Validation of the Laboratory Calibration of Geodetic Antennas based on GPS Measurements

Size: px
Start display at page:

Download "Validation of the Laboratory Calibration of Geodetic Antennas based on GPS Measurements"

Transcription

1 Validation of the Laboratory Calibration of Geodetic Antennas based on GPS Measurements Philipp ZEIMETZ and Heiner KUHLMANN, Germany Key words: GNSS antenna calibration, GPS, calibration accuracy, anechoic chamber, laboratory calibration, near-field SUMMARY In relative GNSS positioning, the antenna effects are one of the accuracy limiting factors. Besides relative and absolute field calibration procedures, there is an absolute laboratory calibration procedure, which is used at the University of Bonn. Since February 2009 a new antenna calibration lab, which is especially concepted for the antenna calibration, is operable. This paper presents some investigations on the accuracy of this calibration procedure. The results are mainly based on GPS height measurements and the comparison with the results from a precise levelling. For this purpose 121 baselines between the 8 pillars of an EDM calibration baseline site with distances between 18 and 1101 meters were analysed. The levelled height differences can be regarded as references, thus it is possible to quantify the absolute GPS-accuracy. Furthermore, the GPS-accuracy is an indicator for the antenna calibration accuracy. The measured height differences are usually smaller than 1-2 mm (maximal deviations), when using the L1 or the L2 frequency, thereby the standard deviation is 0.8mm in both cases. As expected, in case of the ionospheric free linear combination L0 the standard deviation rises up to 3 mm. This very high accuracy is possible if besides other effects, the antenna effects are reduced to a minimum level (e.g. the differences between an individual calibration and a type calibration can reach several mm). It is not possible to quantify the accuracy exactly, because the antenna effect is only one of various remaining uncertainties. Thus, the effects due to the calibration uncertainties are smaller than = 0.8mm, at least. This high accuracy cannot be reached if dominant near-field effects exist. Near-field effects, which cannot be separated from the behaviour of the antenna itself, limit the accuracy of the relative GPS. Such effects are present in some of the analysed baselines, too. Here, one special antenna-near-field combination causes height differences of several millimeters. The other GPS results show an exceedingly high accuracy and give an idea of the high calibration accuracy. 1/16

2 Validation of the Laboratory Calibration of Geodetic Antennas based on GPS Measurements Philipp ZEIMETZ und Heiner KUHLMANN, Germany 1. INTRODUCTION The phase center of the receiver antenna is the reference point where each GPS/GNSS observation (phase measurement) refers to. Since the phase measurement and, as a consequence, the determined signal path length between antenna and satellite depend on azimuth and elevation of the incoming signal, the antenna is not a point in mathematical sense. The purpose of the antenna calibration is to determine the deviations from an ideal point-like antenna as a function of the direction of the incoming signal (see e.g. Geiger 1988). Since the 1980 s different calibration procedures have been developed. Beside the relative and the absolute field procedures, an absolute laboratory calibration procedure exists. This procedure, which is ideally performed in anechoic chambers, is a standard technique in radiofrequency engineering (e.g. Kraus and Marhefka 2003). Such a laboratory procedure was developed at the University of Bonn and a new anechoic chamber is operable since February The realisation of the calibration laboratory is a cooperation between the University and the Bezirksregierung Köln (District Government of Cologne). The accuracy of the calibration results has been assessed by comparisons with the field procedures in earlier works (Zeimetz and Kuhlmann 2006 or Zeimetz et al. 2009). Additionally, the calibration results can be analysed by applying them for GPS-measurements. To avoid that other GPS uncertainties dominate the antenna effects, it is useful to make these tests in a small local GPS network. For this purpose an Electronic Distance Measurement (EDM) calibration baseline site of the Bundeswehr (German Federal Armed Forces) could be used. The differences between the GPS solutions and the precise levelling visualize in the first place the GPS accuracy and thus among others the remaining antenna effects. A remaining problem is the near-field problem. The near-field depends primarily on the mounting of the antenna (pillar/tripod, tribrach, spacer). Differences between the setup in case of calibration and in case of GPS-measurement can be reduced but not eliminated. The nearfield affects mainly the height component, as it becomes visible in the tests presented here. 2. ANTENNA PROPERTIES The GNSS receiver antenna converts the electromagnetic satellite signals into electrical currents. After the conversion of the signal, the remaining path length (cable, electronic components) is similar for all satellite signals (except for small amounts), thus, the estimated GPS-position refers to the antenna or more exactly to the so called phase center. This view is only correct if the phase measurements would always refer to one fixed point. In reality, the measured phase depends on the direction (azimuth and elevation ) of the incoming signal, 2/16

3 thus, the so called phase center variations (PCV), which describe the deviations from a mean phase center, have to be considered. The position of the mean phase centre with respect to the antenna reference point (ARP) is usually described by the phase center offset. This classification of PCO and PCV can be found in earlier works on this topic (e.g. Geiger 1988). The corresponding antenna model is illustrated in Fig. 1. Fig. 1: Antenna model (Zeimetz and Kuhlmann 2008). The measured range s ARP (resp. phase) depends on the direction of the incoming signal: s ARP, PCV r PCO e 0,, with r being the error-free value, e 0 the unit-vector in the direction and of the satellite and the noise of the observations. A separation of the effects of PCO and PCV is not possible, because for every position of E, a specific set of PCV exist which describe the antenna correctly. In order to solve the singularity the condition can be used. 2 PCV min Because the PCV can reach values up to 20 mm it is always necessary to use the full antenna model (not only the PCO) if highest accuracy is required. Examples of the phase center variations are presented e.g. in Zeimetz and Kuhlmann ANTENNA CALIBRATION IN THE ANECHOIC CHAMBER BONN The main idea of the laboratory antenna calibration procedure is to simulate the different signal directions by rotations of the GNSS-antenna (Schupler et al. 1994). Therefore, the calibration setup consists of a fixed transmitter on the one end and a remote-controlled positioner carrying the test antenna on the other end of the test range (Fig. 2). At every selected antenna position (equal to a satellite direction) a network analyser (NWA, here Agilent ENA E5062A) generates a signal which is transmitted in the direction of the GNSS 3/16

4 antenna. The GNSS antenna is also connected with the NWA, thus, the NWA can measure the phase shift between the outgoing and incoming signals. This phase delay depends on the signal direction. Since the outgoing signal is constant, a grid of phase corrections is directly obtained as a result of the calibration. Usually a frequency range from 1.15 to 1.65 GHz is used, whereby only the frequencies of GPS, GLONASS and GALILEO are usually analysed. Fig. 2: Setup of the anechoic calibration facility (Zeimetz and Kuhlmann 2008). Regarding GPS, multipath and near-field effects are one of the largest sources of error (e.g. Wanninger and May 2000). In case of calibration the multipath effects can be reduced to a low level by using special anechoic chambers (Fig. 3), whereas the near-field problems cannot be avoided. As in case of normal GPS applications, the nearby environment of the antenna has an influence on the electromagnetic field and thus on the phase measurement. Fig. 3: Antenna calibration laboratory Bonn (without antenna positioner) 4/16

