Digital Image Processing Chapter 6: Color Image Processing ( )

Size: px
Start display at page:

Download "Digital Image Processing Chapter 6: Color Image Processing ( )"

Transcription

1 Digital Image Processing Chapter 6: Color Image Processing ( )

2 6.4 Basics of Full-Color Image Processing Full-color images are handled for a variety of image processing tasks. Full-color image processing approaches fall into two major categories. In the first category, we process each component image individually and then form a composite processed color image from the individually processed components. In the second category, we work with color pixels directly. Because full-color images have at least three components, color pixels are vectors. C= [ CR CG CB ] ] = G [ R (6.4-1) B [ CR(x,y) ] [ R(x,y) ] C(x,y)= CG(x,y) = G(x,y) (6.4-2) CB(x,y) B(x,y)

3 6.4 Basics of Full-Color Image Processing In order for per-color-component and vector-based processing to be equivalent, two conditions have to be satisfied: First, the process has to be applicable to both vectors and scalars. Second, the operation on each component of a vector must be independent of the other components. As an illustration, Fig shows neighborhood spatial processing of gray-scale and full-color images.

4 Formulation As with the intensity transformation techniques of Chapter3, we model color transformation using the expression g x, y = T[f x, y ] where f(x, y) is a color input image, g x, y is the transformed or processed color output image, and T is an operator on f over a spatial neighborhood of (x, y). We will restrict attention in this section to color transformations of the form S i = T i r 1, r 2,, r n, i = 1, 2,, n where, for notational simplicity, r i and s i are variables denoting the color components of f x, y and g x, y ant any point (x, y), n is the number of color components, and {T 1, T 2,, T n } is a set of transformation of color mapping functions that operate on r i to produce s i.

5 FIGURE 6.30 A full-color image and its various color-space components. (Original image courtesy of MedData Interactive). 5

6 In Fig 6.30 The first row of the figure shows a high resolution color image The second row of the figure contains the components of the initial CMYK scan. Black represents 0 and white represents 1 in each CMYK color component When the CMYK image is converted to RGB, as shown in the third row of the figure, the strawberries are seen to contain a large amount of red and very little green and blue The last row of the figure shows the HIS components of the full color image computed using Eqs.(6.2-2) through (6.2-4). 6

7 Suppose that we wish to modify the intensity of the full color image in Fig using g x, y = kf(x, y) (6.5-3) Where 0<k<1. In the HIS color space, this can be done with the simple transformation s 3 = k r 3 (6.5-4) Where s 1 = r 1 and s 2 = r 2. Only HIS intensity component r 3 is modified. In the RGB color space, three components must be transformed : s i = kr i i = 1,2,3 (6.5-5) The CMY space requires a similar set of linear transformations: s i = kr i + 1 k I = 1, 2, 3 (6.5-6) 7

8 8

9 Color Complements The hues directly opposite one another on the color circle are called complements

10 10

11 6.5.3 Color slicing One of the simplest ways to slice a color image is to map the colors outside some range of interest to a nonprominent neutral color. If the colors of interest are enclosed by a cube (or hypercube for n > 3) of width W and centered at a prototypical (e.q.,average) color with components, the necessary set of transformations is If a sphere is used to specify the colors of interest, Eq.(6.5-7) becomes

12 6.5.3 Color slicing Equations (6.5-7) and (6.5-8) can be used to separate the edible part of the strawberries in Fig. 6.31(a) from the background cups, bowl, coffee, and table. Figures 6.34(a) and (b) show the results of applying both transformation.

13 and Xw, Yw, and Zw are reference white tristimulus values-typically the white of a perfectly reflecting diffuser under CIE standard D65 illumination Tone and Corrections The model of choice for many color management system (CMS) is the CIE L*a*b*model, also called CIELAB (CIE[1978],Robertson[1977]). The L*a*b*color components are given by the following equation: Where

14 6.5.4 Tone and Corrections

15 6.5.4 Tone and Corrections Figure 6.35 shows typical transformations used for correcting three common tonal imbalances-flat, Light, and dark images. The S-shaped curve in the first row of the figure is ideal for boosting contrast[see Fig.3.2(a)]. Its midpoint is anchored so that highlight and shadow areas can be lightened and darkened, respectively. The transformations in the second and third rows of the figure correct light and dark images and are reminiscent of the power-law transformations in Fig. 3.6.

