10/12/2015. SHRDLU: 1969 NLP solved?? : A sea change in AI technologies. SHRDLU: A demonstration proof. 1990: Parsing Research in Crisis

Size: px
Start display at page:

Download "10/12/2015. SHRDLU: 1969 NLP solved?? : A sea change in AI technologies. SHRDLU: A demonstration proof. 1990: Parsing Research in Crisis"

Transcription

1 SHRDLU: 1969 NLP solved?? : A sea change in AI technologies Example: Natural Language Processing The Great Wave off Kanagawa by Hokusai, ~1830 ] Person: PICK UP A BIG RED BLOCK. Computer: OK. (does it) Person: GRASP THE PYRAMID. Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE BOX. Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING. Computer: OK. (does it) Person: WHAT DOES THE BOX CONTAIN? Computer: THE BLUE PYRAMID AND THE BLUE BLOCK. Person: WHAT IS THE PYRAMID SUPPORTED BY? Computer: THE BOX. CIS Intro to AI 2 SHRDLU: A demonstration proof 1990: Parsing Research in Crisis Informal IBM study in 1990: No existing parsers worked for short sentences from news text. Methodology: Compared a range of best broad coverage parsers in U.S. All but best: < 40% correct (hand checked) for 10 word sentences Best: claimed 60% - (I don t believe it ) How could this be true? Most NLP work in interactive systems, with major user adaptation Proposed Solution: A hand-built corpus of examples (10 6 words of WSJ) Some unknown statistical model trained on that set of examples. CIS Intro to AI 3 CIS Intro to AI 4 The Past: Crucial flaws in the paradigm These and other later systems worked well, BUT 1. Person-years of work to port to new applications 2. Very limited coverage of English Crucially, they worked well because of a magical fact: People automatically adapt and limit their language given a small set of exemplars if the underlying linguistic generalizations are HABITABLE An Early Robust Statistical NLP Application A Statistical Model For Etymology (Church 85) Determining etymology is crucial for text-to-speech Italian English AldriGHetti laugh, sigh IannuCCi accept ItaliAno hate This won t handle pre-existing text! CIS Intro to AI 5 CIS Intro to AI 6 1

2 NLP shift starts here 10/12/2015 An Early Robust Statistical NLP Application The Initial Driver: Success of Statistical Models in Speech Recognition Angeletti 100% Italian Iannucci 100% Italian Italiano 100% Italian Lombardino 58% Italian Asahara 100% Japanese Fujimaki 100% Japanese Umeda 96% Japanese Anagnostopoulos 100% Greek Demetriadis 100% Greek Dukakis 99% Russian Annette 75% French Deneuve 54% French Baguenard 54% Middle French A very simple statistical model (your next homework) solved the problem, despite a wild statistical assumption CIS Intro to AI 7 CIS Intro to AI 8 The State of NLP (and all of AI) NLP Past before 1995: Rich Representations NLP Present: Powerful Statistical Disambiguation Uncertainty & Probability Artificial Intelligence AIMA, Chapter 13 Some slides adapted from CMSC 421 (U. Maryland) by Bonnie Dorr CIS Intro to AI 9 Outline A major problem: uncertainty Probability: the right way to handle uncertainty Frequentists vs. Bayesians Review: Fundamentals of probability theory Joint Probability Distributions Conditional Probability Probabilistic Inference Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there on time? true/false Will A 20 get me there on time? true/false Will A 30 get me there on time? true/false Will A 200 get me there on time? true/false Problems: The world is not Fully observable (road state, other drivers plans, etc.) Deterministic (flat tire, etc.) Single agent (immense complexity modeling and predicting traffic) And often incoming information is wrong: noisy sensors (traffic reports, etc.) CIS Intro to AI 11 CIS Intro to AI 12 2