5 4. POSSIBILITIES FOR THE VALIDATION OF THE CALIBRATION ACCURACY The quality (accuracy and precision) of a measurement system can be quantified if there is an alternative procedure with a significantly higher accuracy (factor 3 or more). In case of antenna calibration there are independent calibration systems, but no one which is suitable as reference. Nevertheless, there are possibilities to quantify the accuracy. The different methods for the analysis of the calibration results can be divided into two classes: 1. Analyses by comparison of calibration results on the level of different phase patterns. 2. Determining the accuracy of the calibration by GPS-measurements in GPS test sites. Comparison of phase patterns In order to determine the calibration accuracy, it is possible to compare the results from different independent calibration procedures (comparisons between laboratory-, relative- and absolute field calibration). This approach supplies a very clear look at the differences between two patterns, but there are two important disadvantages. (1) Only the agreement between two different antenna patterns can be tested. It is not possible to distinguish the differences between the compared antenna patterns into two parts. An absolute accuracy cannot be determined. (2) The effect of the calibration uncertainties on the GPS-measurements cannot be derived from such comparisons. Analysis on the accuracy of the laboratory calibration procedure of the university of Bonn, which are based on direct comparisons of different procedures, were published e.g. by Zeimetz and Kuhlmann 2006 or Zeimetz et al Determining the calibration accuracy by GPS-measurements To determine the accuracy of calibration by measurements at a test site, a reference solution is necessary. But, instead of being dependent on GPS, other systems (EDM, precise levelling) can be used as reference. The disadvantage is, that the estimated GPS accuracy is not equal to the calibration accuracy, because of additional uncertainties (e.g. multipath, near-field, troposphere). But it becomes obvious, which GPS accuracy can be achieved, when using these calibration patterns and especially when different antenna types are combined. Then, in some cases, the effects of multipath or near-field variations can be quantified, what leads to a more precise statement about the calibration accuracy (as in case of the near-field, chapter 5). 4.1 Testing the antenna calibration on an EDM calibration baseline It is obvious that antenna calibration results can be tested by GNSS measurements. Due to the large number of other measurement uncertainties such as troposphere effects, multipath, nearfield effects and of course random deviations, it is necessary to get a sufficient sample size. A large test campaign was carried out in June Beside a large sample size of altogether 122 baselines, different setups have been chosen in order to consider the following aspects: 1. same antenna, same mounting, different location (to ensure that multipath effects would not be interpreted as antenna effects) 2. same antenna, different mounting, same station (to test the near-field effect) 3. different antennas (to see the antenna effect) As relative GPS is used, it is necessary to have a look at both involved setups. 5/16

6 The following 9 antennas with individual calibrations were used (3 different antenna types): - 3 LEIAT504GG (Leica AT504GG Choke Ring Antenna) - 3 TRM (Trimble Zephyr Geodetic) - 3 TRM (Trimble Zephyr Geodetic 2) Because of the high degree of effort only three antenna types could be considered until now. Perhaps it is possible to complement these antennas, which are most prevalent in GPS networks, by further tests in the future. The EDM calibration baseline site antenna mounting The EDM calibration baseline site (facility of the University of the German Federal Armed Forces) consists of 8 pillars. The distances between the 8 pillars vary from 18 to 1101 meters. The height differences between the top of all pillars are less then 30 mm. Each of the pillars has a height of approximately 1.6 m and all pillars are of the same type, whereas for the mounting of the antenna two different setups were used (see Fig. 4). Fig. 4: Pillars and antenna mounting The conditions are very good for precise GNSS-Measurements. The pillars are placed on an earth mound, thus the top of the pillars are between 3 and 4 meters above the surrounding surface level. The fence, visible on the left photo, should produce only short-periodic multipath effects because of the large (vertical and horizontal) distance between the fence and the antennas (e.g. Bilich et al. 2007). In case of such short-periodic multipath effects and an observation time of several hours, only weak multipath effects are expected. As the surface of the mound is uneven and not hard-surfaced, the mound itself should also produce only weak multipath signals. 6/16

7 Significant ionospheric and tropospheric effects on the GPS results could not be excluded, even in case of short baselines (e.g. Santerre 1991). However, these effects should be very small and depend on the distance between the pillars, thus, these effects would become visible as systematic differences (depending on the distance). Anticipating the analyses, such effects could not be detected, thus, they can be neglected in the current state of accuracy. Observation time: In order to increase the number of different antenna configurations, the observation time has been reduced to a duration between 4 and 10 hours. Especially for the determination of the height, longer observation times are generally used. These observation times were sufficient here, as shown in chapter Terrestrial Reference Measurements For the validation of the GPS measurements, terrestrial reference measurements can be used. The pillar heights have been measured by precise levelling and the distances between the pillars have been determined by EDM measurements EDM The accuracy of the EDM is limited primarily by atmospheric effects. Despite the measurement of temperature, pressure and humidity a scale error of about 1 2 ppm has to be expected due to mismodeling the effect of atmosphere. Considering the accuracy of the EDM (Leica TPS 1201+; 1mm + 1.7ppm) the total accuracy is between 1 and 3 mm depending on the distance, thus the EDM accuracy is comparable with the GPS accuracy. As the EDM measurements serve for independent results, they can be used for the detection of outliers Precise levelling The height differences between neighboured pillars are measured twice by precise doublelevelling. The differences between both solutions are smaller than 0,2-0.3 mm. Only in case of the baseline between pillars 7 and 8 the deviation is larger (0.4 mm). The antenna heights (heights above the pillars) are measured by levelling, too. Here an accuracy of mm can be assumed. When comparing GPS and levelling results, it is necessary to become aware of the different reference levels. The GPS results are related to the used reference ellipsoid (here: GRS80), whereas the levelling depends on the local gravity field. Comparing GPS and levelling, the angle between the ellipsoid normal and the local vertical and the resulting effect on the height determination has to be considered (Flury et al. 2009). For the area of the Federal Republic of Germany the quasigeoid GCG05 (German Combined QuasiGeoid 2005) enables the conversion between ellipsoidal heights (ETRS89) and normal heights (DHHN92). The calculated quasigeoid heights increase from m (pillar 8) to m (pillar 1). As the normal of the quasigeoid and the direction of the local gravity field do not coincide, remaining relevant deviations are possible. Such height differences would increase with the 7/16

8 distance between two pillars (because of the tilt angle between the surfaces), however, such systematic effects are not visible in the results (Fig. 6). 5. RESULTS The campaign consists of 5 sessions. In the first session only 5 pillars could be used, whereas in the other session all 8 pillars were equipped with GPS antennas. Thus, 32 independent baselines were observed. Additionally 90 baselines can be created using the same observations (satellite signals). To have a look at all solutions is quite meaningful. Thereby the effect of the antennas and especially of antenna combinations can be analyzed. Correlations between the observations due to using the same signals are not relevant here. It is rather an advantage when station independent effects are correlated (e.g. correlations from atmospheric effects, orbit erros or the satellite geometry), thus station dependend effects become more significant. To get a first impression about the quality of the measurements, the differences between the precise levelling (geoid corrections are considered as described above) and the GPSmeasurements are visualized in Fig. 5 (L1, 10 elevation cut-off, without troposphere parameter estimation), where the sorting of the baselines is random. The maximum deviations are less than 2 mm and the corresponding standard deviation is 0.8 mm. The distribution of the results is very similar to the theoretical Gaussian Distribution (see histogram, Fig. 5). Fig. 5: Differences between GPS and presice leveling (L1) sorting: random The determined offset of 0.4 mm is significant. The cause is yet unknown, but a few possibilities could be excluded. Fig. 6 shows the same results as Fig. 5, but the sorting is different (displayed are all baselines < 630 m i.e. more than 90% of the results). Because there are no effects which depend on the baseline length, ionospheric effects, tropospheric effects and effects of the different reference levels (ellipsoid vs. geoid) can be discarded. Antenna 8/16

