Real Time Stepper Motor Control Using ARM Microcontroller and MATLAB GUI For Satellite Ground Station Tracking

Size: px
Start display at page:

Download "Real Time Stepper Motor Control Using ARM Microcontroller and MATLAB GUI For Satellite Ground Station Tracking"

Transcription

1 Real Time Stepper Motor Control Using ARM Microcontroller and MATLAB GUI For Satellite Ground Station Tracking Arjun R 1, Harshith Patte 2, Harshith V 3, Karthik K R 4, Narayana T Deshpande 5, Dhruti Ranjan Gaan Student, 5 Assistant Professor, Department of ECE, BMSCE, Bangalore 6 Research Engineer, ISAC Abstract: The bird's-eye view that satellites have allows them to see large areas of Earth at one time. This ability means satellites can collect more data, more quickly, than instruments on the ground. Before satellites, TV signals didn't go very far. TV signals only travel in straight lines. With satellites, TV signals and phone calls are sent upward to a satellite. Then, almost instantly, the satellite can send them back down to different locations on Earth. Hence a reliable and fast communicating satellites are important in today s world. This is achieved in the project by using an accurate antenna arm. In this project, a stepper motor is implemented instead of BLDC motor which is currently used. This results in lesser beam width, hence faster data transfer rate and minimal data spill. This is an open loop system which makes it more dynamic and more responsive. In this project, the error will be reduced and the precision will be increased. The stepper motor can give a minimum error of ±0.1 degree can be achieved either by full stepping, half stepping or micro stepping of the stepper motor. A synchronous serial communication is established between TEENSY 3.1 and optical encoder to control and receive data from the optical encoder as commanded by the master, TEENSY 3.1. Since the board cannot provide the necessary voltage and current levels to drive the motor, IC L298 and IC L6506 together are used as a constant current driver for the motor and the commutation signals to the motor are generated by the Teensy board. MATLAB based GUI is used to control the motor. With each step of motor, optical encoder is made to read and send the angular position to the MATLAB to calculate the difference to find the error. The error calculated in saved in as Excel sheet and reproduced in graphs. Keywords: Low Earth Orbit (LEO), Advanced RISC Machine (ARM), Graphical User Interface (GUI), Synchronous Serial Interface (SSI). 93 I. INTRODUCTION A communications satellite is an artificial satellite that relays and amplifies radio telecommunications signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. There are over 2,000 communications satellites in Earth s orbit, used by both private and government organizations. Wireless communication uses electromagnetic waves to carry signals. These waves require line-of- sight, and are thus obstructed by the curvature of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated points. Communications satellites use a wide range of radio and microwave frequencies. To avoid signal interference, international organizations have regulations for which frequency ranges or "bands" certain organizations are allowed to use. This allocation of bands minimizes the risk of signal interference. In satellite communication, signal transferring between the sender and receiver is done with the help of satellite. In this process, the signal which is basically a beam of modulated microwaves is sent towards the satellite. Then the satellite amplifies the signal and sent it back to the receiver s antenna present on the earth s surface. In satellite communication, signal transferring between the sender and receiver is done with the help of satellite. In this process, the signal which is basically a beam of modulated microwaves is sent towards the satellite. Then the satellite amplifies the signal and sent it back to the receiver s antenna present on the earth s surface. Satellite Communication utilisation has become wide spread and ubiquitous throughout the country for such diverse applications like Television, DTH Broadcasting, DSNG and VSAT to exploit the unique capabilities in terms of coverage and outreach. The technology has matured substantially over past three decades and is being used on commercial basis for a large number of applications. Most of us are touched by satellite communication in more ways than we realise [1]. Low Earth Orbit (LEO) satellites are used to collect less frequent but more detailed information. An orbit is defined as LEO when it is at any altitude between 100-1,240 miles (160km - 2,000km). Here are several types of low earth orbits but the most common for earth and atmospheric science is the polar orbit [2]. LEOs are mostly used for data communication such as , paging and videoconferencing. Because LEOs are not fixed in space in relation to the rotation of the earth and since they orbit at a lower altitude compared to other satellites, they move at very high speeds and therefore data being transmitted via LEOs must be handed off from one satellite to the next as the satellites move in and out of range of the earth-bound transmitting stations that are sending the signals into space. The antenna of the polar satellites (LEO) should track the ground station in real time with minimal error for successful and fast data transmission. For a polar satellite to load and dump data, it has only few minutes of span. For example, a Satellite with 2 Hour orbit period has 10 minutes to transfer the data collected to a ground station. The beam width has to be minimal in order to increase the data transfer speed, minimise data spill/data loss. Hence, we need an accurate antenna arm. The antenna drive with minimal error and BLDC