3 A purely logical approach: Risks falsehood: A 25 will get me there on time Leads to conclusions that are too weak for decision making: A 1440 will get me there on time almost certainly true but I d have to stay overnight at the airport! A 25 will get me there on time if there is no accident on the bridge and it doesn t rain and my tires remain intact, etc. True but useless Also: Logic represents uncertainty by disjunction A or B might mean A is true or B (or both) is true but I don t know which A or B does not say how likely the different conditions are. CIS Intro to AI 13 AI Methods for handling uncertainty Default or nonmonotonic logic: Assume my car does not have a flat tire Assume A 25 works unless contradicted by evidence Issues: What assumptions are reasonable? How to handle contradiction? Rules with ad-hoc fudge factors: A get there on time Sprinkler 0.99 WetGrass WetGrass 0.7 Rain Issues: Problems with combination, e.g., Sprinkler causes Rain?? Probability Model agent's degree of belief Given the available evidence, A 25 will get me there on time with probability 0.04 Probabilities have a clear calculus of combination CIS Intro to AI 14 Our Alternative: Use Probability Given the available evidence, A 25 will get me there on time with probability 0.04 Probabilistic assertions summarize the ignorance in perception and in models Theoretical ignorance: often, we simply have no complete theory of the domain, e.g. medicine Uncertainty (partial observability): Even if we know all the rules, we might be uncertain about a particular patient Probabilities as Degrees of Belief Subjectivist (Bayesian) (Us) Probability is a model of agent s own degree of belief Frequentist (Not us, many statisticians) Probability is inherent in the process Probability is estimated from measurements Laziness: Too much work to list the complete set of antecedents or consequents to ensure no exceptions CIS Intro to AI 15 CIS Intro to AI 16 Frequentists: Probability as expected frequency Bayesians: Probabilities as Degrees of Belief Frequentist (Not us, many statisticians) Probability is inherent in the process Probability is estimated from measurements P(A) = 1: A will always occur. P(A) = 0: A will never occur. 0.5 < P(A) < 1: A will occur more often than not. CIS Intro to AI 17 Subjectivist (Bayesian) (Us) Probability is a model of agent s own degree of belief P(A) = 1: Agent completely believes A is true. P(A) = 0: Agent completely believes A is false. 0.5 < P(A) < 1: Agent believes A is more likely to be true than false. Increasing evidence strengthens belief therefore changes probability estimate CIS Intro to AI 18 3

4 Frequentists vs. Bayesians I Actual dialogue before election Mitch (Bayesian): I think Obama now has an 80% chance of winning. Sue (Frequentist): What does that mean? It s either 100% or 0%, and we ll find out after election day. Why be subjectivist? Often need to make inferences about singular events How likely is it to rain tomorrow? How likely is it that the Republicans will take the Senate in 2016? De Finetti: It s good business If you don t use probabilities (and get them right) you ll lose bets CIS Intro to AI Probability as a bet If Agent 1 expresses a set of degrees of belief that violate the axioms of probability theory then there is a combination of bets by Agent 2 that guarantees that Agent 1 will lose money every time. de Finetti Making decisions under uncertainty Suppose I believe the following: P(A 25 gets me there on time ) = 0.04 P(A 90 gets me there on time ) = 0.70 P(A 120 gets me there on time ) = 0.95 P(A 1440 gets me there on time ) = Which action to choose? It still depends on my preferences for missing flight vs. time spent waiting, etc. If Agent 1 sets Price(Phillies win)+price(red Sox win) Price(Phillies or RS win), then Agent 2 can always make money. (AIMA 13.2) CIS Intro to AI 22 CIS Intro to AI 23 Decision Theory Decision Theory develops methods for making optimal decisions in the presence of uncertainty. Decision Theory = utility theory + probability theory Utility theory is used to represent and infer preferences: Every state has a degree of usefulness An agent is rational if and only if it chooses an action A that yields the highest expected utility (expected usefulness). Let O be the possible outcomes of A, U(o) be the utility of outcome o, and P A (o) be the probability of o as an outcome for action A, then the Expected Utility of A is EU ( A) PA ( o) U ( o) oo A FAST REVIEW OF DISCRETE PROBABILITY CIS Intro to AI 24 CIS Intro to AI 25 4

5 Standard approach: Sample Spaces More AI-ish description Basic assumption 1: the set of all possible outcomes of an experiment is known Example: Rolling two dice Sample space = D x D, where D = {1,2,3,4,5,6} Each member i of a sample space is called an elementary event Basic assumption 1: The set of all possible complete specifications of all possible states of the world (possible worlds) is known even if an agent is uncertain which describes the actual world E.g., if the world consists of only two Boolean variables Cavity and Toothache, then the sample space consists of 4 distinct elementary events: 1 : Cavity = false Toothache = false 2 : Cavity = false Toothache = true 3 : Cavity = true Toothache = false 4 : Cavity = true Toothache = true Elementary events are mutually exclusive and exhaustive CIS Intro to AI 26 CIS Intro to AI 27 Basic assumption 2: Probabilities of Elementary Events Every i is assigned a probability (1) 0 P( i ) 1 P( i ) is the probability the elementary event i will occur Assuming is finite, we require (2) P( ) 1 P is the probability distribution on Events & Event Spaces An event A is a set of elementary events i, i.e A is any subset of Note: The set of all possible events is the power set of the subsets of The probability of an event A is defined as (3) P( A) P( ) A CIS Intro to AI 28 CIS Intro to AI 29 Probabilities of Events From (1), (2) and 3, it follows, for any finite discrete 0 P( i ) 1 P() = 1 = P(true) P() = 0 = P(false) P(a b) = P(a) + P(b) P(a b) P( A )= 1-P(A) a a b b Discrete random variables A random variable can take on one of a set of different values, each with an associated probability. Its value at a particular time is subject to random variation. Discrete random variables take on one of a discrete (often finite) range of values Domain values must be exhaustive and mutually exclusive For us, random variables will have a discrete, countable (usually finite) domain of arbitrary values. Mathematical statistics usually calls these random elements (Usually, but not here, the domain is R) Example: Weather is a discrete random variable with domain {sunny, rain, cloudy, snow}. Example: A Boolean random variable has the domain {true,false}, CIS Intro to AI 30 CIS Intro to AI 31 5