16 6.5.4 Tone and Corrections

17 6.5.4 Tone and Corrections Figure 6.36 shows the transformations used to correct simple CMYK Output imbalances. Note that the transformations depicted are the functions required for correcting the images; the inverse of these Functions were used to generate the associated color imbalances. Together, the images are analogous to a color ring-around print of a darkroom environment and are useful as a reference tool for identifying color printing problems. Note, for example, that too much red can be due to excessive magenta or too little cyan.

18 6.5.5 Histogram Processing Figure.6.37(a) shows a color image of a caster stand cruets and shakers whose intensity component spans entire(normalized) range of possible values,[0,1] Figure.6.37(b) shows the intensity histogram of the n as well as the intensity transformation used to equali intensity component Figure.6.37(c) histogram equalizing the intensity com without altering the hue and saturation Figure.6.37(d) shows the result of correcting this par increasing the image`s saturation component, subse histogram equalization, using the transformation in F

19 6.6.1 Color Image Smoothing c x, y = 1 K s,t S xy c s, t c x, y = 1 K 1 K 1 K s,t S xy R s, t s,t S xy G s, t s,t S xy B s, t Consider the RGB color image in Fig.6.38(a). Its red, green, and blue component images are shown in Figs.6.38(b) through (d). Figures 6.39(a) through (c) show the HIS components of the image

20 6.6.1 Color Image Smoothing In Section 6.2, we noted that an important advantage of the HSI color model is the it decouples intensity and color information. This makes it suitable for many gray-scale processing techniques and suggests that it might be more efficient to smooth only the intensity component of the HIS representation in Fig.6.39.

21 6.6.1 Color Image Smoothing The smoothed color image is shown in Fig.6.40(b). Note that it is similar to Fig.6.40(a), but, as you can see from the difference image in Fig.6.40(c), the two smoothed images are not identical. This is because in Fig.6.40(a) the color of each pixel is the average color of the pixels in the neighborhood. On the other hand, by smoothing only the intensity component image in Fig.6.40(b), the hue and saturation of each pixel was not affected and, therefore, the pixel colors did not change.

22 6.6.2 Color Image Sharpening 2 c x, y = 2 R x, y 2 G x, y 2 B x, y Figure.6.41(a) was obtained using Eq.(3.6-7) and the mask in Fig.3.37(c) to compute the Laplacians of the RGB component images in Fig These results were combined to produce the sharpened full-color result. Figure6.41(b) shows a similarly sharpener image based the HIS components in Fig This result was generated by combining Laplacian of the intensity component with the unchanged hue and saturation components. The difference between the RGB and HIS sharpened images is shown in Fig.6.41(c).

23 6.7.1 Segmentation in HIS Color Space Suppose that it is of interest to segment the reddish region in the lower left of the image in Fig.6.42(a). Figures 6.42(b) through (d) are its HIS component images. Note by comparing Figs.6.42(a) and (b) that the region in which we are interested has relatively high values of hue, indicating that the colors are on the blue-magenta side of red(see Fig.6.13). Figure6.42(e) shows a binary mask generated by thresholding the saturation image with a threshold equal to 10% of the maximum value in that image. Any pixel value greater than the threshold was set to 1(white). All others were set to 0(black). Figure 6.42(f) is the product of the mask with the hue image, and Fig.6.42(g) is the histogram of the product image. The result of thresholding the product image with threshold value of 0.9 resulted in the binary image shown in Fig.6.42(h)

24 6.7.2 Segmentation in RGB Vector Space D z, α = z α = z α T z α 1 2 =[(z R a R ) 2 + (z R a R ) 2 + (z R a R ) 2 ] 1 2 D z, α = [ z α T C 1 z α ] 1 2

25 6.7.2 Segmentation in RGB Vector Space Fig.6.44(a) Original image with colors of interest shown enclosed by a rectangle. Fig.6.44(b) Result of segmentation in RGB vector space.

26 6.7.3 Color Edge Detection Fig.6.45 (a)-(c) R, G, and B component images and (d) resulting RGB color image. Fig.6.45 (e)-(g) R, G, and B component images and (h) resulting RGB color image.

27 6.7.3 Color Edge Detection u = R x r + G x g + B x b, v = R y r + G y g + B g xx = u u = u T u = R x g yy = v v = v T v = R g xy = u v = u T v = R θ x, y = 1 2 tan 1 b y 2 G 2 B x x 2 G 2 B y y y R + G G + B B x y x y x y 2g xy g xx g yy F θ x, y = 1 2 (g xx + g yy ) + (g xx g yy ) cos 2θ(x, y) + 2g xy sin 2θ(x, y) 1 2

28 6.7.3 Color Edge Detection Figure 6.46(b) is the gradient of the image in Fig.6.46(a), obtained using the vector method just discussed. Figure 6.46(c) shows the image obtained by computing the gradient of each RGB component image and forming a composite gradient image by adding the corresponding values of the three component images at each coordinate (x, y). The edge detail of the vector gradient image is more complete than the detail in the individual-plane gradient image in Fig.6.46(c); for example, see the detail around the subject`s right eye. The image in Fig.6.46(d) shows the difference between the two gradient images at each point(x, y).

