Accelerometer Controlled Robot

Size: px
Start display at page:

Download "Accelerometer Controlled Robot"

Transcription

1 Volume-6, Issue-2, March-April 2016 International Journal of Engineering and Management Research Page Number: Accelerometer Controlled Robot Ajay Naugain 1, Dharmendra Choudhary 2, Dharmveer Jyani 3, Kamal Kumar 4, Baibhav Bishal 5 1,2,3,4 Student, Department of Electrical Engineering, S.K.I.T, Jaipur, INDIA 5 Lecturer, Department of Electrical Engineering, S.K.I.T, Jaipur, INDIA ABSTRACT Generally, robots are programmed to perform specific tasks which humans cannot. To increase the use of robots where conditions are not certain such as fire fighting or rescue operations, robots can be made which follow the instruction of human operator and perform the task. In this way decisions are taken according to the working conditions by the operator and the task is performed by the robots. Thus, we can use these robots to perform those tasks that may be harmful for humans. This paper describes about the gesture control robot which can be controlled by your normal hand gesture. It consists of mainly two parts, one is transmitter part and another is receiver part. This combination of transmitter and receiver is known as RF module. The transmitter will transmit the signal according to the position of accelerometer and your hand gesture and the receiver will receive the signal and make the robot move in respective direction. Keywords---- Accelerometer, RF Modules I. INTRODUCTION In recent years, robotics is a current emerging technology in the field of science. A number of universities in the world are developing new things in this field. Robotics is the new booming field, which will be of great use to society in the coming years. Though robots can be a replacement to humans, they still need to be controlled by humans itself. Robots can be wired or wireless. Both have pros and cons associated with them. Beyond controlling the robotic system through physical devices, recent method of gesture control has become very popular. The main purpose of using gestures is that it provides a more natural way of controlling and provides a rich and intuitive form of interaction with the robotic system. These days many types of wireless robots are being developed and are put to varied applications and uses. Human hand gestures are natural and with the help of wireless communication, it is easier to interact with the robot in a friendly way. The robot moves depending on the gesture made by your hand and from a distance. The objective of this paper is to build a wireless gesture control robot using accelerometer, RF transmitter and receiver module. According to the tilt of the accelerometer sensor mounted on hand, it sends the commands to the RF transmitter which is received by the transmitter and is processed at the receiver end which drives the motor to a particular direction. The robot moves forward, backward, right and left when we tilt our palm to forward, backward, right and left respectively. The robot stops when it is parallel to the ground. 407 Copyright Vandana Publications. All Rights Reserved. II. LITERATURE SURVEY The emergence of service robots in early 90 s (Helpmate Robots and Robo-Caddy) followed by the development of natural language interface through keyboard has been given by Torrance in 1994[1]. Speech recognition evolved as an upgradation of the past work to communicate with machines but it lacked the standardization of commands due to varying languages, pitch and accent of different users. Hence, researchers [1]- [2] proposed vision-based interface that included gesture recognition through camera to provide geometrical information to the robots. They developed mobile robot systems that were instructed through arm positions but those robot systems couldn t recognize gestures defined through specific temporal patterns. Other limitation faced by the cameras was the poor illuminations at night and in foggy weather [3]-[4]. Motion technology facilitates humans to interact with machines naturally without any interventions caused by the drawbacks of mechanical devices. Using the concept of gesture recognition, it is possible to move a robot accordingly [5]. Gyroscope and Accelerometers are the main technologies used for human machine interaction