6 A word on notation Assume Weather is a discrete random variable with domain {sunny, rain, cloudy, snow}. Weather = sunny abbreviated sunny P(Weather=sunny)=0.72 abbreviated P(sunny)=0.72 Cavity = true abbreviated cavity Cavity = false abbreviated cavity Vector notation: Fix order of domain elements: <sunny,rain,cloudy,snow> Specify the probability mass function (pmf) by a vector: P(Weather) = <0.72,0.1,0.08,0.1> CIS Intro to AI 32 Factored Representations: Propositions Elementary proposition constructed by assignment of a value to a random variable: e.g. Weather = sunny e.g. Cavity = false (abbreviated as cavity) Complex proposition formed from elementary propositions & standard logical connectives e.g. Weather = sunny Cavity = false CIS Intro to AI 33 Probability Distribution Joint probability distribution a Probability distribution gives values for all possible assignments: Vector notation: Weather is one of <0.72, 0.1, 0.08, 0.1>, where weather is one of <sunny,rain,cloudy,snow>. P(Weather) = <0.72,0.1,0.08,0.1> Sums to 1 over the domain Practical advice: Easy to check Practical advice: Important to check Probability assignment to all combinations of values of random variables (i.e. all atomic events) The sum of the entries in this table has to be 1 Every question about a domain can be answered by the joint distribution toothache toothache cavity cavity !!! Probability of a proposition is the sum of the probabilities of atomic events in which it holds P(cavity) = 0.1 [add elements of cavity row] P(toothache) = 0.05 [add elements of toothache column] CIS Intro to AI 34 CIS Intro to AI 35 Conditional Probability Conditional Probability (continued) toothache toothache cavity cavity P(cavity)=0.1 and P(cavity toothache)=0.04 are A B both prior (unconditional) probabilities Once the agent has new evidence concerning a previously unknown random variable, e.g., toothache, we can specify a posterior (conditional) probability e.g., P(cavity toothache) P(a b) = P(a b)/p(b) [Probability of a with the Universe restricted to b] So P(cavity toothache) = 0.04/0.05 = 0.8 A B U Definition of Conditional Probability: P(a b) = P(a b)/p(b) Product rule gives an alternative formulation: P(a b) = P(a b) P(b) = P(b a) P(a) A general version holds for whole distributions: P(Weather,Cavity) = P(Weather Cavity) P(Cavity) Chain rule is derived by successive application of product rule: P(X 1,,X n ) = P(X 1,...,X n-1 ) P(X n X 1,...,X n-1 ) = P(X 1,...,X n-2 ) P(X n-1 X 1,...,X n-2 ) P(X n X 1,...,X n-1 ) = n = P(Xi X1,..., X i 1 ) i 1 CIS Intro to AI 36 CIS Intro to AI 37 6

Logical Agents (AIMA - Chapter 7)

Logical Agents (AIMA - Chapter 7) Logical Agents (AIMA - Chapter 7) CIS 391 - Intro to AI 1 Outline 1. Wumpus world 2. Logic-based agents 3. Propositional logic Syntax, semantics, inference, validity, equivalence and satifiability Next

More information

11/18/2015. Outline. Logical Agents. The Wumpus World. 1. Automating Hunt the Wumpus : A different kind of problem

11/18/2015. Outline. Logical Agents. The Wumpus World. 1. Automating Hunt the Wumpus : A different kind of problem Outline Logical Agents (AIMA - Chapter 7) 1. Wumpus world 2. Logic-based agents 3. Propositional logic Syntax, semantics, inference, validity, equivalence and satifiability Next Time: Automated Propositional

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

CSE 573: Artificial Intelligence

CSE 573: Artificial Intelligence CSE 573: Artificial Intelligence Adversarial Search Dan Weld Based on slides from Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer (best illustrations from ai.berkeley.edu) 1

More information

Intro to Artificial Intelligence Lecture 1. Ahmed Sallam { }

Intro to Artificial Intelligence Lecture 1. Ahmed Sallam {   } Intro to Artificial Intelligence Lecture 1 Ahmed Sallam { http://sallam.cf } Purpose of this course Understand AI Basics Excite you about this field Definitions of AI Thinking Rationally Acting Humanly