2 motors are used for the same. The rotation of antenna on a satellite is done by BLDC motor. In a BLDC motor, commutation is done by electronic means. In that case the instantaneous rotor position must be known in order to determine the phases to be energized. The angular rotor position can be known by: Using a position sensor (Hall sensor, optical encoder, resolver) Electronically analysing the back-emf of a nonenergised winding. This is called sensor less commutation. In general, BLDC motor have three phase windings. The easiest way is to power two of them at a time, using resolver to know the rotor position. Commutation may be done very simply or it may be more complex by modulating sinusoidal currents in the three phases. This is called vector control, and its advantage is to provide a torque ripple of theoretically zero, as well as a high resolution for precise positioning. The minimum error with which the antenna could track the ground station now is ±1º degree. In order to make it more accurate and precise, Stepper motors will be implemented instead of BLDC motors. This results in lesser beam width, hence faster data transfer rate and minimal data spill. The project work consists of 5 modules and they are Full step, Half step excitation of stepper motor. Real-Time Control Platform for MATLAB and Simulink Stepper Motor Control SSI interfacing of 16-bit optical encoder to teensy 3.1 USB-HID Real-Time Data Acquisition into MATLAB MATLAB GUI for real time plotting and data acquisition. II. THE LITERATURE SURVEY Stepper motors have been used to drive mechanical systems for many decades. Stepper motors require a current-limited multiphase driver, and techniques have evolved from simple resistive drivers to complex high efficiency, high-performance switching devices. This has caused a shift in driver technology from a quaddrive system to an H-bridge system, and a change in motor design from four windings to two [4]. The open loop control type eliminates the need for feedback sensors, and since the cost reduction is a continuous demand in industrial applications, the open loop stepper motors remain suitable in many practical application fields. The main disadvantage of the open loop control mode is the steps lost followed by the motor stall. The stall can be detected by estimating the motor speed in real time by measuring motor currents and voltages. The estimated speed is compared with the speed command, and stall error protection is signalized if the error exceeds a certain range [5]. Stepper motors are 94 used in applications like Bonding and Laser trimming, it is necessary to control the stepper motor from remote places. The angular position of the stepper motor can be controlled remotely using DTMF (Dual-Tone Multi- Frequency) technology. DTMF Technology provides acoustic communication for controlling the angular position of the stepper motor remotely anywhere in the world through mobile phone network [6]. In polar satellites the antenna should track the ground station with minimum error in real time for effective and fast data transfer. Currently BLDC motors are used to align the antenna to track the ground station in real time which have very low precision. Hence stepper motors can be used to do the same with high precision. Tracking Quality Measurements of Ground Station for Low Earth Orbit Satellite. The poor quality position tracking of the satellite Ground Station (GS) for the Low Earth Orbit (LEO) satellite is due to the low quality RF signal received [8]. Also a satellite tracking station (STS) must be able to track a satellite at any position in the sky above a few degrees elevation. The best quality of data reception is obtained when the telemetry signal is stronger, i.e., where the satellite is closest to the ground station. In addition, it is most important that the station can be capable of continuing a good tracking through and near the local zenith to assure quality reception of the telemetry data If the antenna is aligned with minimum error with in the available beam width the strength of the received RF signal can be increased by a considerable amount [3], [8]. III. EQUIPMENT USED AND BLOCK DIAGRAM A. An Optical Encoder: An encoder is an electromechanical device used to monitor the motion or position of an operating mechanism, and to translate that information into a useful output. The output can take the form of a simple system status indication, or it can provide feedback control information or in other ways interface with related devices. There are several position sensing techniques available to the system designer. The most widely used types of sensors fall into one of the following types: capacitive, magnetic, contact or optical. Figure 1 Components of Optical Encoder B. Stepper Motor: A stepper motor is an electromechanical device which converts electrical pulses into discrete mechanical movements. The shaft or spindle of a stepper motor rotates in discrete step increments when electrical command pulses are applied to it in the proper sequence. The motors rotation has several direct relationships to these applied input

3 pulses. The sequence of the applied pulses is directly related to the direction of motor shafts rotation. The speed of the motor shafts rotation is directly related to the frequency of the input pulses and the length of rotation is directly related to the number of input pulses applied. C. Gear: Spur Gears: Spur gears or straight-cut gears are the simplest type of gear. They consist of a cylinder or disk with teeth projecting radially. Though the teeth are not straight-sided (but usually of special form to achieve a constant drive ratio, mainly involute but less commonly cycloidal), the edge of each tooth is straight and aligned parallel to the axis of rotation. These gears mesh together correctly only if fitted to parallel shafts. Backlash is defined as the amount by which a tooth space exceeds the thickness of an engaging tooth. Excessive backlash in gears is objectionable, particularly if the drive is frequently reversing. Harmonic Gears: A harmonic gear is a specialized gearing mechanism often used in industrial motion control, robotics and aerospace for its advantages over traditional gearing systems, including lack of backlash, compactness and high gear ratios. In our project, we have used gear assembly that comprises of Harmonic gear and Spur gear. Harmonic gear has a gear ratio of 100:1 and an efficiency of 95%. Spur gear has a gear ratio of 83:21(~ 4:1) and an efficiency of 75%. The overall efficiency of the gear assembly is 71.25%. D. Teensy 3.1: The Teensy is a complete USB-based microcontroller development system, in a very small footprint, capable of implementing many types of projects. All programming is done via the USB port [9]. The key features are: Compatible with Arduino Software & Libraries, USB can be any type of device, Single pushbutton programming, Easy to use Teensy Loader application, Works with Mac OS X, Linux & Windows, Tiny size, and perfect for many projects, Available with pins for solder less breadboard. be synchronized using the sync pin. In this mode of operation, the oscillator in the master chip sets the operating frequency in all chips. F. L298: The L298 is an integrated monolithic circuit in a 15lead multiwatt and PowerSO20 packages. It is a high voltage, high current dual full-bridge driver designed to accept standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors. Two enable inputs are provided to enable or disable the device independently of the input signals. The emitters of the lower transistors of each bridge are connected together and the corresponding external terminal can be used for the connection of an external sensing resistor. An additional supply input is provided so that the logic works at a lower voltage [13]. G. AM26C31: The AM26C31 is a differential line driver with complementary outputs, designed to meet the requirements of TIA/EIA-422-B and ITU (formerly CCITT). The 3-state outputs have high-current capability for driving balanced lines, such as twistedpair or parallel-wire transmission lines, and they provide the high-impedance state in the power-off condition. The enable functions are common to all four drivers and offer the choice of an active-high (G) or active-low (G) enable input. Bi CMOS circuitry reduces power consumption without sacrificing speed [11]. H. AM26C32: The AM26C32 device is a quadruple differential line receiver for balanced or unbalanced data transmission. The enable function is common to all four receivers and offers a choice of active-high or active-low input. The 3-state outputs permit connection directly to a bus organized system. Fail- safe design specifies that if the inputs are open, the outputs always are high. The AM26C32 devices are manufactured using a Bi CMOS process, which is of bipolar and CMOS transistors. This process provides the high voltage and current of bipolar with the low power of CMOS to reduce the consumption to about one-fifth that of the standard AM26LS32, while maintaining AC and DC performance [12]. I. Block Diagram: 95 Figure 2 Teensy 3.1 Pin Configuration E. L6506: The L6506/Dis a linear integrated circuit designed to sense and control the current in stepping motors and similar devices. When used in conjunction with the L293, L298, L7150, L6114/L6115, the chip set forms a constant current drive for an inductive load and performs all the interface function from the control logic thru the power stage. Two or more devices may Figure 3 Block Diagram

