCH 2001 55 Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method S. L. Ho and W. N. Fu Abstract

More information

The Effect of Lightning Parameters on Induced Voltages Caused by Nearby Lightning on Overhead Distribution Conducting Line.

The Effect of Lightning Parameters on Induced Voltages Caused by Nearby Lightning on Overhead Distribution Conducting Line. The Effect of Lightning Parameters on Induced Voltages Caused by Nearby Lightning on Overhead Distribution Conducting Line. J.O. Adepitan, Ph.D. 1 and Prof. E.O. Oladiran 2 1 Department of Physics and

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 3, Aug 2013, 59-70 TJPRC Pvt. Ltd. A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE

More information

IJRASET: All Rights are Reserved

IJRASET: All Rights are Reserved Analysis and Simulation of Current Transformer Aalakh Devari 1, Pritam Thomke 2, Devendra Sutar 3 1 Electronics and Telecommunication Dept., Goa College of Engineering, Farmagudi, Ponda Goa, India- 403401

More information

Chapter 2 Simple Electro-Magnetic Circuits

Chapter 2 Simple Electro-Magnetic Circuits Chapter 2 Simple Electro-Magnetic Circuits 2.1 Introduction The simplest component which utilizes electro-magnetic interaction is the coil. A coil is an energy storage component, which stores energy in

More information

Response characteristic of high-speed on/off valve with double voltage driving circuit

Response characteristic of high-speed on/off valve with double voltage driving circuit IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Response characteristic of high-speed on/off valve with double voltage driving circuit To cite this article: P X Li et al 2017

More information

Electromagnetic Force Modification in Fault Current Limiters under Short-Circuit Condition Using Distributed Winding Configuration

Electromagnetic Force Modification in Fault Current Limiters under Short-Circuit Condition Using Distributed Winding Configuration Electromagnetic Force Modification in Fault Current Limiters under Short-Circuit Condition Using Distributed Winding Configuration Asef Ghabeli 1 and Mohammad Reza Besmi 1 1 Faculty of Engineering, Shahed

More information

Science Applications International Corporation 1710 Goodridge Drive, McLean, Virginia (703) Abstract

Science Applications International Corporation 1710 Goodridge Drive, McLean, Virginia (703) Abstract IMPLICATIONS OF GUN LAUNCH TO SPACE --_3j,-.,--t_ FOR NANOSATELLITE ARCHITECTURES Miles R. Palmer Science Applications International Corporation 1710 Goodridge Drive, McLean, Virginia 22102 (703) 749-5143

More information

Project 14361: Engineering Applications Lab

Project 14361: Engineering Applications Lab Project 14361: Engineering Applications Lab Jennifer Leone Larry Hoffman Angel Herrera Henry Almiron Saleh Zeidan Dirk Thur TEAM MEMBERS Industrial Engineer Team Lead Electrical Engineer Electrical Engineer

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Numerical Analysis of Breakage of Curved Copper Wires due to High Impulse Current

Numerical Analysis of Breakage of Curved Copper Wires due to High Impulse Current Numerical Analysis of Breakage of Curved Copper Wires due to High Impulse Current Xiaobo Hu, Tsuginori Inaba, Member, IAENG Abstract In our past studies, we confirmed that thick straight copper wires of

More information

Modelling the Impact of Conformal Coating Penetration on QFN Reliability

Modelling the Impact of Conformal Coating Penetration on QFN Reliability Modelling the Impact of Conformal Coating Penetration on QFN Reliability Chunyan Yin, Stoyan Stoyanov, Chris Bailey Department of Mathematical Sciences University of Greenwich London, UK. SElO 9LS c.yin@gre.ac.uk

More information

An improved UWB Patch Antenna Design using Multiple Notches and Finite Ground Plane

An improved UWB Patch Antenna Design using Multiple Notches and Finite Ground Plane 73 An improved UWB Patch Antenna Design using Multiple Notches and Finite Ground Plane A.P Padmavathy, M.Ganesh Madhan, Department of Electronics Engineering, Madras Institute of Technology, Anna University,

More information

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 11 Electricity and Magnetism AC circuits and EM waves Resonance in a Series RLC circuit Transformers Maxwell, Hertz and EM waves Electromagnetic Waves 6/18/2007 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Abstract. Introduction

Abstract. Introduction DESIGN AND TESTING OF A 25-STAGE ELECTROMAGNETIC COIL GUN W. R. Cravey, G. L. Devlin, E. L. Loree, S. T. Strohl, and C. M. Young Tetra Corporation Albuquerque, NM 87109 Abstract Tetra has recently designed

More information

Railgun Overview & Testing Update

Railgun Overview & Testing Update Railgun Overview & Testing Update NDIA Joint Armaments Conference: Unconventional & Emerging Armaments Session 16 May 2012 Mr. Charles R. Garnett Program Manager, NSWC Dahlgren How Railgun Works Operating

