Lecture 8. Color Image Processing

Size: px
Start display at page:

Download "Lecture 8. Color Image Processing"

Transcription

1 Lecture 8. Color Image Processing EL512 Image Processing Dr. Zhu Liu Note: Part of the materials in the slides are from Gonzalez s Digital Image Processing and Onur s lecture slides

2 Lecture Outline Color perception and representation Human perception of color Trichromatic color mixing theory Different color representations Color image display True color image Indexed color images Pseudo color images Color image enhancement Fall 2003 EL512 Image Processing Lecture 8, Page 2

3 Light is part of the EM wave Fall 2003 EL512 Image Processing Lecture 8, Page 3

4 Human Perception of Color Retina contains receptors Cones Day vision, can perceive color tone Red, green, and blue cones Rods night vision, perceive brightness only Color sensation Luminance (brightness) Chrominance Hue (color tone) Saturation (color purity) From /retinaframe.html Fall 2003 EL512 Image Processing Lecture 8, Page 4

5 Frequency Responses of Cones Ci = C( λ) ai ( λ) dλ, i = r, g, b, y Fall 2003 EL512 Image Processing Lecture 8, Page 5

6 Illuminating and Reflecting Light Illuminating sources: emit light (e.g. the sun, light bulb, TV monitors) perceived color depends on the emitted frequency Reflecting sources: reflect an incoming light (e.g. the color dye, matte surface, cloth) perceived color depends on reflected frequency (=emitted frequency - absorbed frequency Fall 2003 EL512 Image Processing Lecture 8, Page 6

7 Tri-chromatic Color Mixing Tri-chromatic color mixing theory Any color can be obtained by mixing three primary colors with a right proportion Primary colors for illuminating sources: Red, Green, Blue (RGB) Color monitor works by exciting red, green, blue phosphors using separate electronic guns follows additive rule: R+G+B=White Primary colors for reflecting sources (also known as secondary colors): Cyan, Magenta, Yellow (CMY) Color printer works by using cyan, magenta, yellow and black (CMYK) dyes follows subtractive rule: R+G+B=Black Fall 2003 EL512 Image Processing Lecture 8, Page 7

8 RGB vs CMY Magenta = Red + Blue Cyan = Blue + Green Yellow = Green + Red Magenta = White - Green Cyan = White - Red Yellow = White - Blue Fall 2003 EL512 Image Processing Lecture 8, Page 8

9 A Color Image Red Green Blue Fall 2003 EL512 Image Processing Lecture 8, Page 9

10 Tristimuls Values Tristimulus value The amounts of red, green, and blue needed to form any particular color are called the tristimulus values, denoted by X, Y, and Z. Trichromatic coefficients x = X X + Y + Z, y = X Y + Y + Only two chromaticity coefficients are necessary to specify the chrominance of a light. x + y + z =1 Z, z = X Z + Y + Z. Fall 2003 EL512 Image Processing Lecture 8, Page 10

11 CIE Chromaticity Diagram CIE (Commission Internationale de L Eclairage, International Commission on Illumination ) system of color specification x axis: red y axis: green The point marked with GREEN x: 25%, y: 62%, z: 13%. Fall 2003 EL512 Image Processing Lecture 8, Page 11

12 Color Models Specify three primary or secondary colors Red, Green, Blue. Cyan, Magenta, Yellow. Specify the luminance and chrominance HSB or HSI (Hue, saturation, and brightness or intensity) YIQ (used in NTSC color TV) YCbCr (used in digital color TV) Amplitude specification: 8 bits per color component, or 24 bits per pixel Total of 16 million colors A 1kx1k true RGB color requires 3 MB memory Fall 2003 EL512 Image Processing Lecture 8, Page 12

13 RGB Color Model RGB 24-bit color cube Fall 2003 EL512 Image Processing Lecture 8, Page 13

14 CMY and CMYK Color Models Fall 2003 EL512 Image Processing Lecture 8, Page 14 Conversion between RGB and CMY Equal amounts of Cyan, Magenta, and Yellow produce black. In practice, this produce muddy-looking black. To produce true black, a fourth color, black is added, which is CMYK color model , = = Y M C B G R B G R Y M C