4 IV. METHODOLOGY AND IMPLEMENTATION The clock required for SSI is generated using manual toggling. The clock generated by the teensy board is in TTL logic (i.e. 5V for HIGH and 0V for LOW). But the optical encoder uses RS 422 standards (voltage range is between +6V to -6V). So a quadruple differential line driver and a quadruple line receiver is to be placed between the teensy board and optical encoder for the communication to happen. The line driver converts the clock signals from teensy board to clock signals that are understandable by optical encoder. The line receiver converts the data sent from the encoder to voltage levels understandable by the teensy board. Figure 4 SSI Hardware Interface The commutation signals to the motor are generated by the Teensy board. Since the board cannot provide the necessary voltage and current levels to drive the motor, IC L298 and IC L6506 together are used as a constant current driver for the motor. IC L298: The L298 accept standard TTL logic levels from L6506 and drive the stepper motor. Two enable inputs are provided to enable or disable the device independently of the input signals. The emitters of the lower transistors of each bridge are connected together and the corresponding external terminal is used for the connection of an external sensing resistor. An additional supply input of 18V is provided so that the logic works at a lower voltage. IC L6506: L6506 senses and controls the stepper motor. L6506 together with L298 forms a constant current drive for the motor and performs all the interface function from the control logic through the power stage. The current in the windings reaches either peak value or low value which is sensed by voltage across the sense resistor (Rsense) and either decreases or increases the current in the coil respectively, in order to maintain the normal functioning of the motor. Here we establish a serial communication between the MATLAB and the Arduino to send the command and data to the Arduino and also receive the output data sent from the encoder to plot it in MATLAB. The steps include setting the baud rate, selecting the com port and creating serial object with all these features. The buffer size of the MATLAB is increased as per our requirement as there will be lot of samples received from the teensy board. The MATLAB based motor control is achieved by a GUI that provides user a means to enter the inputs to control the motor. In the GUI, the COM port, Baud rate and other necessary information required to create a serial port are entered. Connect and disconnect option are provided to establish and terminate the connection. Specific numbers are assigned for each mode and on user s instruction these numbers are sent from MATLAB to Arduino serially through the port established. Based on the data received from the MATLAB at the Arduino, mode selected is found out. Once the selection is done, code takes the arguments as per the user input. Before selecting mode or transferring any other data used in controlling the motor, serial communication is to be established and same should be terminated, once used. After every step the motor takes, the encoder is read to get the position information which in turn is processed the get the angular position. This angular position is sent to the MATLAB for error calculation. The current angular position is compared with the reference position and the difference, which is the error in rotation is calculated and is saved in an excel sheet. The error is calculated the same way for every step taken. The calculated error is plotted on the GUI in appropriate way. V. RESULTS Figure 6 Error in Excel Sheet 96 Figure 5 Motor Interface Figure 7 Error Plot

5 VI. CONCLUSION The Codes which were written separately to SSI Interfacing and MOTOR interfacing was merged together into a single code and was tested with the device. MATLAB GUI has been developed with code to each block in it and is working fine. The problem which we faced during the midterm review of sending data from MATLAB to Arduino has been rectified now. Stepper motor with gear assembly having harmonic and spur gear have been used for performance demonstration. As spur gear is having inherent backlash, the expected error performance couldn t be shown. VI. FUTURE WORK Motor has to be tested with load (antennas assembly). Sinusoid profile with microstep (1/8, 1/16, 1/32) mode has to be carried out. Optical encoder could be used in closed loop mode for assessment of variable load or motor step losses for dynamic friction. For future work, motor assembly has to be backlash free. So antibacklash mechanism has to be added to gear assembly. VII. REFERENCES [1] Isro.gov.in. (2016). PSLV-ISRO. [online] Available at: [Accessed 4 Apr.2016]. [2] Anon, (2016). [online] Available at: [Accessed 5 Apr. 2016]. [3] A. Taheri, M. Hossein Fatehi, H. Bahrami and M. Shoorehdeli, "Implementation and Control of X-Y Pedestal Using Dual-Drive Technique and Feedback Error Learning for LEO Satellite Tracking", IEEE, vol. 22, no. 4, [4] N. Greenough and C. Kung, "A New High- Efficiency Stepper Motor Driver For Old Technology Stepper Motors", IEEE, [5] I. Stika, L. Kreindler and A. Sarca, "A Robust Method for Stepper Motor Stall Detection", IEEE, [6] S. Pal and N. Tripathy, "Remote Position Control System of Stepper Motor Using DTMF Technology", International Journal of Control and Automation, vol. 4, no. 2, [7] "Novel Position Detection Method for Permanent Magnet Stepper Motors Using Only Current Feedback", IEEE Transactions On Magnetics, vol. 47, no. 10, pp. 3590,3591,3592,3593, [8] M. Stolarski, "Tracking Quality Measurements of Ground Station for Low Earth Orbit Satellite", Space Research Centre, Polish Academy of Sciences, [9] Pjrc.com, "Teensy USB Development Board", [Online]. Available: [Accessed: Jan- 2016]. [10] Implementation Of SSI Master Interface Application Note, 3rd ed. Posital Fraba, [11] Quadruple Differential Line Driver, 6th ed. Texas Instruments, [12] AM26C32 Quadruple Differential Line Receiver, 8th ed. Texas Instruments, [13] Dual Full Bridge Driver, 1st ed. ST Microelectronics,