29 6.7.3 Color Edge Detection Fig.6.47 shows the three component gradient images, which, when added and scaled, were used to obtain Fig.6.46(c).

30 6.8 Noise in Color Images Fig.6.48(a) through (c) show the three color planes of an RGB image corrupted by Gaussian noise, and Fig.6.48(d) is the composite RGB image.

31 6.8 Noise in Color Images Fig.6.49(a) through (c) show the result of converting the RGB image in Fig.6.48(d) to HSI.

32 6.8 Noise in Color Images Fig6.50(a) shows an RGB image whose green image is corrupted by salt-andpepper noise, in which the probability of either salt or pepper is The HIS component images in Figs.6.50(b) through (d) show clearly how the noise spread from the green RGB channel to all the HSI images. Of course, this is not unexpected because computation of the HSI components makes use of all RGB components, as shown in Section 6.2.3

33 6.9 Color Image Compression Fig.6.51(a) shows a 24-bit RGB full-color image of an iris in which 8 bits each are used to represent the red, green, and blue components. Fig.6.51(b) was reconstructed from a compressed version of the image in (a) and is, in fact, a compressed and subsequently decompressed approximation of it. Fig.6.51(b) is a recently introduced standard that is described in detail in Section Note that the reconstructed approximation image is slightly blurred.

Color Image Processing

Color Image Processing Color Image Processing Color Fundamentals 2/27/2014 2 Color Fundamentals 2/27/2014 3 Color Fundamentals 6 to 7 million cones in the human eye can be divided into three principal sensing categories, corresponding

More information

Chapter 6: Color Image Processing. Office room : 841

Chapter 6: Color Image Processing.   Office room : 841 Chapter 6: Color Image Processing Lecturer: Jianbing Shen Email : shenjianbing@bit.edu.cn Office room : 841 http://cs.bit.edu.cn/shenjianbing cn/shenjianbing It is only after years of preparation that

More information

Afdeling Toegepaste Wiskunde/ Division of Applied Mathematics Colour image processing(6.4 and 6.5) SLIDE 1/10

Afdeling Toegepaste Wiskunde/ Division of Applied Mathematics Colour image processing(6.4 and 6.5) SLIDE 1/10 Colour image processing(6.4 and 6.5) SLIDE 1/10 6.4 Basics of full-colour image processing Two categories: (1) Process each component image individually and form composite processed colour image from the

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 10 Color Image Processing ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Pseudo-Color (False Color)

More information

CHAPTER 6 COLOR IMAGE PROCESSING

CHAPTER 6 COLOR IMAGE PROCESSING CHAPTER 6 COLOR IMAGE PROCESSING CHAPTER 6: COLOR IMAGE PROCESSING The use of color image processing is motivated by two factors: Color is a powerful descriptor that often simplifies object identification

More information

Color Transformations

Color Transformations Color Transformations It is useful to think of a color image as a vector valued image, where each pixel has associated with it, as vector of three values. Each components of this vector corresponds to

More information

Color Image Processing EEE 6209 Digital Image Processing. Outline

Color Image Processing EEE 6209 Digital Image Processing. Outline Outline Color Image Processing Motivation and Color Fundamentals Standard Color Models (RGB/CMYK/HSI) Demosaicing and Color Filtering Pseudo-color and Full-color Image Processing Color Transformation Tone

More information

6 Color Image Processing

6 Color Image Processing 6 Color Image Processing Angela Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan 2009 Fall Outline Color fundamentals Color models Pseudocolor image

More information

Image and video processing

Image and video processing Image and video processing Processing Colour Images Dr. Yi-Zhe Song The agenda Introduction to colour image processing Pseudo colour image processing Full-colour image processing basics Transforming colours

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

Fig Color spectrum seen by passing white light through a prism.