15 HSI Color Model Hue represents dominant color as perceived by an observer. It is an attribute associated with the dominant wavelength. Saturation refers to the relative purity or the amount of white light mixed with a hue. The pure spectrum colors are fully saturated. Pink and lavender are less saturated. Intensity reflects the brightness. Fall 2003 EL512 Image Processing Lecture 8, Page 15

16 The HSI Color Model Fall 2003 EL512 Image Processing Lecture 8, Page 16

17 Conversion Between RGB and HSI Fall 2003 EL512 Image Processing Lecture 8, Page 17 Converting color from RGB to HSI Converting color from HSI to RGB [ ] [ ] ] [ 3 1 )],, [min( ) ( 3 1 ) )( ( ) ( ) ( ) ( 2 1 cos, B G R I B G R B G R S B G B R G R B R G R with G B if G B if H + + = + + = + + = > = θ θ θ ) ( 1 ) cos(60 cos 1 ) (1 B R G H H S I R S I B + = + = = RG sector (0 H<120) ) ( 1 120)) ( cos(60 120) cos( 1 ) (1 G R B H H S I G S I R + = + = = GB sector (120 H<240) ) ( 1 240)) ( cos(60 240) cos( 1 ) (1 B G R H H S I B S I G + = + = = BR sector (240 H<360)

18 YIQ Color Coordinate System YIQ is defined by the National Television System Committee (NTSC) Y describes the luminance, I and Q describes the chrominance. A more compact representation of the color. YUV plays similar role in PAL and SECAM. Conversion between RGB and YIQ Y = I Q R G, B R 1.0 = G 1.0 B Y I Q Fall 2003 EL512 Image Processing Lecture 8, Page 18

19 Criteria for Choosing the Color Coordinates The type of representation depends on the applications at hand. For display or printing, choose primary colors so that more colors can be produced. E.g. RGB for displaying and CMY for printing. For analytical analysis of color differences, the difference in the trisitumulus values are linearly related to the chrominance differences. HSI is more suitable. For transmission or storage, choose a less redundant representation, eg. YIQ or YUV Fall 2003 EL512 Image Processing Lecture 8, Page 19

20 Comparison of Different Color Spaces Fall 2003 EL512 Image Processing Lecture 8, Page 20

21 Demo Using Photoshop Show the RGB, CMY, HSI models Using the window->info tool and the window>show color tool (in show color, click on right arrow button to choose different color sliders) Sample image: RGBadd, CMYsub Fall 2003 EL512 Image Processing Lecture 8, Page 21

22 Color Image Display and Printing Display: Need three light sources projecting red, green, blue components respectively at every pixel Analog display: raster scan Digital display: directly projecting at all pixel locations Printing: Need three (or more) color dyes (Cyan, Magenta, Yellow, and Black) Analog printing Digital printing Out of gamut color Fall 2003 EL512 Image Processing Lecture 8, Page 22

23 Color Image Display Input Output Red signal Red LUT Red Gun Green signal Green LUT Red Gun Blue signal Blue LUT Red Gun Fall 2003 EL512 Image Processing Lecture 8, Page 23

24 Color Gamut Each color model has different color range (or gamut). RGB model has a larger gamut than CMY. Therefore, some color that appears on a screen may not be printable and is replaced by the closest color in the CMY gamut. Fall 2003 EL512 Image Processing Lecture 8, Page 24

25 Gamma Correction The intensity to voltage response curve of the computer monitor is not linear. Sample Input to Monitor Output from Monitor Gamma correction Sample Input to Monitor Graph of Input Graph of Output L=V 2.5 Graph of Input Gamma corrected Input Graph of Correction L =L 1/2.5 Monitor Output Graph of Output Fall 2003 EL512 Image Processing Lecture 8, Page 25

26 Demo with Photoshop Using photoshop to show how to replace a out of gamut color by its closest in-gamut color. Choose window->show swatch, choose blue Fall 2003 EL512 Image Processing Lecture 8, Page 26

27 Color Quantization Select a set of colors that are most frequently used in an image, save them in a look-up table (also known as color map or color palette) Any color is quantized to one of the indexed colors Only needs to save the index as the image pixel value and in the display buffer Typically: k=8, m=8 (selecting 256 out of 16 million) Input index (k bits) Red color (m bits) Green color (m bits) Blue color (m bits) Index 1. Index 2^k Fall 2003 EL512 Image Processing Lecture 8, Page 27