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits PH-315 MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits Portland State University Summary Four sequential digital waveforms are used to control a stepper motor. The main objective

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

Upgrading from Stepper to Servo

Upgrading from Stepper to Servo Upgrading from Stepper to Servo Switching to Servos Provides Benefits, Here s How to Reduce the Cost and Challenges Byline: Scott Carlberg, Motion Product Marketing Manager, Yaskawa America, Inc. The customers

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

Computer Numeric Control

Computer Numeric Control Computer Numeric Control TA202A 2017-18(2 nd ) Semester Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur Computer Numeric Control A system in which actions are controlled by the direct

More information

Page 1. Relays. Poles and Throws. Relay Types. Common embedded system problem CS/ECE 6780/5780. Al Davis. Terminology used for switches

Page 1. Relays. Poles and Throws. Relay Types. Common embedded system problem CS/ECE 6780/5780. Al Davis. Terminology used for switches Relays CS/ECE 6780/5780 Al Davis Today s topics: Relays & Motors prelude to 5780 Lab 9 Common embedded system problem digital control: relatively small I & V levels controlled device requires significantly

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization) International Journal of Advanced Research in Electrical, Electronics Device Control Using Intelligent Switch Sreenivas Rao MV *, Basavanna M Associate Professor, Department of Instrumentation Technology,

More information

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation 6.1 Principle of Operation PART 2 - ACTUATORS 6.0 The actuator is the device that mechanically drives a dynamic system - Stepper motors are a popular type of actuators - Unlike continuous-drive actuators,

More information

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors Assembly Language Topic 14 Motion Control Stepper and Servo Motors Objectives To gain an understanding of the operation of a stepper motor To develop a means to control a stepper motor To gain an understanding

More information

combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular

combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular Embedded Control Applications II MP10-1 Embedded Control Applications II MP10-2 week lecture topics 10 Embedded Control Applications II - Servo-motor control - Stepper motor control - The control of a

More information

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

9/28/2010. Chapter , The McGraw-Hill Companies, Inc. Chapter 4 Sensors are are used to detect, and often to measure, the magnitude of something. They basically operate by converting mechanical, magnetic, thermal, optical, and chemical variations into electric

More information

Simulation of Solar Powered PMBLDC Motor Drive

Simulation of Solar Powered PMBLDC Motor Drive Simulation of Solar Powered PMBLDC Motor Drive 1 Deepa A B, 2 Prof. Maheshkant pawar 1 Students, 2 Assistant Professor P.D.A College of Engineering Abstract - Recent global developments lead to the use

More information

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR Shiyoung Lee, Ph.D. Pennsylvania State University Berks Campus Room 120 Luerssen Building, Tulpehocken

More information

Step vs. Servo Selecting the Best

Step vs. Servo Selecting the Best Step vs. Servo Selecting the Best Dan Jones Over the many years, there have been many technical papers and articles about which motor is the best. The short and sweet answer is let s talk about the application.

More information

International Journal of Advance Engineering and Research Development. Wireless Control of Dc Motor Using RF Communication

International Journal of Advance Engineering and Research Development. Wireless Control of Dc Motor Using RF Communication International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 Special Issue SIEICON-2017,April -2017 e-issn : 2348-4470 p-issn : 2348-6406 Wireless

More information

Modeling Position Tracking System with Stepper Motor

Modeling Position Tracking System with Stepper Motor Modeling Position Tracking System with Stepper Motor Shreeji S. Sheth 1, Pankaj Kr. Gupta 2, J. K. Hota 3 Abstract The position tracking system is used in many applications like pointing an antenna towards

More information

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge L298 Full H-Bridge HEF4071B OR Gate Brushed DC Motor with Optical Encoder & Load Inertia Flyback Diodes Arduino Microcontroller

More information

CHAPTER TWO LITERATURE REVIEW

CHAPTER TWO LITERATURE REVIEW CHAPTER TWO LITERATURE REVIEW 2.1 Technical Background: 2.1.1 Overview of Satellites: Satellites are objects in orbits about the Earth. An orbit is a trajectory able to maintain gravitational equilibrium

More information

Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review

Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review Prof. S.L. Tade 1, Ravindra Sor 2 & S.V. Kinkar 3 Professor, Dept. of E&TC, PCCOE, Pune, India 1 Scientist, ARDE-DRDO,

More information

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Feedback Devices. By John Mazurkiewicz. Baldor Electric Feedback Devices By John Mazurkiewicz Baldor Electric Closed loop systems use feedback signals for stabilization, speed and position information. There are a variety of devices to provide this data, such

More information

ServoStep technology

ServoStep technology What means "ServoStep" "ServoStep" in Ever Elettronica's strategy resumes seven keypoints for quality and performances in motion control applications: Stepping motors Fast Forward Feed Full Digital Drive

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 11 Motor Control

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 11 Motor Control EEE34 Microcontroller Applications Department of Electrical Engineering Lecture Motor Control Week 3 EEE34 Microcontroller Applications In this Lecture. Interface 85 with the following output Devices Optoisolator

More information

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science Motor Driver and Feedback Control: The feedback control system of a dc motor typically consists of a microcontroller, which provides drive commands (rotation and direction) to the driver. The driver is

More information

Speed Rate Corrected Antenna Azimuth Axis Positioning System

Speed Rate Corrected Antenna Azimuth Axis Positioning System International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 2 (2017) pp. 151-158 Research India Publications http://www.ripublication.com Speed Rate Corrected Antenna Azimuth

More information

Simulation Study of MOSFET Based Drive Circuit Design of Sensorless BLDC Motor for Space Vehicle