Fig Color spectrum seen by passing white light through a prism. 1. Explain about color fundamentals. Color of an object is determined by the nature of the light reflected from it. When a beam of sunlight passes through a glass prism, the emerging beam of light is not

More information

Color Image Processing

Color Image Processing Color Image Processing Dr. Praveen Sankaran Department of ECE NIT Calicut February 11, 2013 Winter 2013 February 11, 2013 1 / 23 Outline 1 Color Models 2 Full Color Image Processing Winter 2013 February

More information

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering CoE4TN4 Image Processing Chapter 3: Intensity Transformation and Spatial Filtering Image Enhancement Enhancement techniques: to process an image so that the result is more suitable than the original image

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T1227, Mo, 11-12 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 1 2. General Introduction Schedule

More information

1.Discuss the frequency domain techniques of image enhancement in detail.

1.Discuss the frequency domain techniques of image enhancement in detail. 1.Discuss the frequency domain techniques of image enhancement in detail. Enhancement In Frequency Domain: The frequency domain methods of image enhancement are based on convolution theorem. This is represented

More information

Digital Image Processing Chapter 6: Color Image Processing

Digital Image Processing Chapter 6: Color Image Processing Digital Image Processing Chapter 6: Color Image Processing Spectrum of White Light 1666 Sir Isaac Newton, 24 ear old, discovered white light spectrum. Electromagnetic Spectrum Visible light wavelength:

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Color Image Processing Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering 2 Color Image Processing It is only after years

More information

Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering

Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering Image Processing Intensity Transformations Chapter 3 Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering INEL 5327 ECE, UPRM Intensity Transformations 1 Overview Background Basic intensity

More information

Digital Image Processing. Lecture # 8 Color Processing

Digital Image Processing. Lecture # 8 Color Processing Digital Image Processing Lecture # 8 Color Processing 1 COLOR IMAGE PROCESSING COLOR IMAGE PROCESSING Color Importance Color is an excellent descriptor Suitable for object Identification and Extraction

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 1 st, 2018 Pranav Mantini Acknowledgment: Slides from Pourreza Projects Project team and topic assigned Project proposal presentations : Nov 6 th

More information

Color Image Processing II

Color Image Processing II Color Image Processing II Outline Color fundamentals Color perception and color matching Color models Pseudo-color image processing Basics of full-color image processing Color transformations Smoothing

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 5 Image Enhancement in Spatial Domain- I ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation

More information

Color Image Processing. Jen-Chang Liu, Spring 2006

Color Image Processing. Jen-Chang Liu, Spring 2006 Color Image Processing Jen-Chang Liu, Spring 2006 For a long time I limited myself to one color as a form of discipline. Pablo Picasso It is only after years of preparation that the young artist should

More information

DIGITAL IMAGE PROCESSING UNIT III

DIGITAL IMAGE PROCESSING UNIT III DIGITAL IMAGE PROCESSING UNIT III 3.1 Image Enhancement in Frequency Domain: Frequency refers to the rate of repetition of some periodic events. In image processing, spatial frequency refers to the variation

More information

IMAGE ENHANCEMENT IN SPATIAL DOMAIN

IMAGE ENHANCEMENT IN SPATIAL DOMAIN A First Course in Machine Vision IMAGE ENHANCEMENT IN SPATIAL DOMAIN By: Ehsan Khoramshahi Definitions The principal objective of enhancement is to process an image so that the result is more suitable

More information

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1 Preview Motive - Color is a powerful descriptor that often simplifies object identification

More information

Unit 8: Color Image Processing

Unit 8: Color Image Processing Unit 8: Color Image Processing Colour Fundamentals In 666 Sir Isaac Newton discovered that when a beam of sunlight passes through a glass prism, the emerging beam is split into a spectrum of colours The

More information

Color Image Processing in Digital Image

Color Image Processing in Digital Image International Journal of New Technology and Research (IJNTR) Color Image Processing in Digital Image Dr. Mir Mohammad Azad, Md Mahedi Hasan, Mohammed Naseer K Abstract The use of color in image processing

More information

YIQ color model. Used in United States commercial TV broadcasting (NTSC system).