28 Uniform vs. Adaptive Quantization Uniform (scalar quantization) Quantize each color component uniformly E.g. 24 bit-> 8 bit can be realized by using 3 bits (8 levels) for red, 3 bits (8 levels) for green, 2 bits (4 levels) for blue Do not produce good result Adaptive (vector quantization) Treating each color (a 3-D vector) as one entity. Finds the N colors (vectors) that appear most often in a given image, save them in the color palette (codebook). Replace the color at each pixel by the closest color in the codebook The codebook (I.e. color palette) varies from image to image -> adaptive Fall 2003 EL512 Image Processing Lecture 8, Page 28

29 Illustration of the Vector Quantization y Codebook size: 25 y x x Uniform Quantization Vector Quantization Fall 2003 EL512 Image Processing Lecture 8, Page 29

30 Example of Color Image Quantization 24 bits -> 8 bits Adaptive (non-uniform) quantization (vector quantization) Uniform quantization (3 bits for R,G, 2 bits for B) Fall 2003 EL512 Image Processing Lecture 8, Page 30

31 Web Colors: 216 Safe RGB Colors These colors are those that can be rendered consistently by different computer systems. They are obtained by quantizing the R,G,B component independently using uniform quanitization. Each component is quantized to 6 possible values: 0(0x00), 51(0x33), 102(0x66), 153(0x99), 204(0xCC), 255(0xFF). Fall 2003 EL512 Image Processing Lecture 8, Page 31

32 Color Dithering Color quantization may cause contour effect when the number of colors is not sufficient Dithering: randomly perturb the color values slightly to break up the contour effect fixed pattern dithering diffusion dithering (the perturbed value of the next pixel depends on the previous one) Developed originally for rendering gray scale image using black and white ink only Original value (R,G, or B) Dithered value Dithering value Fall 2003 EL512 Image Processing Lecture 8, Page 32

33 Example of Color Dithering 8 bit uniform without dithering 8 bit uniform with diffusion dithering Fall 2003 EL512 Image Processing Lecture 8, Page 33

34 Demo Using Photoshop Show quantization results with different methods using image->mode->index color Fall 2003 EL512 Image Processing Lecture 8, Page 34

35 Why? Pseudo Color Image Human eye is more sensitive to changes in the color hue than in brightness. How? Use different colors (different in hue) to represent different image features in a monochrome image. Fall 2003 EL512 Image Processing Lecture 8, Page 35

36 Pseudo Color Display Intensity slicing: Display different gray levels as different colors Can be useful to visualize medical / scientific / vegetation imagery E.g. if one is interested in features with a certain intensity range or several intensity ranges Frequency slicing: Decomposing an image into different frequency components and represent them using different colors. Fall 2003 EL512 Image Processing Lecture 8, Page 36

37 Intensity Slicing Color C 4 C 3 C 2 C 1 f 0 =0 f 1 f 2 f 3 f 4 Gray level Pixels with gray-scale (intensity) value in the range of (f i-1, f i ) are rendered with color C i Fall 2003 EL512 Image Processing Lecture 8, Page 37

38 Example Fall 2003 EL512 Image Processing Lecture 8, Page 38

39 Another Example Fall 2003 EL512 Image Processing Lecture 8, Page 39

40 Pseudo Color Display of Multiple Images Display multi-sensor images as a single color image Multi-sensor images: e.g. multi-spectral images by satellite Fall 2003 EL512 Image Processing Lecture 8, Page 40

41 An Example Fall 2003 EL512 Image Processing Lecture 8, Page 41

42 Example Fall 2003 EL512 Image Processing Lecture 8, Page 42

43 Color Image Enhancement Enhance each primary color component independently using the techniques for monochrome images Will change the color hue of the original image Convert the tri-stimulus representation into a luminance / chrominance representation, and enhance the contrast of the luminance component only. Use HSI representation, where I truly reflects the luminance information. Fall 2003 EL512 Image Processing Lecture 8, Page 43