Simulation Study of MOSFET Based Drive Circuit Design of Sensorless BLDC Motor for Space Vehicle Simulation Study of MOSFET Based Drive Circuit Design of Sensorless BLDC Motor for Space Vehicle Rajashekar J.S. 1 and Dr. S.C. Prasanna Kumar 2 1 Associate Professor, Dept. of Instrumentation Technology,

More information

3. What is the difference between Switched Reluctance motor and variable reluctance stepper motor?(may12)

3. What is the difference between Switched Reluctance motor and variable reluctance stepper motor?(may12) EE6703 SPECIAL ELECTRICAL MACHINES UNIT III SWITCHED RELUCTANCE MOTOR PART A 1. What is switched reluctance motor? The switched reluctance motor is a doubly salient, singly excited motor. This means that

More information

I. INTRODUCTION MAIN BLOCKS OF ROBOT

I. INTRODUCTION MAIN BLOCKS OF ROBOT Stair-Climbing Robot for Rescue Applications Prof. Pragati.D.Pawar 1, Prof. Ragini.D.Patmase 2, Mr. Swapnil.A.Kondekar 3, Mr. Nikhil.D.Andhare 4 1,2 Department of EXTC, 3,4 Final year EXTC, J.D.I.E.T Yavatmal,Maharashtra,

More information

ECE 5670/6670 Project. Brushless DC Motor Control with 6-Step Commutation. Objectives

ECE 5670/6670 Project. Brushless DC Motor Control with 6-Step Commutation. Objectives ECE 5670/6670 Project Brushless DC Motor Control with 6-Step Commutation Objectives The objective of the project is to build a circuit for 6-step commutation of a brushless DC motor and to implement control

More information

Open Loop Speed Control of Brushless DC Motor

Open Loop Speed Control of Brushless DC Motor Open Loop Speed Control of Brushless DC Motor K Uday Bhargav 1, Nayana T N 2 PG Student, Department of Electrical & Electronics Engineering, BNMIT, Bangalore, Karnataka, India 1 Assistant Professor, Department

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

ADVANCED SAFETY APPLICATIONS FOR RAILWAY CROSSING

ADVANCED SAFETY APPLICATIONS FOR RAILWAY CROSSING ADVANCED SAFETY APPLICATIONS FOR RAILWAY CROSSING 1 HARSHUL BALANI, 2 CHARU GUPTA, 3 KRATIKA SUKHWAL 1,2,3 B.TECH (ECE), Poornima College Of Engineering, RTU E-mail; 1 harshul.balani@gmail.com, 2 charu95g@gmail.com,

More information

INTELLIGENT SELF-PARKING CHAIR

INTELLIGENT SELF-PARKING CHAIR INTELLIGENT SELF-PARKING CHAIR Siddharth Gauda 1, Ashish Panchal 2, Yograj Kadam 3, Prof. Ruchika Singh 4 1, 2, 3 Students, Electronics & Telecommunication, G.S. Moze College of Engineering, Balewadi,

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (  1 Biomimetic Based Interactive Master Slave Robots T.Anushalalitha 1, Anupa.N 2, Jahnavi.B 3, Keerthana.K 4, Shridevi.S.C 5 Dept. of Telecommunication, BMSCE Bangalore, India. Abstract The system involves

More information

Integrated Easy Servo

Integrated Easy Servo ies 1706 Integrated Easy Servo Motor + Drive + Encoder, 18 32VDC, NEMA17, 0.6Nm Features Easy servo control technology to combine advantages of open loop stepper systems and brushless servo systems Closed

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

ies-2309 Integrated Easy Servo

ies-2309 Integrated Easy Servo Datasheet of the integrated easy servo motor ies-09 ies-09 Integrated Easy Servo Motor + Drive + Encoder, 0-0VDC, NEMA, 0.9Nm Features Easy servo control technology to combine advantages of open-loop stepper

More information

AC Drive Technology. An Overview for the Converting Industry. Siemens Industry, Inc All rights reserved.

AC Drive Technology. An Overview for the Converting Industry.  Siemens Industry, Inc All rights reserved. AC Drive Technology An Overview for the Converting Industry www.usa.siemens.com/converting Siemens Industry, Inc. 2016 All rights reserved. Answers for industry. AC Drive Technology Drive Systems AC Motors

More information

BLOCK DIAGRAM OF THE UC3625

BLOCK DIAGRAM OF THE UC3625 U-115 APPLICATION NOTE New Integrated Circuit Produces Robust, Noise Immune System For Brushless DC Motors Bob Neidorff, Unitrode Integrated Circuits Corp., Merrimack, NH Abstract A new integrated circuit

More information

Introduction to Arduino HW Labs

Introduction to Arduino HW Labs Introduction to Arduino HW Labs In the next six lab sessions, you ll attach sensors and actuators to your Arduino processor This session provides an overview for the devices LED indicators Text/Sound Output

More information

IRT Mini Evo. Technical Manual. quality IN MOTION. quality IN MOTION

IRT Mini Evo. Technical Manual. quality IN MOTION.   quality IN MOTION IRT quality IN MOTION www.irtsa.com 2000 Mini Evo Technical Manual IRT quality IN MOTION Contents 1. INTRODUCTION 3 2. DESCRIPTION 5 3. TECHNICAL DATA 7 3.1 GENERAL DATA FOR ALL TYPES 7 3.2 SPECIFIC DATA

More information

10/21/2009. d R. d L. r L d B L08. POSE ESTIMATION, MOTORS. EECS 498-6: Autonomous Robotics Laboratory. Midterm 1. Mean: 53.9/67 Stddev: 7.