YIQ color model. Used in United States commercial TV broadcasting (NTSC system). CMY color model Each color is represented by the three secondary colors --- cyan (C), magenta (M), and yellow (Y ). It is mainly used in devices such as color printers that deposit color pigments. It is

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 2: Image Enhancement Digital Image Processing Course Introduction in the Spatial Domain Lecture AASS Learning Systems Lab, Teknik Room T26 achim.lilienthal@tech.oru.se Course

More information

Image Enhancement in spatial domain. Digital Image Processing GW Chapter 3 from Section (pag 110) Part 2: Filtering in spatial domain

Image Enhancement in spatial domain. Digital Image Processing GW Chapter 3 from Section (pag 110) Part 2: Filtering in spatial domain Image Enhancement in spatial domain Digital Image Processing GW Chapter 3 from Section 3.4.1 (pag 110) Part 2: Filtering in spatial domain Mask mode radiography Image subtraction in medical imaging 2 Range

More information

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models Introduction to computer vision In general, computer vision covers very wide area of issues concerning understanding of images by computers. It may be considered as a part of artificial intelligence and

More information

Enhancement Techniques for True Color Images in Spatial Domain

Enhancement Techniques for True Color Images in Spatial Domain Enhancement Techniques for True Color Images in Spatial Domain 1 I. Suneetha, 2 Dr. T. Venkateswarlu 1 Dept. of ECE, AITS, Tirupati, India 2 Dept. of ECE, S.V.University College of Engineering, Tirupati,

More information

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Some color images on this slide Last Lecture 2D filtering frequency domain The magnitude of the 2D DFT gives the amplitudes of the sinusoids and

More information

Image Enhancement in the Spatial Domain (Part 1)

Image Enhancement in the Spatial Domain (Part 1) Image Enhancement in the Spatial Domain (Part 1) Lecturer: Dr. Hossam Hassan Email : hossameldin.hassan@eng.asu.edu.eg Computers and Systems Engineering Principle Objective of Enhancement Process an image

More information

Image Enhancement using Histogram Equalization and Spatial Filtering

Image Enhancement using Histogram Equalization and Spatial Filtering Image Enhancement using Histogram Equalization and Spatial Filtering Fari Muhammad Abubakar 1 1 Department of Electronics Engineering Tianjin University of Technology and Education (TUTE) Tianjin, P.R.

More information

Non Linear Image Enhancement

Non Linear Image Enhancement Non Linear Image Enhancement SAIYAM TAKKAR Jaypee University of information technology, 2013 SIMANDEEP SINGH Jaypee University of information technology, 2013 Abstract An image enhancement algorithm based

More information

VC 16/17 TP4 Colour and Noise

VC 16/17 TP4 Colour and Noise VC 16/17 TP4 Colour and Noise Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Hélder Filipe Pinto de Oliveira Outline Colour spaces Colour processing

More information

Sampling Rate = Resolution Quantization Level = Color Depth = Bit Depth = Number of Colors

Sampling Rate = Resolution Quantization Level = Color Depth = Bit Depth = Number of Colors ITEC2110 FALL 2011 TEST 2 REVIEW Chapters 2-3: Images I. Concepts Graphics A. Bitmaps and Vector Representations Logical vs. Physical Pixels - Images are modeled internally as an array of pixel values

More information

TDI2131 Digital Image Processing

TDI2131 Digital Image Processing TDI2131 Digital Image Processing Image Enhancement in Spatial Domain Lecture 3 John See Faculty of Information Technology Multimedia University Some portions of content adapted from Zhu Liu, AT&T Labs.

More information

Filtering in the spatial domain (Spatial Filtering)

Filtering in the spatial domain (Spatial Filtering) Filtering in the spatial domain (Spatial Filtering) refers to image operators that change the gray value at any pixel (x,y) depending on the pixel values in a square neighborhood centered at (x,y) using

More information

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors.

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors. Computer Assisted Image Analysis TF 3p and MN1 5p Color Image Processing Lecture 14 GW 6 (suggested problem 6.25) How does the human eye perceive color? How can color be described using mathematics? Different

More information

Reading instructions: Chapter 6

Reading instructions: Chapter 6 Lecture 8 in Computerized Image Analysis Digital Color Processing Hamid Sarve hamid@cb.uu.se Reading instructions: Chapter 6 Electromagnetic Radiation Visible light (for humans) is electromagnetic radiation

More information

Digital Image Processing Color Models &Processing

Digital Image Processing Color Models &Processing Digital Image Processing Color Models &Processing Dr. Hatem Elaydi Electrical Engineering Department Islamic University of Gaza Fall 2015 Nov 16, 2015 Color interpretation Color spectrum vs. electromagnetic

More information

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing Digital Image Processing Lecture # 6 Corner Detection & Color Processing 1 Corners Corners (interest points) Unlike edges, corners (patches of pixels surrounding the corner) do not necessarily correspond

More information

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016 Image acquisition Midterm Review Image Processing CSE 166 Lecture 10 2 Digitization, line of image Digitization, whole image 3 4 Geometric transformations Interpolation CSE 166 Transpose these matrices

More information

To process an image so that the result is more suitable than the original image for a specific application.