9 effects are possible, but because of antenna swaps the mean should be zero or at least not significant. Fig. 6: Differences between GPS and presice leveling (L1) - sorting: baseline length Altogether, the L1-GPS solutions are quite good, especially as there are also uncertainties from the levelling (see chapter 4.2). In case of relative height determination with GPS, this high accuracy is possible if besides multipath and near-field effects also the antenna effects can be reduced to a very low level. This is especially important when baselines with mixed antennas are analysed, too. For the sake of completeness, it should be mentioned that the results of one station (session 5, pillar 8, 7 baselines) were eliminated. The deviations are, independent from the choice of the second GPS-point, five times larger than the calculated standard deviation. Thus, these solutions are eliminated as outliers. One possible explanation is that the observation time is very short here (4 hours). However, the fact that the differences between the L1- and the L2- solutions are only around 2 mm contradicts this theory. Another possible explanation is that the antenna height was not measured correctly, but this cannot be clarified afterwards. Even, because of these results, it is important to check whether an increase of time causes a significant higher accuracy. Therefore in Fig. 5 results are displayed in red, when the observation time is between 4 and 5.5 hours. As the distribution of the red samples is very similar to that of the other results (blue = hours), the observation time of at least 4 hours is suitable in this case. The standard deviation of the red samples is 0.8 mm as well. In the next step the L2-solutions are analysed (Fig. 7). The offset of 0.5 mm is equal to the "L1-offset" of 0.4 mm in a statistical sense. 9/16

10 Fig. 7: Differences between GPS and presice leveling (L2) More important is that the standard deviation is twice as large as in case of L1. A lower accuracy for L2 is typical, but the ratio between L1 and L2 is too large. Systematic effects cannot be seen in the results, but the histogram shows some deviations from the theoretical form (red line). This is not unusual for GPS-measurements, but regarding the ionospheric free linear combination L0 these deviations become more obvious (histogram, Fig. 8). A lot of measurements (57) have a deviation of only ±1mm in comparison to the levelling. On the one hand the histogram shows that the calculated value for the standard deviation is too high for these samples. On the other hand there are too many deviations which could not be explained by random noise. Fig. 8: Differences between GPS and presice leveling (L0) Since the L1 solutions do not show such systematic effects, there has to be an effect, which affects L1 and L2 in a different way. 10/16

11 Impact of the near-field It is common knowledge that the near-field of the antenna changes the behaviour of the electromagnetic field of the antenna and as a consequence the phase measurement of the antenna (see Wübbena et al. 2006). In case of the presented GPS-measurements, 3 antenna types and 2 different setups were used. By combining different antenna types and different antenna near-fields (mounting) it is here possible to detect near-field effects and ensure that no other effects (e.g. multipath, ionosphere) cause the problems which are visible for L2. In Fig. 9 (left) the differences between GPS and the precise levelling are visualized in a grid (session2, L2, 10 elevation cut off). This grid shows the difference between GPS and levelling heights. In case of the baseline between the pillars 1 and 2 (first box, top, left) the difference is e.g. 2.2 mm. The exact value is displayed if a limit of 1.5 mm is exceeded. If the value is smaller, the difference is depicted only in form of the color coding. This representation was chosen to highlight the relevant values. Additionally the left axis is labeled with the corresponding antenna types. 504 = LEIAT504GG = Leica AT504GG (Choke Ring Antenna) TRM1 = TRM = Trimble Zephyr Geodetic (GPS) TRM2 = TRM = Trimble Zephyr Geodetic 2 (GNSS) Fig. 9: Differences between GPS and presice leveling (L2) Session 2 (right figure without combinations with one TRM1 antenna) Obviously, the largest differences appear if one TRM1 antenna is involved. In these cases, the signs and the amplitudes of the differences are similar (regard the direction: h 12 = - h 21 ). The mean value of these differences is 2.6 mm. When using two TRM1 antennas, the limit will not be exceeded, because similar systematic effects are eliminated in case of relative GPS 11/16

12 (baselines 2-3, 2-7, 3-7). In the right figure all combinations with one TRM1 antenna are faded out, what facilitates the comparisons. All deviations are smaller than 1.5 mm. In session 4 one major change has been applied w.r.t. session 2, i.e. the antennas at the pillars 1, 2 and 8 have been equipped with a 255 mm distance piece (Fig. 4 left). In Fig. 10 this is marked by the vertical line in the antenna type name (e.g. TRM1 ). As a consequence, the modified TRM1 antenna at point 2 does not show the same (abnormal) behaviour as the ones at point 4 and 7 (mounted as shown in Fig. 4; right). The latter ones behave as in session 2 (Fig. 9). Thus, the changed near field produces a deviation of around 4 mm (Fig. 10; right). Furthermore, the setup with the distance piece shows a good (better) agreement with the levelling. In addition it is obvious that only the TRM1 antennas show such strong near-field effects. Whereas in case of the Choke Ring antenna (504) this can be explained by the better shielding, the behaviour of the TRM2 antenna, which outwardly looks like a TRM1 antenna, was not expected. Fig. 10: Differences between GPS and presice leveling (L2) Session 4 (right figure without combinations with one TRM1 antenna) The discussed effects are visible in almost all sessions, however there are examples where the behaviour is different. In session 5 (Fig. 11) point 4 (TRM1 without significant effects) and point 7 (TRM1 with significant effects) behaves as expected. But the result of point 2 (TRM1) clearly deviates from the other ones. In general the results of session 5 are slightly different. For example, there are comparative high differences at the baselines 1-3 and 3-5, where TRM2 and 504 antennas were used. In absolute terms the deviations are very small (1.8 and 1.7 mm) and perhaps the results of random uncertainties. Other reasons for the deviations in comparison to the other sessions are: 12/16

13 - Rainfall during the session - Observation time (session 5 was the shortest one) - Changed environments (e.g. changing multipath environment because of rainfall). Fig. 11: Differences between GPS and presice leveling (L2) Session 5 (right figure without combinations with one TRM1 antenna) The size of the detected near-field effects becomes clear if the results of all sessions are visualized in one figure (Fig. 12). The sorting of the baselines is again random. The baselines where exactly one TRM1 (without distance piece) antenna was used, are displayed in red. If two TRM1 were used, the results are colored in green. Fig. 12: Differences between GPS and presice leveling (L2) with highlighted near-field effects 13/16

14 The red samples spread around +2.5 mm and 2.5 mm. Altogether, the blue and green ones show a better agreement with the results from the precise levelling. The standard deviation of the reduced sample (blue & green samples; TRM1 setups are included) is L2,red = 1 mm and very similar to the L1 solutions. ( L1 = 0.8 mm, see Fig. 5). Of course the L0 results show the same systematics (Fig. 13). For the sake of completeness: for the L1 solutions such effects are not visible as expected because of the results displayed in Fig. 5. Fig. 13: Differences between GPS and presice leveling (L0) with highlighted near-field effects As presented above, the reason for the great deviations in case of L2 is the effect of the nearfield, when using the antenna-mounting combination displayed in Fig. 4 (right). But it is useful to discuss, whether other effects could play a contributory role, too. multipath: Improbably because multipath effects are site-dependent and the here discussed effects are visible for one special antenna-mounting-combination and not only at special pillars. antenna calibration: In case of calibration there are near-field effects as in the case of GPSmeasurements. A separation of the antenna-field and the near-field is not possible as mentioned above. Other systematic effects of the calibration should be similar for all antennas, thus the effects are eliminated in case of relative GPS. atmospheric effects and satellite orbit error: These effects depend on the baseline length, but they are independent from the receiver antenna. The visible effects are independent of the baseline length. Finally, it has to be noted that in the here presented case a Trimble Zephyr Geodetic antenna reacts on changes in the near-field. This result is only valid for the tested antenna-mounting combination. It is possible that in other environments other antennas react sensitively. 14/16