44 Example of Color Image Enhancement Fall 2003 EL512 Image Processing Lecture 8, Page 44

45 Example of Color Image Enhancement Fall 2003 EL512 Image Processing Lecture 8, Page 45

46 Example of Color Image Enhancement Fall 2003 EL512 Image Processing Lecture 8, Page 46

47 Homework 1. (Computer Assignment) Write a program which first performs high pass filtering (you can use matlab func conv2 for this part) of an input gray scale image using the following filter: Scale the filtered image to range between 0 and 255. Then displays the filtered image using 3 pseudo colors, using the following color transformation: Color Red for values 0-80, Color Green for values , color blue for values In matlab, you can use the function colormap to change the colormap and use imshow to display an image using a specified colormap. Comment on the visual effect, e.g. each color represents what attributes of the image? 2. (Computer Assignment) Choose a 24 bit RGB color image, perform the following operations: 1) convert it to YIQ format, save the resulting images in three separate files (for Y, I and Q components respectively), each with 8 bits/pixel; 2) perform histogram equalization to the Y image; 3) convert the enhanced Y image and the original I and Q image back to the RGB image. View the original and enhanced color RGB images and comment on your observations. 3. (Computer Assignment) Choose a 24 bit color RGB image, quantize the R, G, and B components to 3, 3, and 2 bits, respectively, using a uniform quantizer in the range Display the original and quantized color image using the original colormap associated with the image. Comment on the difference in color accuracy. Make sure you use a computer that has a 24 bit color display, and the test image has good color contrast. Fall 2003 EL512 Image Processing Lecture 8, Page 47

48 Reading Prof. Yao Wang s Lecture Notes, Chapter 6. R. Gonzalez, Digital Image Processing, Chapter 6. A. K. Jain, Fundamentals of Digital Image Processing, Section 3.7 ~ 3.11, 7.7 ~ 7.8. Fall 2003 EL512 Image Processing Lecture 8, Page 48

Digital Image Processing Color Models &Processing

Digital Image Processing Color Models &Processing Digital Image Processing Color Models &Processing Dr. Hatem Elaydi Electrical Engineering Department Islamic University of Gaza Fall 2015 Nov 16, 2015 Color interpretation Color spectrum vs. electromagnetic

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Digital Image Processing. Lecture # 8 Color Processing

Digital Image Processing. Lecture # 8 Color Processing Digital Image Processing Lecture # 8 Color Processing 1 COLOR IMAGE PROCESSING COLOR IMAGE PROCESSING Color Importance Color is an excellent descriptor Suitable for object Identification and Extraction

More information

Lecture Color Image Processing. by Shahid Farid

Lecture Color Image Processing. by Shahid Farid Lecture Color Image Processing by Shahid Farid What is color? Why colors? How we see objects? Photometry, Radiometry and Colorimetry Color measurement Chromaticity diagram Shahid Farid, PUCIT 2 Color or

More information

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Lecture 8: Color Image Processing 04.11.2017 Dr. Mohammed Abdel-Megeed Salem Media

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T1227, Mo, 11-12 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 1 2. General Introduction Schedule

More information

6 Color Image Processing

6 Color Image Processing 6 Color Image Processing Angela Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan 2009 Fall Outline Color fundamentals Color models Pseudocolor image

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 4: Color Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Chap. 4 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline

More information

Color image processing

Color image processing Color image processing Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..)

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30)

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module 11 Lecture Number 52 Conversion of one Color

More information

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1 Preview Motive - Color is a powerful descriptor that often simplifies object identification

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

YIQ color model. Used in United States commercial TV broadcasting (NTSC system).

YIQ color model. Used in United States commercial TV broadcasting (NTSC system). CMY color model Each color is represented by the three secondary colors --- cyan (C), magenta (M), and yellow (Y ). It is mainly used in devices such as color printers that deposit color pigments. It is

More information

Fig Color spectrum seen by passing white light through a prism.