10/21/2009. d R. d L. r L d B L08. POSE ESTIMATION, MOTORS. EECS 498-6: Autonomous Robotics Laboratory. Midterm 1. Mean: 53.9/67 Stddev: 7. 1 d R d L L08. POSE ESTIMATION, MOTORS EECS 498-6: Autonomous Robotics Laboratory r L d B Midterm 1 2 Mean: 53.9/67 Stddev: 7.73 1 Today 3 Position Estimation Odometry IMUs GPS Motor Modelling Kinematics:

More information

SPEED CONTROL OF BRUSHLES DC MOTOR

SPEED CONTROL OF BRUSHLES DC MOTOR SPEED CONTROL OF BRUSHLES DC MOTOR Kajal D. Parsana 1, Prof. H.M. Karkar 2, Prof. I.N. Trivedi 3 1 Department of Electrical Engineering, Atmiya Institute of Technology & Science, Rajkot, India. kajal.parsana@gmail.com

More information

LS7362 BRUSHLESS DC MOTOR COMMUTATOR / CONTROLLER

LS7362 BRUSHLESS DC MOTOR COMMUTATOR / CONTROLLER LS7362 BRUSHLESS DC MOTOR COMMUTATOR / CONTROLLER FEATURES: Speed control by Pulse Width Modulating (PWM) only the low-side drivers reduces switching losses in level converter circuitry for high voltage

More information

Embedded Systems Lab Lab 7 Stepper Motor Application

Embedded Systems Lab Lab 7 Stepper Motor Application Islamic University of Gaza College of Engineering puter Department Embedded Systems Lab Stepper Motor Application Prepared By: Eng.Ola M. Abd El-Latif Apr. /2010 :D 0 Objective Tools Theory To realize

More information

Microcontroller Based Closed Loop Speed and Position Control of DC Motor

Microcontroller Based Closed Loop Speed and Position Control of DC Motor International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-3, Issue-5, June 2014 Microcontroller Based Closed Loop Speed and Position Control of DC Motor Panduranga Talavaru,

More information

Satellite Dish Positioning System

Satellite Dish Positioning System IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 7 December 2017 ISSN (online): 2349-6010 Satellite Dish Positioning System Mrs. Shweta S. Waghmare Mr. Parag

More information

Design of Joint Controller Circuit for PA10 Robot Arm

Design of Joint Controller Circuit for PA10 Robot Arm Design of Joint Controller Circuit for PA10 Robot Arm Sereiratha Phal and Manop Wongsaisuwan Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

More information

DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER

DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER Veysel Silindir, Haluk Gözde, Gazi University, Electrical And Electronics Engineering Department, Ankara, Turkey 4 th Main

More information

DUAL STEPPER MOTOR DRIVER

DUAL STEPPER MOTOR DRIVER DUAL STEPPER MOTOR DRIVER GENERAL DESCRIPTION The is a switch-mode (chopper), constant-current driver with two channels: one for each winding of a two-phase stepper motor. is equipped with a Disable input

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

High Performance Low Voltage Servo Drives

High Performance Low Voltage Servo Drives High Performance Low Voltage Servo Drives Compact CANopen and Sercos III low voltage drives, ideal for driving stepper, brushed and brushless DC motors. A high PWM switching frequency with advanced space-vector

More information

Half stepping techniques

Half stepping techniques Half stepping techniques By operating a stepper motor in half stepping mode it is possible to improve system performance in regard to higher resolution and reduction of resonances. It is also possible

More information

Design Of Low-Power Wireless Communication System Based On MSP430 Introduction:

Design Of Low-Power Wireless Communication System Based On MSP430 Introduction: Design Of Low-Power Wireless Communication System Based On MSP430 Introduction: Low power wireless networks provide a new monitoring and control capability for civil and military applications in transportation,

More information

EMI DUE AND ALCOHOL DETECTION BASED AUTOMATIC VEHICLE LOCKING SYSTEM

EMI DUE AND ALCOHOL DETECTION BASED AUTOMATIC VEHICLE LOCKING SYSTEM EMI DUE AND ALCOHOL DETECTION BASED AUTOMATIC VEHICLE LOCKING SYSTEM G.Rupa 1, K.Sangeetha 2, A.Sowmiya 3, J.Shri saranya 4 1,2,3Student, Electrical and Electronics Engineering, Jeppiaar SRR Engineering

More information

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques A. Sneha M.Tech. Student Scholar Department of Electrical &

More information

Transmission Media. - Bounded/Guided Media - Uubounded/Unguided Media. Bounded Media

Transmission Media. - Bounded/Guided Media - Uubounded/Unguided Media. Bounded Media Transmission Media The means through which data is transformed from one place to another is called transmission or communication media. There are two categories of transmission media used in computer communications.

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to

In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to In this unit we are going to speak about satellite communications. Satellites are useful for connecting to remote areas, or when you want to broadcast video or data with minimal infrastructure. A communications

More information

Chapter 7: The motors of the robot

Chapter 7: The motors of the robot Chapter 7: The motors of the robot Learn about different types of motors Learn to control different kinds of motors using open-loop and closedloop control Learn to use motors in robot building 7.1 Introduction

More information

ARDUINO BASED DC MOTOR SPEED CONTROL

ARDUINO BASED DC MOTOR SPEED CONTROL ARDUINO BASED DC MOTOR SPEED CONTROL Student of Electrical Engineering Department 1.Hirdesh Kr. Saini 2.Shahid Firoz 3.Ashutosh Pandey Abstract The Uno is a microcontroller board based on the ATmega328P.