15 6. CONCLUSIONS AND OUTLOOK In order to review the validity of the absolute chamber antenna calibration procedure, GPSheight measurements are compared with the results of a precise levelling. Based on these measurements, an accuracy of around Height 1 mm could be proven ( L1 =0.8 mm and L2 =1 mm). But it has to be remarked, that in case of one antenna-mounting-combination larger differences were found. These differences were caused by the near-field of the antenna and not by remaining uncertainties of the calibration. In cases without such strong near-field effects, the remaining uncertainty budget is composed mainly of multipath, near-field and tropospheric effects, the remaining uncertainties of the antenna calibration and of the precise levelling. As shown above, it is of secondary importance to obtain the exact amount of the calibration, as long as the near-field problem is not solved. Within the limits of the determined accuracy, the calibration is valid for at least the three tested antenna types. The general benefit of the antenna calibration in absolute terms has not been discussed in this paper. This has been done in earlier works on this topic (e.g. Menge 1998). More interesting is how good the agreement between the currently available calibration procedures is. As for each of the calibration procedures e.g. the mountings of the antennas and so the near-field effects are not equal, differences should become visible if the results of different calibration procedures will be mixed. It is interesting whether it is possible to mix the procedures without a reduction of accuracy. This should be answered by further investigations. The existing data set is well suitable for this task. In a first step, all 9 antennas have to be calibrated with alternative procedures (if possible with relative and absolute field procedure). Hopefully, the analyses with mixed calibrations leads to some new findings about the calibration accuracy and the near-field problem. REFERENCES Bilich, A., Larson, K. M., 2007, Mapping the GPS multipath environment using the signalto-noise ration (SNR), Radio Science, Vol. 42, No. 2, CI: RS6003. Flury, J., Gerlach, C., Hirt, C., Schirmer, U, 2009, Heights in the Bavarian Alps: mutual validation of GPS, levelling, gravimetric and astrogeodetic quasigeoids, Geodetic Reference Frames, IAG Symposia, Vol. 134, pp , Munich. Geiger, A., 1988, Einfluss und Bestimmung der Variabilität des Phasenzentrums von GPS- Antennen, Mitteilungen des IGP der ETH-Zürich, No. 43, Zurich, Institut für Geodäsie und Photogrammetrie an der ETH-Zürich. Kraus, J.D., Marhefka, R.J., 2003, Antennas: for all Applications, third edition, McGraw-Hill. Menge, F., 1998, Zur Kalibrierung der Phasenzentrumsvariationen von GPS-Antennen für die hochpräzise Positionsbestimmung, Wiss. Arb. d. Fachr. Verm., 247, University of Hanover. Santerre, R., 1991, Impact of GPS Satellite Sky Distribution, manuscripta geodaetica, Vol. 16, pp /16

16 Schupler, B.R., Allshouse, R.L., Clark, T.A., 1994, Signal Characteristics of GPS User Antennas, Navigation, 41(3), pp , Institute of Navigation. Wanninger, L., May, M., 2000, Carrier Phase Multipath Calibration of GPS Reference Stations, Proceedings of the 13 th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS 2000, Salt Lake City, Utah, USA. Wübbena, G., Schmitz, M., Boettcher, G., 2006, Near-field Effects on GNSS Sites: Analysis using Absolute Robot Calibrations and Procedures to Determine Corrections, Proceedings of IGS Workshop 2006 Perspectives and Visions for 2010 and beyond, Darmstadt, Germany. Zeimetz, P., Kuhlmann, H., 2006, Systematic effects in absolute chamber calibration of GPS antennas, Geomatica, 60/3, pp , Ottawa, Canadian Institue of Geomatics. Zeimetz, P., Kuhlmann, H., 2008, On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber. Proceedings of the FIG Working Week 2008, June, Stockholm, Sweden. Zeimetz, P., Kuhlmann, H., Wanninger, L., Frevert, V., Schön, S., Strauch, K., 2009, Ringversuch 2009, 7. GNSS-Antennenworkshop, March 2009, Dresden, Germany. hrichtung_geowissenschaften/gi/aws09/7aws09_07_zeimetz.pdf BIOGRAPHICAL NOTES Mr. Philipp Zeimetz holds a diploma degree in geodesy from the University of Bonn, Germany. He is a scientific assistant at the Institute of Geodesy and Geoinformation of the University of Bonn. His research is mainly focussed on the calibration of GPS-antennas. Prof. Dr. Heiner Kuhlmann is full professor at the Institute of Geodesy and Geoinformation of the University of Bonn. He has worked extensively in engineering surveying, measurement techniques and calibration of geodetic instruments. CONTACT Philipp Zeimetz University of Bonn Institute of Geodesy and Geoinformation Nußallee Bonn GERMANY Tel zeimetz@igg.uni-bonn.de Website: 16/16

Titelmaster. Antenna properties

Titelmaster. Antenna properties Titelmaster On the Accuracy of Absolute GNSS Antenna Calibration in Context of Near Field Effects Barbara Görres, Philipp Zeimetz, Heiner Kuhlmann Institute of Geodesy and Geoinformation University of

More information

The Impact of Different GPS Antenna Calibration Models on the EUREF Permanent Network

The Impact of Different GPS Antenna Calibration Models on the EUREF Permanent Network 103 The Impact of Different GPS Antenna Calibration Models on the EUREF Permanent Network CH. VÖLKSEN 1, F. MENGE 2 Abstract It is generally known that the phase center of a GPS antenna is not a stable

More information

Geo++ White Paper. Comparison and Analysis of BLOCK II/IIA Offsets from Antenna Field Calibrations

Geo++ White Paper. Comparison and Analysis of BLOCK II/IIA Offsets from Antenna Field Calibrations Geo++ White Paper Comparison and Analysis of BLOCK II/IIA Offsets from Antenna Field Calibrations Gerhard Wübbena, Martin Schmitz Geo++ Gesellschaft für satellitengestützte geodätische und navigatorische

More information

Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations

Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations Christian Rost and Lambert Wanninger Geodetic Institute Technische Universität Dresden Dresden,

More information

The importance of correct antenna calibration models for the EUREF Permanent Network

The importance of correct antenna calibration models for the EUREF Permanent Network 73 The importance of correct antenna calibration models for the EUREF Permanent Network CH. VÖLKSEN 1 Abstract Station coordinates and velocities are derived today with a precision of a few millimetres.

More information

Geo++ GmbH Garbsen Germany

Geo++ GmbH Garbsen Germany On GNSS Station Calibration of Antenna Near-Field Effects in RTK-Networks Gerhard Wübbena, Martin Schmitz Geo++ GmbH 30827 Garbsen Germany www.geopp.com Overview Motivation Near-Field Effects / Near-Field

More information

The impact of the PCV parameters in the coordinates estimate.

The impact of the PCV parameters in the coordinates estimate. The impact of the PCV parameters in the coordinates estimate. Riccardo Barzaghi, Alessandra Borghi DIIAR Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milano, Italy 1. Introduction In high precision

More information

Investigation regarding Different Antennas combined with Low-cost GPS Receivers

Investigation regarding Different Antennas combined with Low-cost GPS Receivers Investigation regarding Different Antennas combined with Low-cost GPS Receivers FIG Working Week 2013 TS 05C - GNSS Positioning and Measurement I Commission 5 Li Zhang, Volker Schwieger Institute of Engineering

More information

Trimble Business Center:

Trimble Business Center: Trimble Business Center: Modernized Approaches for GNSS Baseline Processing Trimble s industry-leading software includes a new dedicated processor for static baselines. The software features dynamic selection

More information

Guorong Hu & Michael Moore Geodesy Section, Geoscience Australia

Guorong Hu & Michael Moore Geodesy Section, Geoscience Australia Influence of using individual GPS receiver antenna calibrations on high precision geodetic positioning, case study: Northern Surat Basin Queensland 2015 GPS campaign Guorong Hu & Michael Moore Geodesy

More information

Does GNSS outperform GPS in Geodetic Applications?