Fig Color spectrum seen by passing white light through a prism. 1. Explain about color fundamentals. Color of an object is determined by the nature of the light reflected from it. When a beam of sunlight passes through a glass prism, the emerging beam of light is not

More information

IMAGES AND COLOR. N. C. State University. CSC557 Multimedia Computing and Networking. Fall Lecture # 10

IMAGES AND COLOR. N. C. State University. CSC557 Multimedia Computing and Networking. Fall Lecture # 10 IMAGES AND COLOR N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 10 IMAGES AND COLOR N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies Image formation World, image, eye Light Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies intensity wavelength Visible light is light with wavelength from

More information

Color Image Processing

Color Image Processing Color Image Processing Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Color Used heavily in human vision. Visible spectrum for humans is 400 nm (blue) to 700

More information

Visual Perception. Overview. The Eye. Information Processing by Human Observer

Visual Perception. Overview. The Eye. Information Processing by Human Observer Visual Perception Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Class Introduction to DIP/DVP applications and examples Image as a function Concepts

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg

Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg Color evokes a mood; it creates contrast and enhances the beauty in an image. It can make a dull

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

Color Image Processing

Color Image Processing Color Image Processing Color Fundamentals 2/27/2014 2 Color Fundamentals 2/27/2014 3 Color Fundamentals 6 to 7 million cones in the human eye can be divided into three principal sensing categories, corresponding

More information

Color Image Processing

Color Image Processing Color Image Processing Jesus J. Caban Outline Discuss Assignment #1 Project Proposal Color Perception & Analysis 1 Discuss Assignment #1 Project Proposal Due next Monday, Oct 4th Project proposal Submit

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

Color Image Processing

Color Image Processing Color Image Processing Dr. Praveen Sankaran Department of ECE NIT Calicut February 11, 2013 Winter 2013 February 11, 2013 1 / 23 Outline 1 Color Models 2 Full Color Image Processing Winter 2013 February

More information

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing Digital Image Processing Lecture # 6 Corner Detection & Color Processing 1 Corners Corners (interest points) Unlike edges, corners (patches of pixels surrounding the corner) do not necessarily correspond

More information

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 20 Oct 25 th, 2018 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors.

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors. Computer Assisted Image Analysis TF 3p and MN1 5p Color Image Processing Lecture 14 GW 6 (suggested problem 6.25) How does the human eye perceive color? How can color be described using mathematics? Different

More information

IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE

IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE OUTLINE Human visual system Color images Color quantization Colorimetric color spaces HUMAN VISUAL SYSTEM HUMAN VISUAL SYSTEM HUMAN VISUAL

More information

Color Image Processing. Jen-Chang Liu, Spring 2006

Color Image Processing. Jen-Chang Liu, Spring 2006 Color Image Processing Jen-Chang Liu, Spring 2006 For a long time I limited myself to one color as a form of discipline. Pablo Picasso It is only after years of preparation that the young artist should

More information

Color Image Processing EEE 6209 Digital Image Processing. Outline

Color Image Processing EEE 6209 Digital Image Processing. Outline Outline Color Image Processing Motivation and Color Fundamentals Standard Color Models (RGB/CMYK/HSI) Demosaicing and Color Filtering Pseudo-color and Full-color Image Processing Color Transformation Tone

More information

05 Color. Multimedia Systems. Color and Science

05 Color. Multimedia Systems. Color and Science Multimedia Systems 05 Color Color and Science Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures Adapted From: Digital Multimedia

More information

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling CSCU9N5: Multimedia and HCI 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Cunliffe & Elliott,

More information

Reading instructions: Chapter 6

Reading instructions: Chapter 6 Lecture 8 in Computerized Image Analysis Digital Color Processing Hamid Sarve hamid@cb.uu.se Reading instructions: Chapter 6 Electromagnetic Radiation Visible light (for humans) is electromagnetic radiation

More information

EECS490: Digital Image Processing. Lecture #12

EECS490: Digital Image Processing. Lecture #12 Lecture #12 Image Correlation (example) Color basics (Chapter 6) The Chromaticity Diagram Color Images RGB Color Cube Color spaces Pseudocolor Multispectral Imaging White Light A prism splits white light

More information

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow! Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Colour Lecture (2 lectures)! Richardson, Chapter

More information

COLOR. Elements of color. Visible spectrum. The Fovea. Lecture 3 October 30, Ingela Nyström 1. There are three types of cones, S, M and L

COLOR. Elements of color. Visible spectrum. The Fovea. Lecture 3 October 30, Ingela Nyström 1. There are three types of cones, S, M and L COLOR Elements of color Angel 1.4, 2.4, 7.12 J. Lindblad 2001-11-01 Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra. How is color perceived? Visible spectrum