More information

Intelligent Agents & Search Problem Formulation. AIMA, Chapters 2,

Intelligent Agents & Search Problem Formulation. AIMA, Chapters 2, Intelligent Agents & Search Problem Formulation AIMA, Chapters 2, 3.1-3.2 Outline for today s lecture Intelligent Agents (AIMA 2.1-2) Task Environments Formulating Search Problems CIS 421/521 - Intro to

More information

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39 CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell, Luke Zettlemoyer, Dan Weld Adversarial

More information

CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS Santiago Ontañón so367@drexel.edu Outline What is an Agent? Rationality Agents and Environments Agent Types (these slides are adapted from Russel & Norvig

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

LISTING THE WAYS. getting a total of 7 spots? possible ways for 2 dice to fall: then you win. But if you roll. 1 q 1 w 1 e 1 r 1 t 1 y

LISTING THE WAYS. getting a total of 7 spots? possible ways for 2 dice to fall: then you win. But if you roll. 1 q 1 w 1 e 1 r 1 t 1 y LISTING THE WAYS A pair of dice are to be thrown getting a total of 7 spots? There are What is the chance of possible ways for 2 dice to fall: 1 q 1 w 1 e 1 r 1 t 1 y 2 q 2 w 2 e 2 r 2 t 2 y 3 q 3 w 3

More information

Introduction to Markov Models

Introduction to Markov Models Introduction to Markov Models But first: A few preliminaries Estimating the probability of phrases of words, sentences, etc. CIS 391 - Intro to AI 2 What counts as a word? A tricky question. How to find

More information

Probability - Introduction Chapter 3, part 1

Probability - Introduction Chapter 3, part 1 Probability - Introduction Chapter 3, part 1 Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) January 27, 2004 Statistics 371 Last modified: Jan 28, 2004 Why Learn Probability? Some

More information

CS1800: Intro to Probability. Professor Kevin Gold

CS1800: Intro to Probability. Professor Kevin Gold CS1800: Intro to Probability Professor Kevin Gold Probability Deals Rationally With an Uncertain World Using probabilities is the only rational way to deal with uncertainty De Finetti: If you disagree,

More information

Textbook: pp Chapter 2: Probability Concepts and Applications

Textbook: pp Chapter 2: Probability Concepts and Applications 1 Textbook: pp. 39-80 Chapter 2: Probability Concepts and Applications 2 Learning Objectives After completing this chapter, students will be able to: Understand the basic foundations of probability analysis.

More information

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.)

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.) The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you $ that if you give me $, I ll give you $2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If

More information

November 11, Chapter 8: Probability: The Mathematics of Chance

November 11, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 11, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Probability Rules Probability Rules Rule 1.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell, Luke Zettlemoyer, Dan Weld Adversarial

More information

Probability Theory. POLI Mathematical and Statistical Foundations. Sebastian M. Saiegh

Probability Theory. POLI Mathematical and Statistical Foundations. Sebastian M. Saiegh POLI 270 - Mathematical and Statistical Foundations Department of Political Science University California, San Diego November 11, 2010 Introduction to 1 Probability Some Background 2 3 Conditional and

More information

5.4 Imperfect, Real-Time Decisions

5.4 Imperfect, Real-Time Decisions 5.4 Imperfect, Real-Time Decisions Searching through the whole (pruned) game tree is too inefficient for any realistic game Moves must be made in a reasonable amount of time One has to cut off the generation

More information

Statistics Intermediate Probability

Statistics Intermediate Probability Session 6 oscardavid.barrerarodriguez@sciencespo.fr April 3, 2018 and Sampling from a Population Outline 1 The Monty Hall Paradox Some Concepts: Event Algebra Axioms and Things About that are True Counting

More information

Exam III Review Problems

Exam III Review Problems c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

More information

Introduction to Probability and Statistics I Lecture 7 and 8

Introduction to Probability and Statistics I Lecture 7 and 8 Introduction to Probability and Statistics I Lecture 7 and 8 Basic Probability and Counting Methods Computing theoretical probabilities:counting methods Great for gambling! Fun to compute! If outcomes

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah June 12, 2008 Liang Zhang (UofU) Applied Statistics I June 12, 2008 1 / 29 In Probability, our main focus is to determine

More information

The power behind an intelligent system is knowledge.