To process an image so that the result is more suitable than the original image for a specific application. by Shahid Farid 1 To process an image so that the result is more suitable than the original image for a specific application. Categories: Spatial domain methods and Frequency domain methods 2 Procedures

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 15 Image Processing 14/04/15 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

ImageEd: Technical Overview

ImageEd: Technical Overview Purpose of this document ImageEd: Technical Overview This paper is meant to provide insight into the features where the ImageEd software differs from other -editing programs. The treatment is more technical

More information

Midterm Review. Image Processing CSE 166 Lecture 10

Midterm Review. Image Processing CSE 166 Lecture 10 Midterm Review Image Processing CSE 166 Lecture 10 Topics covered Image acquisition, geometric transformations, and image interpolation Intensity transformations Spatial filtering Fourier transform and

More information

Lecture 8. Color Image Processing

Lecture 8. Color Image Processing Lecture 8. Color Image Processing EL512 Image Processing Dr. Zhu Liu zliu@research.att.com Note: Part of the materials in the slides are from Gonzalez s Digital Image Processing and Onur s lecture slides

More information

ENEE408G Multimedia Signal Processing

ENEE408G Multimedia Signal Processing ENEE48G Multimedia Signal Processing Design Project on Image Processing and Digital Photography Goals:. Understand the fundamentals of digital image processing.. Learn how to enhance image quality and

More information

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and 8.1 INTRODUCTION In this chapter, we will study and discuss some fundamental techniques for image processing and image analysis, with a few examples of routines developed for certain purposes. 8.2 IMAGE

More information

Using Curves and Histograms

Using Curves and Histograms Written by Jonathan Sachs Copyright 1996-2003 Digital Light & Color Introduction Although many of the operations, tools, and terms used in digital image manipulation have direct equivalents in conventional

More information

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII IMAGE PROCESSING INDEX CLASS: B.E(COMPUTER) SR. NO SEMESTER:VII TITLE OF THE EXPERIMENT. 1 Point processing in spatial domain a. Negation of an

More information

The Technology of Duotone Color Transformations in a Color Managed Workflow

The Technology of Duotone Color Transformations in a Color Managed Workflow The Technology of Duotone Color Transformations in a Color Managed Workflow Stephen Herron, Xerox Corporation, Rochester, NY 14580 ABSTRACT Duotone refers to an image with various shades of a hue mapped

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

Color Image Processing

Color Image Processing Color Image Processing Jesus J. Caban Outline Discuss Assignment #1 Project Proposal Color Perception & Analysis 1 Discuss Assignment #1 Project Proposal Due next Monday, Oct 4th Project proposal Submit

More information

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30)

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module 11 Lecture Number 52 Conversion of one Color

More information

Color Space 1: RGB Color Space. Color Space 2: HSV. RGB Cube Easy for devices But not perceptual Where do the grays live? Where is hue and saturation?

Color Space 1: RGB Color Space. Color Space 2: HSV. RGB Cube Easy for devices But not perceptual Where do the grays live? Where is hue and saturation? Color Space : RGB Color Space Color Space 2: HSV RGB Cube Easy for devices But not perceptual Where do the grays live? Where is hue and saturation? Hue, Saturation, Value (Intensity) RBG cube on its vertex

More information

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction Table of contents Vision industrielle 2002/2003 Session - Image Processing Département Génie Productique INSA de Lyon Christian Wolf wolf@rfv.insa-lyon.fr Introduction Motivation, human vision, history,

More information

Computing for Engineers in Python

Computing for Engineers in Python Computing for Engineers in Python Lecture 10: Signal (Image) Processing Autumn 2011-12 Some slides incorporated from Benny Chor s course 1 Lecture 9: Highlights Sorting, searching and time complexity Preprocessing

More information

Analysis of infrared images in integrated-circuit techniques by mathematical filtering

Analysis of infrared images in integrated-circuit techniques by mathematical filtering 10 th International Conference on Quantitative InfraRed Thermography July 27-30, 2010, Québec (Canada) Analysis of infrared images in integrated-circuit techniques by mathematical filtering by I. Benkö

More information

Chapter 17. Shape-Based Operations

Chapter 17. Shape-Based Operations Chapter 17 Shape-Based Operations An shape-based operation identifies or acts on groups of pixels that belong to the same object or image component. We have already seen how components may be identified