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS

SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS Akshay Prasad Dubey and Saravana Kumar R. School of Electrical Engineering, VIT University, Vellore, Tamil Nadu, India E-Mail:

More information

Glossary. Glossary Engineering Reference. 35

Glossary. Glossary Engineering Reference. 35 Glossary Engineering Reference Glossary Abbe error The positioning error resulting from angular motion and an offset between the measuring device and the point of interest. Abbe offset The value of the

More information

III. MATERIAL AND COMPONENTS USED

III. MATERIAL AND COMPONENTS USED Prototype Development of a Smartphone- Controlled Robotic Vehicle with Pick- Place Capability Dheeraj Sharma Electronics and communication department Gian Jyoti Institute Of Engineering And Technology,

More information

The Development and Application of High Compression Ratio Methanol Engine ECU

The Development and Application of High Compression Ratio Methanol Engine ECU National Conference on Information Technology and Computer Science (CITCS 2012) The Development and Application of High Compression Ratio Methanol Engine ECU Hong Bin, 15922184696 hongbinlqyun@163.com

More information

AERO2705 Space Engineering 1 Week 7 The University of Sydney

AERO2705 Space Engineering 1 Week 7 The University of Sydney AERO2705 Space Engineering 1 Week 7 The University of Sydney Presenter Mr. Warwick Holmes Executive Director Space Engineering School of Aerospace, Mechanical and Mechatronic Engineering The University

More information

Multi Frequency RFID Read Writer System

Multi Frequency RFID Read Writer System Multi Frequency RFID Read Writer System Uppala Sunitha 1, B Rama Murthy 2, P Thimmaiah 3, K Tanveer Alam 1 PhD Scholar, Department of Electronics, Sri Krishnadevaraya University, Anantapur, A.P, India

More information

CIS009-2, Mechatronics Signals & Motors

CIS009-2, Mechatronics Signals & Motors CIS009-2, Signals & Motors Bedfordshire 13 th December 2012 Outline 1 2 3 4 5 6 7 8 3 Signals Two types of signals exist: 4 Bedfordshire 52 Analogue signal In an analogue signal voltages and currents continuously

More information

AN457 APPLICATION NOTE

AN457 APPLICATION NOTE AN457 APPLICATION NOTE TWIN-LOOP CONTROL CHIP CUTS COST OF DC MOTOR POSITIONING by H. Sax, A. Salina The Using a novel control IC that works with a simple photoelectric sensor, DC motors can now compare

More information

WIRELESS SPEED CONTROL OF SINGLE PHASE AC MOTOR

WIRELESS SPEED CONTROL OF SINGLE PHASE AC MOTOR WIRELESS SPEED CONTROL OF SINGLE PHASE AC MOTOR Rakesh Sahu 1, Sachin Tiwari 2, Satish Singh 3, Abhishek Gaurav 4 1 Assistant Professor, Deptt. Of Electrical and Electronics Engineering, Gandhi Institute

More information

Satellite Tracking Control System for UGM Ground Station based on TLE Calculation

Satellite Tracking Control System for UGM Ground Station based on TLE Calculation 2016 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT) Satellite Tracking Control System for UGM Ground Station based on TLE Calculation Agfianto Eko Putra Bakhtiar Alldino

More information

Experiment#6: Speaker Control

Experiment#6: Speaker Control Experiment#6: Speaker Control I. Objectives 1. Describe the operation of the driving circuit for SP1 speaker. II. Circuit Description The circuit of speaker and driver is shown in figure# 1 below. The

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

Automatic USB Controlled Power Switch

Automatic USB Controlled Power Switch Automatic USB Controlled Power Switch Manish P 1, Praveen K Ravindran 1, Sandesh Varma E 1, Kiran K Kannan 1, Sanjay Lakshman 1,Vimi K Wilson 2 U.G. Students, Department of Electrical and Electronics Engineering,

More information

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE 3.1 STATOR VOLTAGE CONTROL The induction motor 'speed can be controlled by varying the stator voltage. This method of speed control is known as stator

More information

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume, Number, 2 Pages 3-24 Jordan Journal of Electrical Engineering ISSN (Print): 249-96, ISSN (Online): 249-969 Analysis of Brushless DC Motor with Trapezoidal Back EMF using MATLAB Taha A. Hussein

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

maxon document number:

maxon document number: maxon document number: 791272-04 1 Table of contents... 2 2 Table of figures... 3 3 Introduction... 4 4 How to use this guide... 4 5 Safety Instructions... 5 6 Performance Data... 6 6.1 Motor data... 6

More information

IMPLEMENTATION OF EMBEDDED SYSTEM FOR INDUSTRIAL AUTOMATION

IMPLEMENTATION OF EMBEDDED SYSTEM FOR INDUSTRIAL AUTOMATION IMPLEMENTATION OF EMBEDDED SYSTEM FOR INDUSTRIAL AUTOMATION 1 Mr. Kamble Santosh Ashok, 2 Mr.V.Naga Mahesh 1 M.Tech Student, 2 Astt.Prof. 1 Ece - Embedded System, 1 Scient Institute Of Technology, Ibrahimpatnam,

More information

MTS Automation P R O D U C T S P E C I F I C A T I O N. MaxPlus Digital Servo Drive. MP-FLX 230 Series. MP-FLX 230 Series. Single- and Dual-Axis

MTS Automation P R O D U C T S P E C I F I C A T I O N. MaxPlus Digital Servo Drive. MP-FLX 230 Series. MP-FLX 230 Series. Single- and Dual-Axis P R O D U C T S P E C I F I C A T I O N MaxPlus Digital Servo Drive MP-FL 230 Series MP-FL 230 Series Single- and Dual-Axis At two times the standard industry speed for digital current loop update rates,

More information

Laboratory Exercise 1 Microcontroller Board with Driver Board

Laboratory Exercise 1 Microcontroller Board with Driver Board Laboratory Exercise 1 Microcontroller Board with Driver Board The purpose of this lab exercises is to demonstrate how the Microcontroller Board can be used to control motors connected to the Driver Board

More information

Speed Control of BLDC Motor Using FPGA

Speed Control of BLDC Motor Using FPGA Speed Control of BLDC Motor Using FPGA Jisha Kuruvilla 1, Basil George 2, Deepu K 3, Gokul P.T 4, Mathew Jose 5 Assistant Professor, Dept. of EEE, Mar Athanasius College of Engineering, Kothamangalam,

More information

Stepper Motor Drive Circuit

Stepper Motor Drive Circuit Stepper Motor Drive Circuit FEATURES Full-Step, Half-Step and Micro-Step Capability Bipolar Output Current up to 1A Wide Range of Motor Supply Voltage 10-46V Low Saturation Voltage with Integrated Bootstrap

More information

EXPERIMENT 6: Advanced I/O Programming

EXPERIMENT 6: Advanced I/O Programming EXPERIMENT 6: Advanced I/O Programming Objectives: To familiarize students with DC Motor control and Stepper Motor Interfacing. To utilize MikroC and MPLAB for Input Output Interfacing and motor control.