2 that offer very reasonable motion sensitivity, hence, are used in large array of different applications [6]. A lot of work has been done on motion technology using accelerometers [7]. In 2008, Chinese traffic police system used two 3-axis accelerometers fixed on the back of their arms that were synchronized with traffic lights. However, data could only be extracted while the arms would be steady [3]. In 2010, Sauvik Das et al have used an accelerometer as a potential spying device to show locations and activities of user without one s knowledge [8]. III. COMPONENTS USED L293D Motor Driver The L293 and L293D are quadruple high-current half-h drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high- current/highvoltage loads in positive-supply applications. All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-darlington source. On the L293, external highspeed output clamp diodes should be used for inductive transient suppression. A VCC1 terminal, separate from VCC2, is provided for the logic inputs to minimize device power dissipation. The L293and L293D are characterized for operation from 0C to 70C. Fig.1 Pin Diagram of L293D ADXL335 Accelerometer Moodule The ADXL335 is a small, thin, low power, complete 3-axis accelerometer with signal conditioned voltage outputs. The product measures acceleration with a minimum full-scale range of ±3 g. It can measure the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion, shock, or vibration. The user selects the bandwidth of the accelerometer using the CX, CY, and CZ capacitors at the XO UT, YOUT, and ZOUT pins. Bandwidths can be selected to suit the application, with a range of 0.5 Hz to 1600 Hz for the X and Y axes, and a range of 0.5 Hz to 550 Hz for the Z axis. Table 1. Features of ADXL335 Accelerometer Axis 3-Axis Sensing Profile Small, low profile package Size 4 mm 4 mm 1.45 mm LFCSP Power Low 350 μa (typical) Single-supply Operation 1.8 V to 3.6 V Shock Survival 10,000 g Temperature Stability Excellent Bandwidth BW adjustment with a single capacitor per axis Other RoHS/WEEE lead-free compliant Fig. 2 ADXL335 Accelerometer HT12D Decoder HT12D IC comes from HolTek Company. HT12D is a decoder integrated circuit that belongs to 212 series of decoders. It is mainly provided to interface RF and infrared circuits. They are paired with 212 series of encoders. The chosen pair of encoder/decoder should have same number of addresses and data format. In simple terms, HT12D converts the serial input into parallel outputs. It decodes the serial addresses and data received by, say, an RF receiver, into parallel data and sends them to output data pins. The serial input data is compared with the local addresses three times continuously. The input data code is decoded when no error or unmatched codes are found. A valid transmission in indicated by a high signal at VT pin. HT12D is capable of decoding 12 bits, of which 8 are address bits and 4 are data bits. 408 Copyright Vandana Publications. All Rights Reserved.

3 of encoder and decoder. It can transmit the signal up to 500 ft of range at rate of 1 Kbps to 10 Kbps. Fig. 5 RF Module. Fig. 3 Pin Diagram of HT12D Transmitter module consists of 4 pins (GROUND, VCC, DATA, ANTENNA). DATA pin is connected to encoder (pin 17). A 17 cm single strand wire antenna is used which is connected to antenna pin of Tx module. Transmitter receives serial data and transmits RF signal wirelessly to the receiver through this antenna. HT12E Encoder HT12E is an encoder integrated circuit of 212 series of encoders. They are paired with 212 series of decoders for use in remote control system applications. It is mainly used in interfacing RF and infrared circuits. Simply put, HT12E converts the parallel inputs into serial output. It encodes the 12 bit parallel data into serial for transmission through an RF transmitter. These 12 bits are divided into 8 address bits and 4 data bits. When a trigger signal is received on TE pin, the programmed addresses/data are transmitted together with the header bits via an RF or an infrared transmission medium. HT12E begins a 4-word transmission cycle upon receipt of a transmission enable. This cycle is repeated as long as TE is kept low. As soon as TE returns to high, the encoder output completes its final cycle and then stops. Fig. 6 Pin Diagram of RF Transmitter Receiver module consists of 8 pins. 3 ground pins, 2 VCC pins, 2 DATA pins and 1 antenna pin. DATA pins are connected to decoder (pin 14). In this module also, a 17 cm single strand wire antenna is used for receiving RF signal from transmitter. Fig. 7 Pin Diagram of RF Receiver DC Motors Fig. 4 Pin Diagram of HT12E RF Transmitter And Receiver Module RF stands for radio frequency[1][13]. It is available in different operating frequencies and with different operating range. We have used 433 MHz RF Tx/Rx module. RF module is often used along with a pair Fig. 8 DC Motor 409 Copyright Vandana Publications. All Rights Reserved.