The power behind an intelligent system is knowledge. Induction systems 1 The power behind an intelligent system is knowledge. We can trace the system success or failure to the quality of its knowledge. Difficult task: 1. Extracting the knowledge. 2. Encoding

More information

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi CSCI 699: Topics in Learning and Game Theory Fall 217 Lecture 3: Intro to Game Theory Instructor: Shaddin Dughmi Outline 1 Introduction 2 Games of Complete Information 3 Games of Incomplete Information

More information

Probability A = {(1,4), (2,3), (3,2), (4,1)},

Probability A = {(1,4), (2,3), (3,2), (4,1)}, Probability PHYS 1301 F99 Prof. T.E. Coan version: 15 Sep 98 The naked hulk alongside came, And the twain were casting dice; The game is done! I ve won! I ve won! Quoth she, and whistles thrice. Samuel

More information

Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes.

Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes. Basic Probability Ideas Experiment - a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation

More information

Texas Hold em Inference Bot Proposal. By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005

Texas Hold em Inference Bot Proposal. By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005 Texas Hold em Inference Bot Proposal By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005 1 Introduction One of the key goals in Artificial Intelligence is to create cognitive systems that

More information

Administrivia. CS 188: Artificial Intelligence Spring Agents and Environments. Today. Vacuum-Cleaner World. A Reflex Vacuum-Cleaner

Administrivia. CS 188: Artificial Intelligence Spring Agents and Environments. Today. Vacuum-Cleaner World. A Reflex Vacuum-Cleaner CS 188: Artificial Intelligence Spring 2006 Lecture 2: Agents 1/19/2006 Administrivia Reminder: Drop-in Python/Unix lab Friday 1-4pm, 275 Soda Hall Optional, but recommended Accommodation issues Project

More information

Section Summary. Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning

Section Summary. Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning Section 7.1 Section Summary Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning Probability of an Event Pierre-Simon Laplace (1749-1827) We first study Pierre-Simon

More information

Review Questions on Ch4 and Ch5

Review Questions on Ch4 and Ch5 Review Questions on Ch4 and Ch5 1. Find the mean of the distribution shown. x 1 2 P(x) 0.40 0.60 A) 1.60 B) 0.87 C) 1.33 D) 1.09 2. A married couple has three children, find the probability they are all

More information

Agent. Pengju Ren. Institute of Artificial Intelligence and Robotics

Agent. Pengju Ren. Institute of Artificial Intelligence and Robotics Agent Pengju Ren Institute of Artificial Intelligence and Robotics pengjuren@xjtu.edu.cn 1 Review: What is AI? Artificial intelligence (AI) is intelligence exhibited by machines. In computer science, the

More information

CS 188 Introduction to Fall 2014 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2014 Artificial Intelligence Midterm CS 88 Introduction to Fall Artificial Intelligence Midterm INSTRUCTIONS You have 8 minutes. The exam is closed book, closed notes except a one-page crib sheet. Please use non-programmable calculators only.

More information

A.I in Automotive? Why and When.

A.I in Automotive? Why and When. A.I in Automotive? Why and When. AGENDA 01 02 03 04 Definitions A.I? A.I in automotive Now? Next big A.I breakthrough in Automotive 01 DEFINITIONS DEFINITIONS Artificial Intelligence Artificial Intelligence:

More information

THEORY: NASH EQUILIBRIUM

THEORY: NASH EQUILIBRIUM THEORY: NASH EQUILIBRIUM 1 The Story Prisoner s Dilemma Two prisoners held in separate rooms. Authorities offer a reduced sentence to each prisoner if he rats out his friend. If a prisoner is ratted out

More information

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write

More information

10/5/2015. Constraint Satisfaction Problems. Example: Cryptarithmetic. Example: Map-coloring. Example: Map-coloring. Constraint Satisfaction Problems

10/5/2015. Constraint Satisfaction Problems. Example: Cryptarithmetic. Example: Map-coloring. Example: Map-coloring. Constraint Satisfaction Problems 0/5/05 Constraint Satisfaction Problems Constraint Satisfaction Problems AIMA: Chapter 6 A CSP consists of: Finite set of X, X,, X n Nonempty domain of possible values for each variable D, D, D n where

More information

CSE 473: Artificial Intelligence Autumn 2011

CSE 473: Artificial Intelligence Autumn 2011 CSE 473: Artificial Intelligence Autumn 2011 Adversarial Search Luke Zettlemoyer Based on slides from Dan Klein Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 Adversarial

More information

UMBC CMSC 671 Midterm Exam 22 October 2012

UMBC CMSC 671 Midterm Exam 22 October 2012 Your name: 1 2 3 4 5 6 7 8 total 20 40 35 40 30 10 15 10 200 UMBC CMSC 671 Midterm Exam 22 October 2012 Write all of your answers on this exam, which is closed book and consists of six problems, summing

More information

Overview Agents, environments, typical components

Overview Agents, environments, typical components Overview Agents, environments, typical components CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami January 23, 2017 Outline 1 Autonomous robots 2 Agents

More information

The Odds Calculators: Partial simulations vs. compact formulas By Catalin Barboianu

The Odds Calculators: Partial simulations vs. compact formulas By Catalin Barboianu The Odds Calculators: Partial simulations vs. compact formulas By Catalin Barboianu As result of the expanded interest in gambling in past decades, specific math tools are being promulgated to support

More information

Leandro Chaves Rêgo. Unawareness in Extensive Form Games. Joint work with: Joseph Halpern (Cornell) Statistics Department, UFPE, Brazil.