More information

Color and More. Color basics

Color and More. Color basics Color and More In this lesson, you'll evaluate an image in terms of its overall tonal range (lightness, darkness, and contrast), its overall balance of color, and its overall appearance for areas that

More information

Tutorial: Correcting images

Tutorial: Correcting images Welcome to Corel PHOTO-PAINT, a powerful tool for editing photos and creating bitmaps. In this tutorial, you'll learn how to perform basic image corrections to a scanned photo. This is what the image looks

More information

Computers and Imaging

Computers and Imaging Computers and Imaging Telecommunications 1 P. Mathys Two Different Methods Vector or object-oriented graphics. Images are generated by mathematical descriptions of line (vector) segments. Bitmap or raster

More information

Image Enhancement in the Spatial Domain

Image Enhancement in the Spatial Domain Image Enhancement in the Spatial Domain Algorithms for improving the visual appearance of images Gamma correction Contrast improvements Histogram equalization Noise reduction Image sharpening Optimality

More information

Computer Vision. Intensity transformations

Computer Vision. Intensity transformations Computer Vision Intensity transformations Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

Introduction. The Spectral Basis for Color

Introduction. The Spectral Basis for Color Introduction Color is an extremely important part of most visualizations. Choosing good colors for your visualizations involves understanding their properties and the perceptual characteristics of human

More information

Digital Image Processing 3/e

Digital Image Processing 3/e Laboratory Projects for Digital Image Processing 3/e by Gonzalez and Woods 2008 Prentice Hall Upper Saddle River, NJ 07458 USA www.imageprocessingplace.com The following sample laboratory projects are

More information

Frequency Domain Enhancement

Frequency Domain Enhancement Tutorial Report Frequency Domain Enhancement Page 1 of 21 Frequency Domain Enhancement ESE 558 - DIGITAL IMAGE PROCESSING Tutorial Report Instructor: Murali Subbarao Written by: Tutorial Report Frequency

More information

Image restoration and color image processing

Image restoration and color image processing 1 Enabling Technologies for Sports (5XSF0) Image restoration and color image processing Sveta Zinger ( s.zinger@tue.nl ) What is image restoration? 2 Reconstructing or recovering an image that has been

More information

June 30 th, 2008 Lesson notes taken from professor Hongmei Zhu class.

June 30 th, 2008 Lesson notes taken from professor Hongmei Zhu class. P. 1 June 30 th, 008 Lesson notes taken from professor Hongmei Zhu class. Sharpening Spatial Filters. 4.1 Introduction Smoothing or blurring is accomplished in the spatial domain by pixel averaging in

More information

Image Filtering. Median Filtering

Image Filtering. Median Filtering Image Filtering Image filtering is used to: Remove noise Sharpen contrast Highlight contours Detect edges Other uses? Image filters can be classified as linear or nonlinear. Linear filters are also know

More information

Image Processing Lecture 4

Image Processing Lecture 4 Image Enhancement Image enhancement aims to process an image so that the output image is more suitable than the original. It is used to solve some computer imaging problems, or to improve image quality.

More information

Image Processing for feature extraction

Image Processing for feature extraction Image Processing for feature extraction 1 Outline Rationale for image pre-processing Gray-scale transformations Geometric transformations Local preprocessing Reading: Sonka et al 5.1, 5.2, 5.3 2 Image

More information

Color Correction with Curves

Color Correction with Curves Lecture 02 wk 07 with Curves Channels o Photoshop uses Channels to provide access to the different color components of an image. o In most cases, an image is composed of one or more 8-bit channels. o Channels

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2.

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2. Discussion 8 Solution Thursday, February 10th. 1. Consider the function f(x, y) := y 2 x 2. (a) This function is a mapping from R n to R m. Determine the values of n and m. The value of n is 2 corresponding

More information

Color image processing

Color image processing Color image processing Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..)

More information

Correction of Clipped Pixels in Color Images

Correction of Clipped Pixels in Color Images Correction of Clipped Pixels in Color Images IEEE Transaction on Visualization and Computer Graphics, Vol. 17, No. 3, 2011 Di Xu, Colin Doutre, and Panos Nasiopoulos Presented by In-Yong Song School of

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2015 NAME: SOLUTIONS Problem Score Max Score 1 8 2 8 3 9 4 4 5 3 6 4 7 6 8 13 9 7 10 4 11 7 12 10 13 9 14 8 Total 100 1 1. [8] What are

More information

Color Image Processing

Color Image Processing Color Image Processing with Biomedical Applications Rangaraj M. Rangayyan, Begoña Acha, and Carmen Serrano University of Calgary, Calgary, Alberta, Canada University of Seville, Spain SPIE Press 2011 434