4 This is a low cost DC motor suitable for most robotic and general applications. It has a output shaft with a hole for easy mounting of wheels or pulleys. Table 2. Details about DC Motors Output RPM 200 rpm Input Voltage 12 V Stall Current Ma Shaft length 2.4 IV. CIRCUIT DIAGRAM An Accelerometer Controlled Robot is a kind of robot which can be controlled by hand gestures not by old buttons. The ADXL335 accelerometer sensor act as the input device which is mounted on a PCB, DC Motor Driver act as the driver for the motors connected to the Robot, and RF link acts as a channel for wireless communication. They sends the command to RF transmitter which is Received by the receiver and send signal to the motor driver which drives the motors in forward, reverse, left, right direction and stops it. The Robot moves in forward, reverse, left, right direction and stops when the hand tilts in forward, backward, left, right direction and not tilted respectively. The direction of the Robot changes if the connection of motors to the DC Motor Driver and the accelerometer sensor direction of mounting are changed. The transmitting device included an ADC for analog to digital conversion and an encoder IC (HT12E) which is use to encode the four bit data and then it will transmit by an RF Transmitter module. At the receiving end a RF Receiver module receives the encoded data and decodes it by decoder IC (HT12D). This data is then used to finally work our motor driver to control the motors. Now, its time to break the task in different modules to make easy and simple. Also, any project becomes easy or error free if it is done in different modules. Hence, we divide our project into two different parts that is transmitter side and receiver side. movement, backward movement, moves towards right and moves towards left. Stop Condition When the accelerometer is parallel to the horizontal plane, all the output pins of decoder (13, 12, 11, 10) are set to high which makes the robot in stop mode. Forward Movement When the accelerometer is tilted to forward, two output pin of decoder (13, 11) are set to low and other two output pin of decoder (12, 10) are set to high. This condition commands the robot to move in forward direction. Backward Movement When the accelerometer is tilted towards backward direction, two output pin of decoder (12, 10) are set to low and other two output pin of decoder (13, 11) are set to high. This condition commands the robot to move in backward direction. Right Movement When the accelerometer is tilted towards right, two output pin of decoder (12, 11) are set to low and other two output pin of decoder (13, 10) are set to high. This condition commands the robot to move towards right. Left Movement When the accelerometer is tilted towards left, two output pin of decoder (12, 11) are set to high and other two output pin of decoder (13, 10) are set to low. This condition commands the robot to move towards left. VI. COMPARISONS WITH EXISTING SYSTEM The major advantage of this system over other systems is that it provides real time palm gesture recognition, leading to an effective and natural way of controlling robots. Additional advantage-- many existing system have used Bluetooth wireless control which is replaced by RF modules in this paper, and due to which the range has been enhanced. VII. CONCLUSION Fig. 9 Block Diagram of Accelerometer Controlled Robot V. WORKING The transmitter prototype is kept on the palm and the receiver prototype ( i.e robot) moves according to the palm movement. This paper explains about the 5 different gesture position of the hand i.e stop condition, forward In this paper, an automated robot has been developed which works according to your hand gesture. The robot moves wirelessly according to palm gesture. The RF module is working on the frequency of 433 MHz and has a range of meters. This robot can be upgraded to detect human life in earthquake and landslide by implementing the sensor accordingly. It can also be upgraded to bomb detecting robot as it has robotic arm it can also lift the bomb. GPS system can be added to the robot by the help of which its location can be tracked. VIII. FUTURE SCOPE OF ACCELEROMETER BASED ROBOT 410 Copyright Vandana Publications. All Rights Reserved.

5 1. Sign language recognition 2. For socially assistive robotics 3. Directional indication through pointing 4. Control through facial gestures 5. Alternative computer interfaces 6. Immersive game technology 7. Affective computing 8. Remote control REFERENCES [1] Waldherr, S., Thrun, S., and Romero, R., A Gesture based interface for Human-Robot Interaction, Kluwer Academic Publishers, Netherland, [2] Liu, T., Guo, H., and Wang, Y., A new approach for color-based object recognition with fusion of color models, Congress on Image and Signal Processing Conference, Sanya-China, vol. 3, pp , May [3] Wang, B., and Yuan, T., Traffic Police Gesture Recognition using Accelerometer, IEEE SENSORS Conference, Lecce-Italy,pp , Oct [4] Lalanne, T., and Lempereur, C., Color recognition with a camera: a supervised algorithm for classification, IEEE Southwest Symposium on Image Analysis and Interpretation, Tucson-Arizona, pp , April [5] Available: [6] Cannan, J. and Hu, H., Human-Machine Interaction (HMI): A Survey.[Online]. Available: 508%20HMI-Survey.pdf [7] Das, S., Toya, L., Green, Perez, B., and Murphy, M. M., Detecting User Activities using the Accelerometer on the Smartphone, Team for Research in Ubiquitous Secure Technology REU Research Program, July [8] Song, M., Kim, B., Ryu, Y., Kim, Y., and Kim, S., A design of real time control robot system using android Smartphone The 7th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Busan-Korea, Nov [9] SwarnaPrabha Jena, Sworaj Kumar Nayak, Saroj Kumar Sahoo, Sibu Ranjan Sahoo, Saraswata Dash, Sunil Kumar Sahoo, ACCELEROMETER BASED GESTURE CONTROLLED ROBOT USING ARDUINO, IJESRT, April, [10] Monika Jain, Aditi, Ashwani Lohiya, Mohammad Fahad Khan, Abhishek Maurya, WIRELESS GESTURE CONTROL ROBOT: AN ANALYSIS, International Journal of Advanced Research in Computer and Communication Engineering Vol. 1, Issue 10, December Copyright Vandana Publications. All Rights Reserved.