Leandro Chaves Rêgo. Unawareness in Extensive Form Games. Joint work with: Joseph Halpern (Cornell) Statistics Department, UFPE, Brazil. Unawareness in Extensive Form Games Leandro Chaves Rêgo Statistics Department, UFPE, Brazil Joint work with: Joseph Halpern (Cornell) January 2014 Motivation Problem: Most work on game theory assumes that:

More information

Math Steven Noble. November 24th. Steven Noble Math 3790

Math Steven Noble. November 24th. Steven Noble Math 3790 Math 3790 Steven Noble November 24th The Rules of Craps In the game of craps you roll two dice then, if the total is 7 or 11, you win, if the total is 2, 3, or 12, you lose, In the other cases (when the

More information

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1 Announcements Homework 1 Due tonight at 11:59pm Project 1 Electronic HW1 Written HW1 Due Friday 2/8 at 4:00pm CS 188: Artificial Intelligence Adversarial Search and Game Trees Instructors: Sergey Levine

More information

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom Learning Goals Joint Distributions, Independence Class 7, 8.5 Jeremy Orloff and Jonathan Bloom. Understand what is meant by a joint pmf, pdf and cdf of two random variables. 2. Be able to compute probabilities

More information

The probability set-up

The probability set-up CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

More information

Axiomatic Probability

Axiomatic Probability Axiomatic Probability The objective of probability is to assign to each event A a number P(A), called the probability of the event A, which will give a precise measure of the chance thtat A will occur.

More information

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions)

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) CSE 31: Foundations of Computing II Quiz Section #: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) Review: Main Theorems and Concepts Binomial Theorem: x, y R, n N: (x + y) n

More information

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37 Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

Elements of Artificial Intelligence and Expert Systems

Elements of Artificial Intelligence and Expert Systems Elements of Artificial Intelligence and Expert Systems Master in Data Science for Economics, Business & Finance Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135 Milano (MI) Ufficio

More information

Is everything stochastic?

Is everything stochastic? Is everything stochastic? Glenn Shafer Rutgers University Games and Decisions Centro di Ricerca Matematica Ennio De Giorgi 8 July 2013 1. Game theoretic probability 2. Game theoretic upper and lower probability

More information

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

More information

CSI 23 LECTURE NOTES (Ojakian) Topics 5 and 6: Probability Theory

CSI 23 LECTURE NOTES (Ojakian) Topics 5 and 6: Probability Theory CSI 23 LECTURE NOTES (Ojakian) Topics 5 and 6: Probability Theory 1. Probability Theory OUTLINE (References: 5.1, 5.2, 6.1, 6.2, 6.3) 2. Compound Events (using Complement, And, Or) 3. Conditional Probability

More information

Name: Final Exam May 7, 2014

Name: Final Exam May 7, 2014 MATH 10120 Finite Mathematics Final Exam May 7, 2014 Name: Be sure that you have all 16 pages of the exam. The exam lasts for 2 hrs. There are 30 multiple choice questions, each worth 5 points. You may

More information

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015 1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory AI Challenge One 140 Challenge 1 grades 120 100 80 60 AI Challenge One Transform to graph Explore the

More information

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Thursday, 4/17/14 The Addition Principle The Inclusion-Exclusion Principle The Pigeonhole Principle Reading: [J] 6.1, 6.8 [H] 3.5, 12.3 Exercises:

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and

More information

Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability

Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Student Name: Find the indicated probability. 1) If you flip a coin three times, the possible outcomes are HHH

More information

Expected Value, continued

Expected Value, continued Expected Value, continued Data from Tuesday On Tuesday each person rolled a die until obtaining each number at least once, and counted the number of rolls it took. Each person did this twice. The data

More information

APPENDIX 2.3: RULES OF PROBABILITY

APPENDIX 2.3: RULES OF PROBABILITY The frequentist notion of probability is quite simple and intuitive. Here, we ll describe some rules that govern how probabilities are combined. Not all of these rules will be relevant to the rest of this