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Color Image Processing Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering 2 Color Image Processing It is only after years

More information

Chapter 2 Fundamentals of Digital Imaging

Chapter 2 Fundamentals of Digital Imaging Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation 1 In this lecture, you will find answers to these questions What is RGB color model and how does it represent colors? What is CMY color

More information

Introduction to Computer Vision and image processing

Introduction to Computer Vision and image processing Introduction to Computer Vision and image processing 1.1 Overview: Computer Imaging 1.2 Computer Vision 1.3 Image Processing 1.4 Computer Imaging System 1.6 Human Visual Perception 1.7 Image Representation

More information

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture!

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture! Colour Lecture! ITNP80: Multimedia 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Richardson,

More information

Imaging Process (review)

Imaging Process (review) Color Used heavily in human vision Color is a pixel property, making some recognition problems easy Visible spectrum for humans is 400nm (blue) to 700 nm (red) Machines can see much more; ex. X-rays, infrared,

More information

Computers and Imaging

Computers and Imaging Computers and Imaging Telecommunications 1 P. Mathys Two Different Methods Vector or object-oriented graphics. Images are generated by mathematical descriptions of line (vector) segments. Bitmap or raster

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour CS 565 Computer Vision Nazar Khan PUCIT Lecture 4: Colour Topics to be covered Motivation for Studying Colour Physical Background Biological Background Technical Colour Spaces Motivation Colour science

More information

Color. Used heavily in human vision. Color is a pixel property, making some recognition problems easy

Color. Used heavily in human vision. Color is a pixel property, making some recognition problems easy Color Used heavily in human vision Color is a pixel property, making some recognition problems easy Visible spectrum for humans is 400 nm (blue) to 700 nm (red) Machines can see much more; ex. X-rays,

More information

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008.

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008. Overview Images What is an image? How are images displayed? Color models How do we perceive colors? How can we describe and represent colors? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Images What is an image? How are images displayed? Color models Overview How

More information

The Principles of Chromatics

The Principles of Chromatics The Principles of Chromatics 03/20/07 2 Light Electromagnetic radiation, that produces a sight perception when being hit directly in the eye The wavelength of visible light is 400-700 nm 1 03/20/07 3 Visible

More information

Unit 8: Color Image Processing

Unit 8: Color Image Processing Unit 8: Color Image Processing Colour Fundamentals In 666 Sir Isaac Newton discovered that when a beam of sunlight passes through a glass prism, the emerging beam is split into a spectrum of colours The

More information

VIDEO AND IMAGE PROCESSING USING DSP AND PFGA. Chapter 1: Introduction to Image Processing. Contents

VIDEO AND IMAGE PROCESSING USING DSP AND PFGA. Chapter 1: Introduction to Image Processing. Contents ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ VIDEO AND IMAGE PROCESSING USING DSP AND PFGA Chapter 1: Introduction to Image Processing 1 Contents 1.

More information

Introduction to Computer Vision CSE 152 Lecture 18

Introduction to Computer Vision CSE 152 Lecture 18 CSE 152 Lecture 18 Announcements Homework 5 is due Sat, Jun 9, 11:59 PM Reading: Chapter 3: Color Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1 Chapter 12 Color Models and Color Applications 12-1 12.1 Overview Color plays a significant role in achieving realistic computer graphic renderings. This chapter describes the quantitative aspects of color,

More information

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ)

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ) COLOR Elements of color Angel, 4th ed. 1, 2.5, 7.13 excerpt from Joakim Lindblad Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra How is color perceived?

More information

Dr. Shahanawaj Ahamad. Dr. S.Ahamad, SWE-423, Unit-06

Dr. Shahanawaj Ahamad. Dr. S.Ahamad, SWE-423, Unit-06 Dr. Shahanawaj Ahamad 1 Outline: Basic concepts underlying Images Popular Image File formats Human perception of color Various Color Models in use and the idea behind them 2 Pixels -- picture elements

More information

Computer Graphics Si Lu Fall /27/2016

Computer Graphics Si Lu Fall /27/2016 Computer Graphics Si Lu Fall 2017 09/27/2016 Announcement Class mailing list https://groups.google.com/d/forum/cs447-fall-2016 2 Demo Time The Making of Hallelujah with Lytro Immerge https://vimeo.com/213266879