HAND GESTURE CONTROLLED ROBOT USING ARDUINO

HAND GESTURE CONTROLLED ROBOT USING ARDUINO HAND GESTURE CONTROLLED ROBOT USING ARDUINO Vrushab Sakpal 1, Omkar Patil 2, Sagar Bhagat 3, Badar Shaikh 4, Prof.Poonam Patil 5 1,2,3,4,5 Department of Instrumentation Bharati Vidyapeeth C.O.E,Kharghar,Navi

More information

Design of Android Based Hand Gesture Controlled Robot Using MEMS

Design of Android Based Hand Gesture Controlled Robot Using MEMS Design of Android Based Hand Gesture Controlled Robot Using MEMS P.Chaitanya Assistant Professor, ECE Dept. Sreyas Institute of Dr.T.Ravichandra Babu Professor, Department of ECE Sreyas Institute of Dr.Syed

More information

Gesture Controlled Robot with Wireless Camera Monitoring

Gesture Controlled Robot with Wireless Camera Monitoring http:// Gesture Controlled Robot with Wireless Camera Monitoring B. Chaitanya Varma P. Manikanta P.Venkateswaralu Reddy Abstract- The interaction between humans and machines increasing day by day. With

More information

Gesture Controlled Car

Gesture Controlled Car Gesture Controlled Car Chirag Gupta Department of ECE ITM University Nitin Garg Department of ECE ITM University ABSTRACT Gesture Controlled Car is a robot which can be controlled by simple human gestures.

More information

Wirelessly Controlled Wheeled Robotic Arm

Wirelessly Controlled Wheeled Robotic Arm Wirelessly Controlled Wheeled Robotic Arm Muhammmad Tufail 1, Mian Muhammad Kamal 2, Muhammad Jawad 3 1 Department of Electrical Engineering City University of science and Information Technology Peshawar

More information

I. INTRODUCTION MAIN BLOCKS OF ROBOT

I. INTRODUCTION MAIN BLOCKS OF ROBOT Stair-Climbing Robot for Rescue Applications Prof. Pragati.D.Pawar 1, Prof. Ragini.D.Patmase 2, Mr. Swapnil.A.Kondekar 3, Mr. Nikhil.D.Andhare 4 1,2 Department of EXTC, 3,4 Final year EXTC, J.D.I.E.T Yavatmal,Maharashtra,

More information

RF Based Pick and Place Robot

RF Based Pick and Place Robot IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 3, Ver. I (May.-Jun. 2017), PP 34-38 www.iosrjournals.org RF Based Pick and Place

More information

SPY ROBOT CONTROLLING THROUGH ZIGBEE USING MATLAB

SPY ROBOT CONTROLLING THROUGH ZIGBEE USING MATLAB SPY ROBOT CONTROLLING THROUGH ZIGBEE USING MATLAB MD.SHABEENA BEGUM, P.KOTESWARA RAO Assistant Professor, SRKIT, Enikepadu, Vijayawada ABSTRACT In today s world, in almost all sectors, most of the work

More information

Smart Wheelchair for Disabled Persons

Smart Wheelchair for Disabled Persons Smart Wheelchair for Disabled Persons A.R.Singh*, R.Gupta*, H.S.Pal*, A.S.Rajak* *Thakur College of Engineering and Technology, University of Mumbai Keywords: Paralysis, Wheelchair, wireless, MEMS Accelerometer,

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: April, 2016 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 MATLAB CONTROLLING COLOUR SENSING ROBOT Dhiraj S.Dhondage 1,Kiran N.Nikam

More information

INTELLIGENT SELF-PARKING CHAIR

INTELLIGENT SELF-PARKING CHAIR INTELLIGENT SELF-PARKING CHAIR Siddharth Gauda 1, Ashish Panchal 2, Yograj Kadam 3, Prof. Ruchika Singh 4 1, 2, 3 Students, Electronics & Telecommunication, G.S. Moze College of Engineering, Balewadi,

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering ECGR 4161/5196 Introduction to Robotics Experiment No. 4 Tilt Detection Using Accelerometer Overview: The purpose