More information

CSE 473 Artificial Intelligence (AI) Outline

CSE 473 Artificial Intelligence (AI) Outline CSE 473 Artificial Intelligence (AI) Rajesh Rao (Instructor) Ravi Kiran (TA) http://www.cs.washington.edu/473 UW CSE AI faculty Goals of this course Logistics What is AI? Examples Challenges Outline 2

More information

Outline. Introduction to AI. Artificial Intelligence. What is an AI? What is an AI? Agents Environments

Outline. Introduction to AI. Artificial Intelligence. What is an AI? What is an AI? Agents Environments Outline Introduction to AI ECE457 Applied Artificial Intelligence Fall 2007 Lecture #1 What is an AI? Russell & Norvig, chapter 1 Agents s Russell & Norvig, chapter 2 ECE457 Applied Artificial Intelligence

More information

Answer each of the following problems. Make sure to show your work.

Answer each of the following problems. Make sure to show your work. Answer each of the following problems. Make sure to show your work. 1. A board game requires each player to roll a die. The player with the highest number wins. If a player wants to calculate his or her

More information

Philosophy. AI Slides (5e) c Lin

Philosophy. AI Slides (5e) c Lin Philosophy 15 AI Slides (5e) c Lin Zuoquan@PKU 2003-2018 15 1 15 Philosophy 15.1 AI philosophy 15.2 Weak AI 15.3 Strong AI 15.4 Ethics 15.5 The future of AI AI Slides (5e) c Lin Zuoquan@PKU 2003-2018 15

More information

Introduction to Game Theory a Discovery Approach. Jennifer Firkins Nordstrom

Introduction to Game Theory a Discovery Approach. Jennifer Firkins Nordstrom Introduction to Game Theory a Discovery Approach Jennifer Firkins Nordstrom Contents 1. Preface iv Chapter 1. Introduction to Game Theory 1 1. The Assumptions 1 2. Game Matrices and Payoff Vectors 4 Chapter

More information

Veracity Managing Uncertain Data. Skript zur Vorlesung Datenbanksystem II Dr. Andreas Züfle

Veracity Managing Uncertain Data. Skript zur Vorlesung Datenbanksystem II Dr. Andreas Züfle Veracity Managing Uncertain Data Skript zur Vorlesung Datenbanksystem II Dr. Andreas Züfle Geo-Spatial Data Huge flood of geo-spatial data Modern technology New user mentality Great research potential

More information

Self-interested agents What is Game Theory? Example Matrix Games. Game Theory Intro. Lecture 3. Game Theory Intro Lecture 3, Slide 1

Self-interested agents What is Game Theory? Example Matrix Games. Game Theory Intro. Lecture 3. Game Theory Intro Lecture 3, Slide 1 Game Theory Intro Lecture 3 Game Theory Intro Lecture 3, Slide 1 Lecture Overview 1 Self-interested agents 2 What is Game Theory? 3 Example Matrix Games Game Theory Intro Lecture 3, Slide 2 Self-interested

More information

Detecticon: A Prototype Inquiry Dialog System

Detecticon: A Prototype Inquiry Dialog System Detecticon: A Prototype Inquiry Dialog System Takuya Hiraoka and Shota Motoura and Kunihiko Sadamasa Abstract A prototype inquiry dialog system, dubbed Detecticon, demonstrates its ability to handle inquiry

More information

UMBC 671 Midterm Exam 19 October 2009

UMBC 671 Midterm Exam 19 October 2009 Name: 0 1 2 3 4 5 6 total 0 20 25 30 30 25 20 150 UMBC 671 Midterm Exam 19 October 2009 Write all of your answers on this exam, which is closed book and consists of six problems, summing to 160 points.

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-351-01 Probability Winter 2011-2012 Contents 1 Axiomatic Probability 2 1.1 Outcomes and Events............................... 2 1.2 Rules of Probability................................

More information

Honors Precalculus Chapter 9 Summary Basic Combinatorics

Honors Precalculus Chapter 9 Summary Basic Combinatorics Honors Precalculus Chapter 9 Summary Basic Combinatorics A. Factorial: n! means 0! = Why? B. Counting principle: 1. How many different ways can a license plate be formed a) if 7 letters are used and each

More information

Game Theory Lecturer: Ji Liu Thanks for Jerry Zhu's slides

Game Theory Lecturer: Ji Liu Thanks for Jerry Zhu's slides Game Theory ecturer: Ji iu Thanks for Jerry Zhu's slides [based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials] slide 1 Overview Matrix normal form Chance games Games with hidden information

More information

CS360: AI & Robotics. TTh 9:25 am - 10:40 am. Shereen Khoja 8/29/03 CS360 AI & Robotics 1

CS360: AI & Robotics. TTh 9:25 am - 10:40 am. Shereen Khoja 8/29/03 CS360 AI & Robotics 1 CS360: AI & Robotics TTh 9:25 am - 10:40 am Shereen Khoja shereen@pacificu.edu 8/29/03 CS360 AI & Robotics 1 Artificial Intelligence v We call ourselves Homo sapiens v What does this mean? 8/29/03 CS360

More information

Intelligent Agents. Introduction to Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 23.