More information

Digital Image Processing (DIP)

Digital Image Processing (DIP) University of Kurdistan Digital Image Processing (DIP) Lecture 6: Color Image Processing Instructor: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan,

More information

Introduction to Multimedia Computing

Introduction to Multimedia Computing COMP 319 Lecture 02 Introduction to Multimedia Computing Fiona Yan Liu Department of Computing The Hong Kong Polytechnic University Learning Outputs of Lecture 01 Introduction to multimedia technology

More information

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading:

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Announcements Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Chapter 3: Color CSE 252A Lecture 18 Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

MULTIMEDIA SYSTEMS

MULTIMEDIA SYSTEMS 1 Department of Computer Engineering, g, Faculty of Engineering King Mongkut s Institute of Technology Ladkrabang 01076531 MULTIMEDIA SYSTEMS Pakorn Watanachaturaporn, Ph.D. pakorn@live.kmitl.ac.th, pwatanac@gmail.com

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Color and Perception CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic spectra; approx.

More information

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Some color images on this slide Last Lecture 2D filtering frequency domain The magnitude of the 2D DFT gives the amplitudes of the sinusoids and

More information

Multimedia Systems and Technologies

Multimedia Systems and Technologies Multimedia Systems and Technologies Faculty of Engineering Master s s degree in Computer Engineering Marco Porta Computer Vision & Multimedia Lab Dipartimento di Ingegneria Industriale e dell Informazione

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

Digital Image Processing Chapter 6: Color Image Processing

Digital Image Processing Chapter 6: Color Image Processing Digital Image Processing Chapter 6: Color Image Processing Spectrum of White Light 1666 Sir Isaac Newton, 24 ear old, discovered white light spectrum. Electromagnetic Spectrum Visible light wavelength:

More information

Colors in images. Color spaces, perception, mixing, printing, manipulating...

Colors in images. Color spaces, perception, mixing, printing, manipulating... Colors in images Color spaces, perception, mixing, printing, manipulating... Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 4: Colour Graphics Lecture 4: Slide 1 Ways of looking at colour 1. Physics 2. Human visual receptors 3. Subjective assessment Graphics Lecture 4: Slide 2 The physics

More information

Color. Some slides are adopted from William T. Freeman

Color. Some slides are adopted from William T. Freeman Color Some slides are adopted from William T. Freeman 1 1 Why Study Color Color is important to many visual tasks To find fruits in foliage To find people s skin (whether a person looks healthy) To group

More information

Color. Used heavily in human vision. Color is a pixel property, making some recognition problems easy

Color. Used heavily in human vision. Color is a pixel property, making some recognition problems easy Color Used heavily in human vision Color is a pixel property, making some recognition problems easy Visible spectrum for humans is 400 nm (blue) to 700 nm (red) Machines can see much more; ex. X-rays,

More information

Chapter 6: Color Image Processing. Office room : 841

Chapter 6: Color Image Processing.   Office room : 841 Chapter 6: Color Image Processing Lecturer: Jianbing Shen Email : shenjianbing@bit.edu.cn Office room : 841 http://cs.bit.edu.cn/shenjianbing cn/shenjianbing It is only after years of preparation that

More information

Color Science. CS 4620 Lecture 15

Color Science. CS 4620 Lecture 15 Color Science CS 4620 Lecture 15 2013 Steve Marschner 1 [source unknown] 2013 Steve Marschner 2 What light is Light is electromagnetic radiation exists as oscillations of different frequency (or, wavelength)

More information

Human Vision, Color and Basic Image Processing

Human Vision, Color and Basic Image Processing Human Vision, Color and Basic Image Processing Connelly Barnes CS4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and

More information

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color and Color Model Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color Interpretation of color is a psychophysiology problem We could not fully understand the mechanism Physical characteristics

More information

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models Introduction to computer vision In general, computer vision covers very wide area of issues concerning understanding of images by computers. It may be considered as a part of artificial intelligence and

More information

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University 2011-10-26 Bettina Selig Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Electromagnetic Radiation Illumination - Reflection - Detection The Human Eye Digital

More information

Cvision 2. António J. R. Neves João Paulo Silva Cunha. Bernardo Cunha. IEETA / Universidade de Aveiro