Does GNSS outperform GPS in Geodetic Applications? Contribution to Conference Proceedings of POSITIONs 008, Dresden 7.-9.10.008 Does GNSS outperform GPS in Geodetic Applications? Asim Bilajbegović, Prof. Dr.-Ing. 1, Rüdiger Lehmann, Prof. Dr.-Ing. 1, University

More information

New Tools for Network RTK Integrity Monitoring

New Tools for Network RTK Integrity Monitoring New Tools for Network RTK Integrity Monitoring Xiaoming Chen, Herbert Landau, Ulrich Vollath Trimble Terrasat GmbH BIOGRAPHY Dr. Xiaoming Chen is a software engineer at Trimble Terrasat. He holds a PhD

More information

Absolute Antenna Calibration

Absolute Antenna Calibration Absolute Antenna Calibration (Characteristics of Antenna Type) Method Geo++ GNPCV Real Time Calibration Antenna Data Manufacturer : CHC Shanghai HuaCe Navigation Technology Ltd. Antenna Type : i80 GNSS

More information

Ionospheric Disturbance Indices for RTK and Network RTK Positioning

Ionospheric Disturbance Indices for RTK and Network RTK Positioning Ionospheric Disturbance Indices for RTK and Network RTK Positioning Lambert Wanninger Geodetic Institute, Dresden University of Technology, Germany BIOGRAPHY Lambert Wanninger received his Dipl.-Ing. and

More information

Automated Absolute Field Calibration of GPS Antennas in Real-Time 1

Automated Absolute Field Calibration of GPS Antennas in Real-Time 1 Automated Absolute Field Calibration of GPS Antennas in Real-Time 1 Gerhard Wübbena, Martin Schmitz Geo++, Gesellschaft für satellitengestützte geodätische und navigatorische Technologien mbh D-30827 Garbsen,

More information

A New Approach for Field Calibration of Absolute Antenna Phase Center Variations

A New Approach for Field Calibration of Absolute Antenna Phase Center Variations A New Approach for Field Calibration of Absolute Antenna Phase Center Variations GERHARD WÜBBENA, MARTIN SCHMITZ Geo++, D-30827 Garbsen, Germany FALKO MENGE, GÜNTER SEEBER, CHRISTOF VÖLKSEN Institut für

More information

Characterization of GOCE GPS Antennas

Characterization of GOCE GPS Antennas Characterization of GOCE GPS Antennas Florian Dilßner, Günter Seeber (IfE), Universität Hannover, Germany Martin Schmitz, Gerhard Wübbena Geo++ GmbH, Garbsen, Germany Giovanni Toso, Damien Maeusli European

More information

Errors in GPS. Errors in GPS. Geodetic Co-ordinate system. R. Khosla Fall Semester

Errors in GPS. Errors in GPS. Geodetic Co-ordinate system. R. Khosla Fall Semester Errors in GPS Errors in GPS GPS is currently the most accurate positioning system available globally. Although we are talking about extreme precision and measuring distances by speed of light, yet there

More information

A New Approach for Field Calibration of Absolute Antenna Phase Center Variations 1

A New Approach for Field Calibration of Absolute Antenna Phase Center Variations 1 A New Approach for Field Calibration of Absolute Antenna Phase Center Variations 1 Gerhard Wübbena Geo++, Gesellschaft für satellitengestützte geodätische und navigatorische Technologien mbh Steinriede

More information

National Report of Greece to EUREF 2009

National Report of Greece to EUREF 2009 National Report of Greece to EUREF 2009 M. Gianniou KTIMATOLOGIO S.A. (Hellenic Cadastre) 1 Introduction In 2007, KTIMATOLOGIO S.A (Hellenic Cadastre) established HEPOS, the HEllenic POsitioning System,

More information

Latest Developments in Network RTK Modeling to Support GNSS Modernization

Latest Developments in Network RTK Modeling to Support GNSS Modernization Journal of Global Positioning Systems (2007) Vol.6, No.1: 47-55 Latest Developments in Network RTK Modeling to Support GNSS Modernization Herbert Landau, Xiaoming Chen, Adrian Kipka, Ulrich Vollath Trimble

More information

AUSPOS GPS Processing Report

AUSPOS GPS Processing Report AUSPOS GPS Processing Report February 13, 2012 This document is a report of the GPS data processing undertaken by the AUSPOS Online GPS Processing Service (version: AUSPOS 2.02). The AUSPOS Online GPS

More information

Some of the proposed GALILEO and modernized GPS frequencies.

Some of the proposed GALILEO and modernized GPS frequencies. On the selection of frequencies for long baseline GALILEO ambiguity resolution P.J.G. Teunissen, P. Joosten, C.D. de Jong Department of Mathematical Geodesy and Positioning, Delft University of Technology,

More information

RTK in Industry and Practical Work

RTK in Industry and Practical Work RTK in Industry and Practical Work Martin Schmitz Geo++ GmbH 30827 Garbsen, Germany www.geopp.de Motivation to Select a Topic Geo++ is a company with main focus on development of GNSS software and applications

More information

FieldGenius Technical Notes GPS Terminology

FieldGenius Technical Notes GPS Terminology FieldGenius Technical Notes GPS Terminology Almanac A set of Keplerian orbital parameters which allow the satellite positions to be predicted into the future. Ambiguity An integer value of the number of

More information

GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT)

GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT) GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT) Ashraf Farah Associate Professor,College of Engineering, Aswan University,

More information

APPLICATION OF FULL ROVING GPS OBSERVATION STRATEGY FOR MONITORING LOCAL MOVEMENTS

APPLICATION OF FULL ROVING GPS OBSERVATION STRATEGY FOR MONITORING LOCAL MOVEMENTS APPLICATION OF FULL ROVING GPS OBSERVATION STRATEGY FOR MONITORING LOCAL MOVEMENTS Laszlo Banyai Geodetic and Geophysical Research Institute Hungarian Academy of Sciences Email: banyai@ggki.hu Abstract:

More information

ABSTRACT: Three types of portable units with GNSS raw data recording capability are assessed to determine static and kinematic position accuracy

ABSTRACT: Three types of portable units with GNSS raw data recording capability are assessed to determine static and kinematic position accuracy ABSTRACT: Three types of portable units with GNSS raw data recording capability are assessed to determine static and kinematic position accuracy under various environments using alternatively their internal

More information

Vertical Component Quality Comparison of GPS RTK Method in Combination with Laser System vs. Conventional Methods for Height Determination

Vertical Component Quality Comparison of GPS RTK Method in Combination with Laser System vs. Conventional Methods for Height Determination 59 Vertical Component Quality Comparison of GPS RTK Method in Combination with Laser System vs. Conventional Methods for Height Determination Paar, R., Novakovi, G. and Kolovrat, D. University of Zagreb,

More information

MONITORING SEA LEVEL USING GPS

MONITORING SEA LEVEL USING GPS 38 MONITORING SEA LEVEL USING GPS Hasanuddin Z. Abidin* Abstract GPS (Global Positioning System) is a passive, all-weather satellite-based navigation and positioning system, which is designed to provide

More information

Procedures for Quality Control of GNSS Surveying Results Based on Network RTK Corrections.

Procedures for Quality Control of GNSS Surveying Results Based on Network RTK Corrections. Procedures for Quality Control of GNSS Surveying Results Based on Network RTK Corrections. Limin WU, China Feng xia LI, China Joël VAN CRANENBROECK, Switzerland Key words : GNSS Rover RTK operations, GNSS

More information

ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR

ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR ABSOLUTE CALIBRATION OF TIME RECEIVERS WITH DLR'S GPS/GALILEO HW SIMULATOR S. Thölert, U. Grunert, H. Denks, and J. Furthner German Aerospace Centre (DLR), Institute of Communications and Navigation, Oberpfaffenhofen,

More information

GPS Carrier-Phase Time Transfer Boundary Discontinuity Investigation

GPS Carrier-Phase Time Transfer Boundary Discontinuity Investigation GPS Carrier-Phase Time Transfer Boundary Discontinuity Investigation Jian Yao and Judah Levine Time and Frequency Division and JILA, National Institute of Standards and Technology and University of Colorado,

More information

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC GPS GPS, which stands for Global Positioning System, is the only system today able to show you your exact position on the Earth anytime,