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 04, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 04, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 04, 2014 ISSN (online): 2321-0613 Conditioning Monitoring of Transformer Using Sweep Frequency Response for Winding Deformation

More information

Review of Railgun Modeling Techniques: Computation of Railgun Force and Other Key Factors

Review of Railgun Modeling Techniques: Computation of Railgun Force and Other Key Factors University of Colorado, Boulder CU Scholar Aerospace Engineering Sciences Graduate Theses & Dissertations Aerospace Engineering Sciences Spring 1-1-2017 Review of Railgun Modeling Techniques: Computation

More information

Faraday Laws of Electromagnetic Induction CLIL LESSON

Faraday Laws of Electromagnetic Induction CLIL LESSON Faraday Laws of Electromagnetic Induction CLIL LESSON Experimental trials Michael Faraday-1931 This law shows the relationship between electric circuit and magnetic field A coil is connected to a galvanometer

More information

Reduction of Torque Ripple in Trapezoidal PMSM using Multilevel Inverter

Reduction of Torque Ripple in Trapezoidal PMSM using Multilevel Inverter Reduction of Torque Ripple in Trapezoidal PMSM using Multilevel Inverter R.Ravichandran 1, S.Sivaranjani 2 P.G Student [PSE], Dept. of EEE, V.S.B. Engineering College, Karur, Tamilnadu, India 1 Assistant

More information

The Study of Magnetic Flux Shunts Effects on the Leakage Reactance of Transformers via FEM

The Study of Magnetic Flux Shunts Effects on the Leakage Reactance of Transformers via FEM Majlesi Journal of Electrical Engineering Vol. 4, 3, September 00 The Study of Magnetic Flux Shunts Effects on the Leakage Reactance of Transformers via FEM S. Jamali Arand, K. Abbaszadeh - Islamic Azad

More information

System Inputs, Physical Modeling, and Time & Frequency Domains

System Inputs, Physical Modeling, and Time & Frequency Domains System Inputs, Physical Modeling, and Time & Frequency Domains There are three topics that require more discussion at this point of our study. They are: Classification of System Inputs, Physical Modeling,

More information

VARIABLE INDUCTANCE TRANSDUCER

VARIABLE INDUCTANCE TRANSDUCER VARIABLE INDUCTANCE TRANSDUCER These are based on a change in the magnetic characteristic of an electrical circuit in response to a measurand which may be displacement, velocity, acceleration, etc. 1.

More information

Modeling and design optimization of micro-inductor using genetic algorithm Yen Mai nguyen 1, Pierre Lefranc 2, Jean-Pierre Laur 1, Magali Brunet 1 1

Modeling and design optimization of micro-inductor using genetic algorithm Yen Mai nguyen 1, Pierre Lefranc 2, Jean-Pierre Laur 1, Magali Brunet 1 1 Modeling and design optimization of micro-inductor using genetic algorithm Yen Mai nguyen 1, Pierre Lefranc 2, Jean-Pierre Laur 1, Magali Brunet 1 1 CNRS, LAAS, 7 avenue colonel Roche, Toulouse, France

More information

Closed Loop Control of the Three Switch Serial Input Interleaved Forward Converter Fed Dc Drive

Closed Loop Control of the Three Switch Serial Input Interleaved Forward Converter Fed Dc Drive IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 6 Ver. III (Nov. Dec. 2017), PP 71-75 www.iosrjournals.org Closed Loop Control of

More information

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt 3 phase Power All we need electricity for is as a source of transport for energy. We can connect to a battery, which is a source of stored energy. Or we can plug into and electric socket at home or in

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

Journal of World s Electrical Engineering and Technology J. World. Elect. Eng. Tech. 3(1): 18-25, 2014

Journal of World s Electrical Engineering and Technology J. World. Elect. Eng. Tech. 3(1): 18-25, 2014 ORIGINAL ARTICLE Received 25 Dec. 2013 Accepted 07 March. 2014 2014, Scienceline Publication www.science-line.com 2322-5114 Journal of World s Electrical Engineering and Technology J. World. Elect. Eng.

More information

ADVANCED DC-DC CONVERTER CONTROLLED SPEED REGULATION OF INDUCTION MOTOR USING PI CONTROLLER

ADVANCED DC-DC CONVERTER CONTROLLED SPEED REGULATION OF INDUCTION MOTOR USING PI CONTROLLER Asian Journal of Electrical Sciences (AJES) Vol.2.No.1 2014 pp 16-21. available at: www.goniv.com Paper Received :08-03-2014 Paper Accepted:22-03-2013 Paper Reviewed by: 1. R. Venkatakrishnan 2. R. Marimuthu

More information

A Novel Bidirectional DC-DC Converter with high Step-up and Step-down Voltage Gains

A Novel Bidirectional DC-DC Converter with high Step-up and Step-down Voltage Gains International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 11 (February 2014), PP. 63-71 A Novel Bidirectional DC-DC Converter with

More information