Cvision 2. António J. R. Neves João Paulo Silva Cunha. Bernardo Cunha. IEETA / Universidade de Aveiro Cvision 2 Digital Imaging António J. R. Neves (an@ua.pt) & João Paulo Silva Cunha & Bernardo Cunha IEETA / Universidade de Aveiro Outline Image sensors Camera calibration Sampling and quantization Data

More information

Introduction & Colour

Introduction & Colour Introduction & Colour Eric C. McCreath School of Computer Science The Australian National University ACT 0200 Australia ericm@cs.anu.edu.au Overview 2 Computer Graphics Uses (Chapter 1) Basic Hardware

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 1 st, 2018 Pranav Mantini Acknowledgment: Slides from Pourreza Projects Project team and topic assigned Project proposal presentations : Nov 6 th

More information

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy

More information

CHAPTER 3 I M A G E S

CHAPTER 3 I M A G E S CHAPTER 3 I M A G E S OBJECTIVES Discuss the various factors that apply to the use of images in multimedia. Describe the capabilities and limitations of bitmap images. Describe the capabilities and limitations

More information

Introduction. The Spectral Basis for Color

Introduction. The Spectral Basis for Color Introduction Color is an extremely important part of most visualizations. Choosing good colors for your visualizations involves understanding their properties and the perceptual characteristics of human

More information

Additive Color Synthesis

Additive Color Synthesis Color Systems Defining Colors for Digital Image Processing Various models exist that attempt to describe color numerically. An ideal model should be able to record all theoretically visible colors in the

More information

Color. Chapter 6. (colour) Digital Multimedia, 2nd edition

Color. Chapter 6. (colour) Digital Multimedia, 2nd edition Color (colour) Chapter 6 Digital Multimedia, 2nd edition What is color? Color is how our eyes perceive different forms of energy. Energy moves in the form of waves. What is a wave? Think of a fat guy (Dr.

More information

MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR

MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR 1. Introduction The field of digital image processing relies on mathematical and probabilistic formulations accompanied by human intuition and analysis based

More information

Digital Image Processing Chapter 6: Color Image Processing ( )

Digital Image Processing Chapter 6: Color Image Processing ( ) Digital Image Processing Chapter 6: Color Image Processing (6.1 6.3) 6. Preview The process followed by the human brain in perceiving and interpreting color is a physiopsychological henomenon that is not

More information

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995.

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Reading Foley, Computer graphics, Chapter 13. Color Optional Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Gerald S. Wasserman. Color Vision: An Historical ntroduction.

More information

What is Color? Color is a human perception (a percept). Color is not a physical property... But, it is related the the light spectrum of a stimulus.

What is Color? Color is a human perception (a percept). Color is not a physical property... But, it is related the the light spectrum of a stimulus. C. A. Bouman: Digital Image Processing - January 8, 218 1 What is Color? Color is a human perception (a percept). Color is not a physical property... But, it is related the the light spectrum of a stimulus.

More information

Color Image Processing

Color Image Processing Color Image Processing with Biomedical Applications Rangaraj M. Rangayyan, Begoña Acha, and Carmen Serrano University of Calgary, Calgary, Alberta, Canada University of Seville, Spain SPIE Press 2011 434

More information

CHAPTER 6 COLOR IMAGE PROCESSING

CHAPTER 6 COLOR IMAGE PROCESSING CHAPTER 6 COLOR IMAGE PROCESSING CHAPTER 6: COLOR IMAGE PROCESSING The use of color image processing is motivated by two factors: Color is a powerful descriptor that often simplifies object identification

More information

University of British Columbia CPSC 414 Computer Graphics

University of British Columbia CPSC 414 Computer Graphics University of British Columbia CPSC 414 Computer Graphics Color 2 Week 10, Fri 7 Nov 2003 Tamara Munzner 1 Readings Chapter 1.4: color plus supplemental reading: A Survey of Color for Computer Graphics,

More information

Color Reproduction. Chapter 6

Color Reproduction. Chapter 6 Chapter 6 Color Reproduction Take a digital camera and click a picture of a scene. This is the color reproduction of the original scene. The success of a color reproduction lies in how close the reproduced

More information