More information

On the GNSS integer ambiguity success rate

On the GNSS integer ambiguity success rate On the GNSS integer ambiguity success rate P.J.G. Teunissen Mathematical Geodesy and Positioning Faculty of Civil Engineering and Geosciences Introduction Global Navigation Satellite System (GNSS) ambiguity

More information

Multipath Error Detection Using Different GPS Receiver s Antenna

Multipath Error Detection Using Different GPS Receiver s Antenna Multipath Error Detection Using Different GPS Receiver s Antenna Md. Nor KAMARUDIN and Zulkarnaini MAT AMIN, Malaysia Key words: GPS, Multipath error detection, antenna residual SUMMARY The use of satellite

More information

Results from the Reprocessing of the BEK subnetwork

Results from the Reprocessing of the BEK subnetwork Results from the Reprocessing of the BEK subnetwork Christof Völksen Commission for International Geodesy (BEK) Bayerische Kommission für die Internationale Erdmessung EUREF Symposium London 2007 Background

More information

Bernese GPS Software 4.2

Bernese GPS Software 4.2 Bernese GPS Software 4.2 Introduction Signal Processing Geodetic Use Details of modules Bernese GPS Software 4.2 Highest Accuracy GPS Surveys Research and Education Big Permanent GPS arrays Commercial

More information

Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning

Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning J. Paul Collins, Peter J. Stewart and Richard B. Langley 2nd Workshop on Offshore Aviation Research Centre for Cold Ocean

More information

Accurate High-Sensitivity GPS for Short Baselines

Accurate High-Sensitivity GPS for Short Baselines Tutorial 3: Positioning and map matching - Part 3: Positioning by multi sensor systems 1 for Short Baselines FIG Working Week TS 6C GPS for Engineering Volker Schwieger University Stuttgart Germany Eilat,

More information

Positioning by an Active GPS System: Experimental Investigation of the Attainable Accuracy. Werner LIENHART, Andreas WIESER, Fritz K.

Positioning by an Active GPS System: Experimental Investigation of the Attainable Accuracy. Werner LIENHART, Andreas WIESER, Fritz K. Positioning by an Active GPS System: Experimental Investigation of the Attainable Accuracy Werner LIENHART, Andreas WIESER, Fritz K. BRUNNER Key words: GPS, active GPS system, field test, positioning accuracy,

More information

PROCEDURE FOR GNSS EQUIPMENT VERIFICATION IN STATIC POSITIONING

PROCEDURE FOR GNSS EQUIPMENT VERIFICATION IN STATIC POSITIONING M. Tsakiri, V. Pagounis, V. Zacharis Procedure for GNSS equipment verification in static positioning PROCEDURE FOR GNSS EQUIPMENT VERIFICATION IN STATIC POSITIONING Maria TSAKIRI, School of Rural and Surveying

More information

2 INTRODUCTION TO GNSS REFLECTOMERY

2 INTRODUCTION TO GNSS REFLECTOMERY 2 INTRODUCTION TO GNSS REFLECTOMERY 2.1 Introduction The use of Global Navigation Satellite Systems (GNSS) signals reflected by the sea surface for altimetry applications was first suggested by Martín-Neira

More information

Optics and optical instruments Field procedures for testing geodetic and surveying instruments. Part 8:

Optics and optical instruments Field procedures for testing geodetic and surveying instruments. Part 8: Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 17123-8 Second edition 2015-06-15 Optics and optical instruments Field procedures for testing geodetic and surveying instruments Part 8: GNSS field

More information

Teqc QC Results. MP1 and MP2

Teqc QC Results. MP1 and MP2 T rimble T RM59900 T i-choke Ring GNSS Ant enna T est Report Article Number: 788 Rating: Unrated Last Updated: Mon, Nov 23, 2015 at 11:11 PM Location: UNAVCO facility roof NE corner Author: Henry Berglund

More information

From Passive to Active Control Point Networks Evaluation of Accuracy in Static GPS Surveying

From Passive to Active Control Point Networks Evaluation of Accuracy in Static GPS Surveying From Passive to Active Control Point Networks Evaluation of Accuracy in Static GPS Surveying P. Häkli 1, U. Kallio 1 and J. Puupponen 2 1) Finnish Geodetic Institute 2) National Land Survey of Finland

More information

GNSS & Coordinate Systems

GNSS & Coordinate Systems GNSS & Coordinate Systems Matthew McAdam, Marcelo Santos University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, NB May 29, 2012 Santos, 2004 msantos@unb.ca 1 GNSS GNSS

More information

Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers

Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers Tobias Nilsson, Gunnar Elgered, and Lubomir Gradinarsky Onsala Space Observatory Chalmers

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

Real-Time Processing Strategies

Real-Time Processing Strategies Publikation_en_Sept_2001 30.11.2001 14:08 Uhr Seite 1 30 40 50 Real-Time Processing Strategies Study of Improved Observation Modeling for Surveying Type Applications in Multipath Environment Bernhard Richter

More information

Assessment of high-rate GPS using a single-axis shake table

Assessment of high-rate GPS using a single-axis shake table Assessment of high-rate GPS using a single-axis shake table S. Häberling, M. Rothacher, A. Geiger Institute of Geodesy and Photogrammetry, ETH Zurich Introduction Project: Study the applicability of high-rate

More information

Traceability measurement results of accurate time and frequency in Bosnia and Herzegovina

Traceability measurement results of accurate time and frequency in Bosnia and Herzegovina INFOTEH-JAHORINA Vol. 11, March 2012. Traceability measurement results of accurate time and frequency in Bosnia and Herzegovina Osman Šibonjić, Vladimir Milojević, Fatima Spahić Institute of Metrology

More information

First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University

First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University Sensors 215, 15, 28717-28731; doi:1.339/s151128717 Article OPEN ACCESS sensors ISSN 1424-822 www.mdpi.com/journal/sensors First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan

More information

Chapter 6 GPS Relative Positioning Determination Concepts

Chapter 6 GPS Relative Positioning Determination Concepts Chapter 6 GPS Relative Positioning Determination Concepts 6-1. General Absolute positioning, as discussed earlier, will not provide the accuracies needed for most USACE control projects due to existing

More information

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS G. Wautelet, S. Lejeune, R. Warnant Royal Meteorological Institute of Belgium, Avenue Circulaire 3 B-8 Brussels (Belgium) e-mail: gilles.wautelet@oma.be

More information

GPS Survey NAM Waddenzee

GPS Survey NAM Waddenzee 1 of 25 Date: October 26, 2006 Author: ir. Jean-Paul Henry, 06-GPS : 1.0 Date: Author: ir. Frank Dentz, 06-GPS Checked: ir. Jean-Paul Henry, 06-GPS : 06-GPS B.V. Kubus 11 NL 3364 DG Sliedrecht Tel.: 0184

More information

It is well known that GNSS signals

It is well known that GNSS signals GNSS Solutions: Multipath vs. NLOS signals GNSS Solutions is a regular column featuring questions and answers about technical aspects of GNSS. Readers are invited to send their questions to the columnist,

More information

TESTING OF GNSS MULTIPATH IN DIFFERENT OBSERVATIONAL CONDITIONS AT ONE STATIONARY STATION

TESTING OF GNSS MULTIPATH IN DIFFERENT OBSERVATIONAL CONDITIONS AT ONE STATIONARY STATION Acta Geodyn. Geomater., Vol. 4, No. 43 (88), 45 49, 07 DOI: 0.368/AGG.07.003 journal homepage: https://www.irsm.cas.cz/acta ORIGINAL PAPER TESTING OF GNSS MULTIPATH IN DIFFERENT OBSERVATIONAL CONDITIONS

More information

Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia

Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia International Global Navigation Satellite Systems Society IGNSS Symposium 2015 Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia Xiaodong Ren 1,Suelynn Choy