Intelligent Agents. Introduction to Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 23. Intelligent Agents Introduction to Planning Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 23. April 2012 U. Schmid (CogSys) Intelligent Agents last change: 23.

More information

The probability set-up

The probability set-up CHAPTER The probability set-up.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

More information

Lecture 6 Probability

Lecture 6 Probability Lecture 6 Probability Example: When you toss a coin, there are only two possible outcomes, heads and tails. What if we toss a coin two times? Figure below shows the results of tossing a coin 5000 times

More information

Rational decisions in non-probabilistic setting

Rational decisions in non-probabilistic setting Computational Logic Seminar, Graduate Center CUNY Rational decisions in non-probabilistic setting Sergei Artemov October 20, 2009 1 In this talk The knowledge-based rational decision model (KBR-model)

More information

Overview. Pre AI developments. Birth of AI, early successes. Overwhelming optimism underwhelming results

Overview. Pre AI developments. Birth of AI, early successes. Overwhelming optimism underwhelming results Help Overview Administrivia History/applications Modeling agents/environments What can we learn from the past? 1 Pre AI developments Philosophy: intelligence can be achieved via mechanical computation

More information

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes.

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. Artificial Intelligence A branch of Computer Science. Examines how we can achieve intelligent

More information

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results:

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability

More information

Safety and Security. Pieter van Gelder. KIVI Jaarccongres 30 November 2016

Safety and Security. Pieter van Gelder. KIVI Jaarccongres 30 November 2016 Safety and Security Pieter van Gelder Professor of Safety Science and TU Safety and Security Institute KIVI Jaarccongres 30 November 2016 1/50 Outline The setting Innovations in monitoring of, and dealing

More information

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000.

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000. CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 15 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette wheels. Today

More information

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 CS 730/830: Intro AI Prof. Wheeler Ruml TA Bence Cserna Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 Wheeler Ruml (UNH) Lecture 1, CS 730 1 / 23 My Definition

More information

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game Outline Game Playing ECE457 Applied Artificial Intelligence Fall 2007 Lecture #5 Types of games Playing a perfect game Minimax search Alpha-beta pruning Playing an imperfect game Real-time Imperfect information

More information

4.2.4 What if both events happen?

4.2.4 What if both events happen? 4.2.4 What if both events happen? Unions, Intersections, and Complements In the mid 1600 s, a French nobleman, the Chevalier de Mere, was wondering why he was losing money on a bet that he thought was

More information

Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation. The study of randomness Chapter 6: Probability and Simulation The study of randomness 6.1 Randomness Probability describes the pattern of chance outcomes. Probability is the basis of inference Meaning, the pattern of chance outcomes

More information

Your Name and ID. (a) ( 3 points) Breadth First Search is complete even if zero step-costs are allowed.

Your Name and ID. (a) ( 3 points) Breadth First Search is complete even if zero step-costs are allowed. 1 UC Davis: Winter 2003 ECS 170 Introduction to Artificial Intelligence Final Examination, Open Text Book and Open Class Notes. Answer All questions on the question paper in the spaces provided Show all

More information

37 Game Theory. Bebe b1 b2 b3. a Abe a a A Two-Person Zero-Sum Game

37 Game Theory. Bebe b1 b2 b3. a Abe a a A Two-Person Zero-Sum Game 37 Game Theory Game theory is one of the most interesting topics of discrete mathematics. The principal theorem of game theory is sublime and wonderful. We will merely assume this theorem and use it to

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM.

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. 6.04/6.43 Spring 09 Quiz Wednesday, March, 7:30-9:30 PM. Name: Recitation Instructor: TA: Question Part Score Out of 0 3 all 40 2 a 5 b 5 c 6 d 6 3 a 5 b 6 c 6 d 6 e 6 f 6 g 0 6.04 Total 00 6.43 Total

More information

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of Table of Contents Game Mechanics...2 Game Play...3 Game Strategy...4 Truth...4 Contrapositive... 5 Exhaustion...6 Burnout...8 Game Difficulty... 10 Experiment One... 12 Experiment Two...14 Experiment Three...16

More information

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility theorem (consistent decisions under uncertainty should

More information

Business Statistics. Chapter 4 Using Probability and Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 4 Using Probability and Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 4 Using Probability and Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

Chapter 3: Elements of Chance: Probability Methods

Chapter 3: Elements of Chance: Probability Methods Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 3-4 2014-2015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 4 Probability Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education School of Continuing

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information