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au Tashakori, A., & Ektesabi, M. (2013). A simple fault tolerant control system for Hall Effect sensors failure of BLDC motor. Originally published

More information

PKG-171-MBC25-PS-CBL System Diagram and Specifications

PKG-171-MBC25-PS-CBL System Diagram and Specifications PKG-171-MBC25-PS-CBL System Diagram and Specifications Included Components: 17Y102S-LW4-MS Stepper Motor MBC25081TB Stepper Driver PSAM24V2.7A Power Supply CBL-20AWG-04C-010-MS Motor Cable CBL-AA4366 Power

More information

A CSC Converter fed Sensorless BLDC Motor Drive

A CSC Converter fed Sensorless BLDC Motor Drive A CSC Converter fed Sensorless BLDC Motor Drive Anit K. Jose P G Student St Joseph's College of Engg Pala Bissy Babu Assistant Professor St Joseph's College of Engg Pala Abstract: The Brushless Direct

More information

Implementation of Brushless DC motor speed control on STM32F407 Cortex M4

Implementation of Brushless DC motor speed control on STM32F407 Cortex M4 Implementation of Brushless DC motor speed control on STM32F407 Cortex M4 Mr. Kanaiya G Bhatt 1, Mr. Yogesh Parmar 2 Assistant Professor, Assistant Professor, Dept. of Electrical & Electronics, ITM Vocational

More information

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER N. Mohanraj and R. Sankaran Shanmugha Arts, Science, Technology and Research Academy University,

More information

Elements of Haptic Interfaces

Elements of Haptic Interfaces Elements of Haptic Interfaces Katherine J. Kuchenbecker Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania kuchenbe@seas.upenn.edu Course Notes for MEAM 625, University

More information

Performance Enhancement of Sensorless Control of Z-Source Inverter Fed BLDC Motor

Performance Enhancement of Sensorless Control of Z-Source Inverter Fed BLDC Motor IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 11 May 2015 ISSN (online): 2349-784X Performance Enhancement of Sensorless Control of Z-Source Inverter Fed BLDC Motor K.

More information

HOW TO UNDERSTAND THE WORKINGS OF RADIO CONTROL

HOW TO UNDERSTAND THE WORKINGS OF RADIO CONTROL HOW TO UNDERSTAND THE WORKINGS OF RADIO CONTROL By: Roger Carignan This article resulted from a workshop hosted by a member of our R/C model club, the 495 th R/C Squadron. I was asked to make a presentation

More information

Smart off axis absolute position sensor solution and UTAF piezo motor enable closed loop control of a miniaturized Risley prism pair

Smart off axis absolute position sensor solution and UTAF piezo motor enable closed loop control of a miniaturized Risley prism pair Smart off axis absolute position sensor solution and UTAF piezo motor enable closed loop control of a miniaturized Risley prism pair By David Cigna and Lisa Schaertl, New Scale Technologies Hall effect

More information

Zig-Bee Robotic Panzer

Zig-Bee Robotic Panzer International Journal for Modern Trends in Science and Technology Volume: 03, Special Issue No: 02, March 2017 ISSN: 2455-3778 http://www.ijmtst.com Zig-Bee Robotic Panzer P.Bose Babu 1 V.Madhu Babu 2

More information

Unguided Transmission Media

Unguided Transmission Media CS311 Data Communication Unguided Transmission Media by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

Wireless Inductive Power Transfer

Wireless Inductive Power Transfer Wireless Inductive Power Transfer Ranjithkumar R Research associate, electrical, Rustomjee academy for global careers, Maharashtra, India ABSTRACT The inductive power transfer (IPT) system is introduced

More information

Efficiency Optimization of Induction Motor Drives using PWM Technique

Efficiency Optimization of Induction Motor Drives using PWM Technique Efficiency Optimization of Induction Motor Drives using PWM Technique 1 Mahantesh Gutti, 2 Manish G. Rathi, 3 Jagadish Patil M TECH Student, EEE Dept. Associate Professor, ECE Dept.M TECH Student, EEE

More information

Simulation of Sensorless Digital Control of BLDC Motor Based on Zero Cross Detection

Simulation of Sensorless Digital Control of BLDC Motor Based on Zero Cross Detection Simulation of Sensorless Digital Control of BLDC Motor Based on Zero Cross Detection S.P. Ajitha 1, S. Bagavathy 2, Dr. P. Maruthu Pandi 3 1 PG Scholar, Department of Power Electronics and Drives, Sri

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: April, 2016 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 MATLAB CONTROLLING COLOUR SENSING ROBOT Dhiraj S.Dhondage 1,Kiran N.Nikam

More information

HAND GESTURE CONTROLLED ROBOT USING ARDUINO

HAND GESTURE CONTROLLED ROBOT USING ARDUINO HAND GESTURE CONTROLLED ROBOT USING ARDUINO Vrushab Sakpal 1, Omkar Patil 2, Sagar Bhagat 3, Badar Shaikh 4, Prof.Poonam Patil 5 1,2,3,4,5 Department of Instrumentation Bharati Vidyapeeth C.O.E,Kharghar,Navi

More information