More information

Table of Contents. Frequently Used Abbreviation... xvii

Table of Contents. Frequently Used Abbreviation... xvii GPS Satellite Surveying, 2 nd Edition Alfred Leick Department of Surveying Engineering, University of Maine John Wiley & Sons, Inc. 1995 (Navtech order #1028) Table of Contents Preface... xiii Frequently

More information

GNSS 101 Bringing It Down To Earth

GNSS 101 Bringing It Down To Earth GNSS 101 Bringing It Down To Earth Steve Richter Frontier Precision, Inc. UTM County Coordinates NGVD 29 State Plane Datums Scale Factors Projections Session Agenda GNSS History & Basic Theory Coordinate

More information

Application of GNSS Methods for Monitoring Offshore Platform Deformation

Application of GNSS Methods for Monitoring Offshore Platform Deformation Application of GNSS Methods for Monitoring Offshore Platform Deformation Khin Cho Myint 1,*, Abd Nasir Matori 1, and Adel Gohari 1 1 Department of Civil and Environmental Engineering, Universiti Teknologi

More information

Low-Cost GNSS for Geodetic Applications

Low-Cost GNSS for Geodetic Applications Institut für Ingenieurgeodäsie Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Low-Cost GNSS for Geodetic Applications Dr.-Ing. Li Zhang Institute of Engineering Geodesy (IIGS),

More information

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals Dinesh Manandhar The University of Tokyo dinesh@qzss.org 1 Contents Background Remote Sensing Capability System Architecture

More information

Testing RTK GPS Horizontal Positioning Accuracy within an Urban Area

Testing RTK GPS Horizontal Positioning Accuracy within an Urban Area Testing RTK GPS Horizontal Positioning Accuracy within an Urban Area Ismat M Elhassan* Civil Engineering Department, King Saud University, Surveying Engineering Program, Kingdom of Saudi Arabia Research

More information

Time Scales Comparisons Using Simultaneous Measurements in Three Frequency Channels

Time Scales Comparisons Using Simultaneous Measurements in Three Frequency Channels Time Scales Comparisons Using Simultaneous Measurements in Three Frequency Channels Petr Pánek and Alexander Kuna Institute of Photonics and Electronics AS CR, Chaberská 57, Prague, Czech Republic panek@ufe.cz

More information

GPS data correction using encoders and INS sensors

GPS data correction using encoders and INS sensors GPS data correction using encoders and INS sensors Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, Avenue de la Renaissance 30, 1000 Brussels, Belgium sidahmed.berrabah@rma.ac.be

More information

Simulation Analysis for Performance Improvements of GNSS-based Positioning in a Road Environment

Simulation Analysis for Performance Improvements of GNSS-based Positioning in a Road Environment Simulation Analysis for Performance Improvements of GNSS-based Positioning in a Road Environment Nam-Hyeok Kim, Chi-Ho Park IT Convergence Division DGIST Daegu, S. Korea {nhkim, chpark}@dgist.ac.kr Soon

More information

Digital Land Surveying and Mapping (DLS and M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee

Digital Land Surveying and Mapping (DLS and M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee Digital Land Surveying and Mapping (DLS and M) Dr. Jayanta Kumar Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee Lecture 11 Errors in GPS Observables Welcome students. Lesson

More information

Accuracy Assessment of GPS Slant-Path Determinations

Accuracy Assessment of GPS Slant-Path Determinations Accuracy Assessment of GPS Slant-Path Determinations Pedro ELOSEGUI * and James DAVIS Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA Abtract We have assessed the accuracy of GPS for determining

More information

ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION

ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION TJPRC: International Journal of Signal Processing Systems (TJPRC: IJSPS) Vol. 1, Issue 2, Dec 2017, 1-14 TJPRC Pvt. Ltd. ANALYSIS OF GPS SATELLITE OBSERVABILITY OVER THE INDIAN SOUTHERN REGION ANU SREE

More information

COMPARISON OF GPS COMMERCIAL SOFTWARE PACKAGES TO PROCESSING STATIC BASELINES UP TO 30 KM

COMPARISON OF GPS COMMERCIAL SOFTWARE PACKAGES TO PROCESSING STATIC BASELINES UP TO 30 KM COMPARISON OF GPS COMMERCIAL SOFTWARE PACKAGES TO PROCESSING STATIC BASELINES UP TO 30 KM Khaled Mohamed Abdel Mageed Civil Engineering, Cairo, Egypt E-Mail: khaled_mgd@yahoo.com ABSTRACT The objective

More information

Measurement Environment Influence Compensation to Reproduce Anechoic Chamber Measurements with Near Field Scanning

Measurement Environment Influence Compensation to Reproduce Anechoic Chamber Measurements with Near Field Scanning Measurement Environment Influence Compensation to Reproduce Anechoic Chamber Measurements with Near Field Scanning Denis Rinas, Alexander Zeichner, Stephan Frei TU Dortmund University Dortmund, Germany

More information

Control Position Fix Using Single Frequency Global Positioning System Receiver Technique - A Case Study

Control Position Fix Using Single Frequency Global Positioning System Receiver Technique - A Case Study Research Journal of Environmental and Earth Sciences 3(1): 32-37, 2011 ISSN: 2041-0492 Maxwell Scientific Organization, 2011 Received: September 10, 2010 Accepted: October 09, 2010 Published: January 05,

More information

Phase Center Calibration and Multipath Test Results of a Digital Beam-Steered Antenna Array

Phase Center Calibration and Multipath Test Results of a Digital Beam-Steered Antenna Array Phase Center Calibration and Multipath Test Results of a Digital Beam-Steered Antenna Array Kees Stolk and Alison Brown, NAVSYS Corporation BIOGRAPHY Kees Stolk is an engineer at NAVSYS Corporation working

More information

Detection and Mitigation of Static Multipath in L1 Carrier Phase Measurements Using a Dual- Antenna Approach

Detection and Mitigation of Static Multipath in L1 Carrier Phase Measurements Using a Dual- Antenna Approach Detection and Mitigation of Static Multipath in L1 Carrier Phase Measurements Using a Dual- Antenna Approach M.C. Santos Department of Geodesy and Geomatics Engineering, University of New Brunswick, P.O.

More information

Soil Moisture Observation Utilizing Reflected GNSS Signals

Soil Moisture Observation Utilizing Reflected GNSS Signals Soil Moisture Observation Utilizing Reflected GNSS Signals GNSS-R Tech in Soil Moisture New Data Processing Method Prof. Dongkai YANG Joint African/Asia-Pacific UN-Regional Centers and International Training

More information

UNIT 1 - introduction to GPS

UNIT 1 - introduction to GPS UNIT 1 - introduction to GPS 1. GPS SIGNAL Each GPS satellite transmit two signal for positioning purposes: L1 signal (carrier frequency of 1,575.42 MHz). Modulated onto the L1 carrier are two pseudorandom

More information

Updated Options and New Products of EPN Analysis

Updated Options and New Products of EPN Analysis EUREF Symposium in London, UK, 6 9 June 27 Updated Options and New Products of EPN Analysis H. Habrich EPN Analysis Coordinator Federal Agency for Cartography and Geodesy, Frankfurt, Germany Abstract The

More information

Standard for New Zealand Vertical Datum 2016 LINZS25009

Standard for New Zealand Vertical Datum 2016 LINZS25009 Standard for New Zealand Vertical Datum 2016 LINZS25009 Effective Date: 27 June 2016 Table of Contents TERMS ND DEFINITIONS... 3 FOREWORD... 5 INTRODUCTION... 5 PURPOSE OF STNDRD... 5 BRIEF HISTORY OF

More information

STABILITY OF GLOBAL GEODETIC RESULTS

STABILITY OF GLOBAL GEODETIC RESULTS STABILITY OF GLOBAL GEODETIC RESULTS Prof. Thomas Herring Room 54-611; 253-5941 tah@mit.edu http://bowie.mit.edu/~tah 04/22/02 EGS G6 2002 1 Overview Motivation for talk: Anomalies in apparent positions