More information

Chapter 2 Fundamentals of Digital Imaging

Chapter 2 Fundamentals of Digital Imaging Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation 1 In this lecture, you will find answers to these questions What is RGB color model and how does it represent colors? What is CMY color

More information

CSE 564: Scientific Visualization

CSE 564: Scientific Visualization CSE 564: Scientific Visualization Lecture 5: Image Processing Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2003 Image Processing Definitions Purpose: - enhance

More information

IMAGES AND COLOR. N. C. State University. CSC557 Multimedia Computing and Networking. Fall Lecture # 10

IMAGES AND COLOR. N. C. State University. CSC557 Multimedia Computing and Networking. Fall Lecture # 10 IMAGES AND COLOR N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 10 IMAGES AND COLOR N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture

More information

What is image enhancement? Point operation

What is image enhancement? Point operation IMAGE ENHANCEMENT 1 What is image enhancement? Image enhancement techniques Point operation 2 What is Image Enhancement? Image enhancement is to process an image so that the result is more suitable than

More information

EECS490: Digital Image Processing. Lecture #12

EECS490: Digital Image Processing. Lecture #12 Lecture #12 Image Correlation (example) Color basics (Chapter 6) The Chromaticity Diagram Color Images RGB Color Cube Color spaces Pseudocolor Multispectral Imaging White Light A prism splits white light

More information

Digital Image Processing Chapter 6: Color Image Processing ( )

Digital Image Processing Chapter 6: Color Image Processing ( ) Digital Image Processing Chapter 6: Color Image Processing (6.1 6.3) 6. Preview The process followed by the human brain in perceiving and interpreting color is a physiopsychological henomenon that is not

More information

Image Enhancement. DD2423 Image Analysis and Computer Vision. Computational Vision and Active Perception School of Computer Science and Communication

Image Enhancement. DD2423 Image Analysis and Computer Vision. Computational Vision and Active Perception School of Computer Science and Communication Image Enhancement DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 15, 2013 Mårten Björkman (CVAP)

More information

Developing a New Color Model for Image Analysis and Processing

Developing a New Color Model for Image Analysis and Processing UDC 004.421 Developing a New Color Model for Image Analysis and Processing Rashad J. Rasras 1, Ibrahiem M. M. El Emary 2, Dmitriy E. Skopin 1 1 Faculty of Engineering Technology, Amman, Al Balqa Applied

More information

CoE4TN4 Image Processing. Chapter 4 Filtering in the Frequency Domain

CoE4TN4 Image Processing. Chapter 4 Filtering in the Frequency Domain CoE4TN4 Image Processing Chapter 4 Filtering in the Frequency Domain Fourier Transform Sections 4.1 to 4.5 will be done on the board 2 2D Fourier Transform 3 2D Sampling and Aliasing 4 2D Sampling and

More information

Lecture Color Image Processing. by Shahid Farid

Lecture Color Image Processing. by Shahid Farid Lecture Color Image Processing by Shahid Farid What is color? Why colors? How we see objects? Photometry, Radiometry and Colorimetry Color measurement Chromaticity diagram Shahid Farid, PUCIT 2 Color or

More information

Color Balancing Techniques

Color Balancing Techniques Written by Jonathan Sachs Copyright 1996-2007 Digital Light & Color Introduction Color balancing refers to the process of removing an overall color bias from an image. For example, if an image appears

More information

Digital Image Processing (DIP)

Digital Image Processing (DIP) University of Kurdistan Digital Image Processing (DIP) Lecture 6: Color Image Processing Instructor: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan,

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

Digital Image Processing. Lecture # 3 Image Enhancement

Digital Image Processing. Lecture # 3 Image Enhancement Digital Image Processing Lecture # 3 Image Enhancement 1 Image Enhancement Image Enhancement 3 Image Enhancement 4 Image Enhancement Process an image so that the result is more suitable than the original

More information

SYLLABUS CHAPTER - 2 : INTENSITY TRANSFORMATIONS. Some Basic Intensity Transformation Functions, Histogram Processing.

SYLLABUS CHAPTER - 2 : INTENSITY TRANSFORMATIONS. Some Basic Intensity Transformation Functions, Histogram Processing. Contents i SYLLABUS UNIT - I CHAPTER - 1 : INTRODUCTION TO DIGITAL IMAGE PROCESSING Introduction, Origins of Digital Image Processing, Applications of Digital Image Processing, Fundamental Steps, Components,

More information