More information

Local Control Network of the Fiducial GLONASS/GPS Station

Local Control Network of the Fiducial GLONASS/GPS Station Related Contributions 333 Local Control Network of the Fiducial GLONASS/GPS Station V.I. KAFTAN, R.A. TATEVIAN 1 Abstract The controlling geodetic network for the Moscow station of the Fiducial Astro-Geodetic

More information

Presentation Plan. The Test of Processing Modules of Global Positioning System (GPS) Softwares by Using Products of International GPS Service (IGS)

Presentation Plan. The Test of Processing Modules of Global Positioning System (GPS) Softwares by Using Products of International GPS Service (IGS) The Test of Processing Modules of Global Positioning System (GPS) Softwares by Using Products of International GPS Service (IGS) Presentation Plan 1. Introduction 2. Application 3. Conclusions Ismail SANLIOGLU,

More information

MULTIPATH MITIGATION BY WAVELET ANALYSIS FOR GPS BASE STATION APPLICATIONS

MULTIPATH MITIGATION BY WAVELET ANALYSIS FOR GPS BASE STATION APPLICATIONS MULTIPATH MITIGATION BY WAVELET ANALYSIS FOR GPS BASE STATION APPLICATIONS Chalermchon Satirapod 1 and Chris Rizos 2 1 Geo-Image Technology Research Unit Department of Survey Engineering Chulalongkorn

More information

Proposed standard for permanent GNSS reference stations in the Nordic countries

Proposed standard for permanent GNSS reference stations in the Nordic countries Version 0.6 2003-05-15 Proposed standard for permanent GNSS reference stations in the Nordic countries Introduction Subproject A0 of the project Nordic Real-time Positioning Service Gunnar Hedling, Finn

More information

The Influence of Multipath on the Positioning Error

The Influence of Multipath on the Positioning Error The Influence of Multipath on the Positioning Error Andreas Lehner German Aerospace Center Münchnerstraße 20 D-82230 Weßling, Germany andreas.lehner@dlr.de Co-Authors: Alexander Steingaß, German Aerospace

More information

High Precision Positioning Unit 1: Accuracy, Precision, and Error Student Exercise

High Precision Positioning Unit 1: Accuracy, Precision, and Error Student Exercise High Precision Positioning Unit 1: Accuracy, Precision, and Error Student Exercise Ian Lauer and Ben Crosby (Idaho State University) This assignment follows the Unit 1 introductory presentation and lecture.

More information

ProMark 500 White Paper

ProMark 500 White Paper ProMark 500 White Paper How Magellan Optimally Uses GLONASS in the ProMark 500 GNSS Receiver How Magellan Optimally Uses GLONASS in the ProMark 500 GNSS Receiver 1. Background GLONASS brings to the GNSS

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 683 Assessment Accuracy of Static Relative Positioning Using Single Frequency GPS Receivers Mahmoud I. El-Mewafi

More information

COMPARISON OF RELATIVE AND ABSOLUTE PRECISION OF OHIO S WIDE AREA GPS NETWORK INCLUDING THE COMPARISON WITH ALTERNATIVE METHODS.

COMPARISON OF RELATIVE AND ABSOLUTE PRECISION OF OHIO S WIDE AREA GPS NETWORK INCLUDING THE COMPARISON WITH ALTERNATIVE METHODS. COMPARISON OF RELATIVE AND ABSOLUTE PRECISION OF OHIO S WIDE AREA GPS NETWORK INCLUDING THE COMPARISON WITH ALTERNATIVE METHODS A Thesis Presented in Partial Fulfillment of the Requirements for the Degree

More information

MODIFIED GPS-OTF ALGORITHMS FOR BRIDGE MONITORING: APPLICATION TO THE PIERRE-LAPORTE SUSPENSION BRIDGE IN QUEBEC CITY

MODIFIED GPS-OTF ALGORITHMS FOR BRIDGE MONITORING: APPLICATION TO THE PIERRE-LAPORTE SUSPENSION BRIDGE IN QUEBEC CITY MODIFIED GPS-OTF ALGORITHMS FOR BRIDGE MOITORIG: APPLICATIO TO THE PIERRE-LAPORTE SUSPESIO BRIDGE I QUEBEC CIT Rock Santerre and Luc Lamoureux Centre de Recherche en Géomatique Université Laval Québec,

More information

GPS for. Land Surveyors. Jan Van Sickle. Fourth Edition. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, an Informa business

GPS for. Land Surveyors. Jan Van Sickle. Fourth Edition. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, an Informa business GPS for Land Surveyors Fourth Edition Jan Van Sickle CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an Informa business Contents Preface

More information

Keywords: cylindrical near-field acquisition, mechanical and electrical errors, uncertainty, directivity.

Keywords: cylindrical near-field acquisition, mechanical and electrical errors, uncertainty, directivity. UNCERTAINTY EVALUATION THROUGH SIMULATIONS OF VIRTUAL ACQUISITIONS MODIFIED WITH MECHANICAL AND ELECTRICAL ERRORS IN A CYLINDRICAL NEAR-FIELD ANTENNA MEASUREMENT SYSTEM S. Burgos, M. Sierra-Castañer, F.

More information

Bernhard Hofnlann-Wellenhof Herbert Lichtenegger Elmar Wasle. GNSS - Global Navigation Satellite Systenls. GPS, GLONASS, Galileo, and nl0re

Bernhard Hofnlann-Wellenhof Herbert Lichtenegger Elmar Wasle. GNSS - Global Navigation Satellite Systenls. GPS, GLONASS, Galileo, and nl0re Bernhard Hofnlann-Wellenhof Herbert Lichtenegger Elmar Wasle GNSS - Global Navigation Satellite Systenls GPS, GLONASS, Galileo, and nl0re SpringerWienNewYork Contents Abbreviations xxi 1 Introduction 1

More information

ENGI 3703 Surveying and Geomatics

ENGI 3703 Surveying and Geomatics Satellite Geometry: Satellites well spread out in the sky have a much stronger solution to the resection type problem (aka trilateration) then satellite that are grouped together. Since the position of

More information

National Height Modernization: Cost comparison of conducting a vertical survey by leveling versus by GPS in western North Carolina

National Height Modernization: Cost comparison of conducting a vertical survey by leveling versus by GPS in western North Carolina Introduction: National Height Modernization: Cost comparison of conducting a vertical survey by leveling versus by GPS in western North Carolina The North Carolina Geodetic Survey (NCGS) conducted a National

More information

GNSS Analysis with Galileo Observations in the Subnetwork of the BEK Analysis Centre

GNSS Analysis with Galileo Observations in the Subnetwork of the BEK Analysis Centre GNSS Analysis with Galileo Observations in the Subnetwork of the BEK Analysis Centre Christof Völksen Bavarian Academy of Sciences and Humanities (BAdW) Tomasz Liwosz Warsaw University of Technology, Warsaw,

More information

Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey

Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey 2 Improving Hydrographic PPP by Height Constraining Ashraf Abdallah (Egypt) Volker Schwieger, (Germany) ashraf.abdallah@aswu.edu.eg

More information

A study of the possibility to connect local levelling networks to the Swedish height system RH Ke Liu. May 2011

A study of the possibility to connect local levelling networks to the Swedish height system RH Ke Liu. May 2011 FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT A study of the possibility to connect local levelling networks to the Swedish height system RH 2000 using GNSS Ke Liu May 2011 Thesis for a Degree of

More information

TREATMENT OF DIFFRACTION EFFECTS CAUSED BY MOUNTAIN RIDGES

TREATMENT OF DIFFRACTION EFFECTS CAUSED BY MOUNTAIN RIDGES TREATMENT OF DIFFRACTION EFFECTS CAUSED BY MOUNTAIN RIDGES Rainer Klostius, Andreas Wieser, Fritz K. Brunner Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Steyrergasse

More information