More information

WIRELESS SPEED CONTROL OF SINGLE PHASE AC MOTOR

WIRELESS SPEED CONTROL OF SINGLE PHASE AC MOTOR WIRELESS SPEED CONTROL OF SINGLE PHASE AC MOTOR Rakesh Sahu 1, Sachin Tiwari 2, Satish Singh 3, Abhishek Gaurav 4 1 Assistant Professor, Deptt. Of Electrical and Electronics Engineering, Gandhi Institute

More information

REMOTELY CONTROLLED ROBOTIC BOAT

REMOTELY CONTROLLED ROBOTIC BOAT REMOTELY CONTROLLED ROBOTIC BOAT Bhor shital, Shinde Suhas, Mergal shubhangi, Zaware Jayshri E&TC Department, Samarth Group of Institutions College of Engineering Email:mergalshubhangi17@gmail.com ABSTRACT:

More information

Gesture Control of Robotic Arm for Hazardous Environment

Gesture Control of Robotic Arm for Hazardous Environment Gesture Control of Robotic Arm for Hazardous Environment Ms.Pavithra R, Shreeja P, Sirisha MVK, Varshinee S Assistant Professor, UG Students, EEE RMK Engineering College R.S.M Nagar, Kavaraipettai-601

More information

IMPLEMENTATION OF EMBEDDED SYSTEM FOR INDUSTRIAL AUTOMATION

IMPLEMENTATION OF EMBEDDED SYSTEM FOR INDUSTRIAL AUTOMATION IMPLEMENTATION OF EMBEDDED SYSTEM FOR INDUSTRIAL AUTOMATION 1 Mr. Kamble Santosh Ashok, 2 Mr.V.Naga Mahesh 1 M.Tech Student, 2 Astt.Prof. 1 Ece - Embedded System, 1 Scient Institute Of Technology, Ibrahimpatnam,

More information

Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance)

Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance) Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance) Supriya Bhuran 1, Rohit V. Agrawal 2, Kiran D. Bombe 2, Somiran T. Karmakar 2, Ninad V. Bapat 2 1 Assistant Professor, Dept. Instrumentation,

More information

VISUAL FINGER INPUT SENSING ROBOT MOTION

VISUAL FINGER INPUT SENSING ROBOT MOTION VISUAL FINGER INPUT SENSING ROBOT MOTION Mr. Vaibhav Shersande 1, Ms. Samrin Shaikh 2, Mr.Mohsin Kabli 3, Mr.Swapnil Kale 4, Mrs.Ranjana Kedar 5 Student, Dept. of Computer Engineering, KJ College of Engineering

More information

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335 Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335 FEATURES 3-axis sensing Small, low profile package 4 mm 4 mm 1.45 mm LFCSP Low power : 35 µa (typical) Single-supply operation: 1.8 V to 3.6 V 1, g shock

More information

Hand Gesture Controlled Robot

Hand Gesture Controlled Robot Hand Gesture Controlled Robot MR. ANKIT BHAGAT 1, MISS. ANJALI CHANDRAKAR 2, MISS. NEHA SAHU 3, MR. NIHAL VERMA 4, MISS. KUSUM SAHU 5, MISS. SHIVANI MISHRA 6 Students 1,2,3,4,5, BE Electrical And Electronics

More information

ARDUINO BASED DC MOTOR SPEED CONTROL

ARDUINO BASED DC MOTOR SPEED CONTROL ARDUINO BASED DC MOTOR SPEED CONTROL Student of Electrical Engineering Department 1.Hirdesh Kr. Saini 2.Shahid Firoz 3.Ashutosh Pandey Abstract The Uno is a microcontroller board based on the ATmega328P.

More information

GESTURE BASED ROBOTIC ARM

GESTURE BASED ROBOTIC ARM GESTURE BASED ROBOTIC ARM Arusha Suyal 1, Anubhav Gupta 2, Manushree Tyagi 3 1,2,3 Department of Instrumentation And Control Engineering, JSSATE, Noida, (India) ABSTRACT In recent years, there are development

More information

International Journal of Research in Advent Technology Available Online at:

International Journal of Research in Advent Technology Available Online at: ON PANEL SIGNALLING SYSTEM FOR TRAINS WITH AUTOMATIC BRAKING Mr. Shailesh Mahakal 1, Ms. Rutuja Ruikar 2, Mr. Ameya Shirsat 3, Mr. Mohd Farhan 4 Department of Electronics and Telecommunication Lokmanya

More information

Design of WSN for Environmental Monitoring Using IoT Application

Design of WSN for Environmental Monitoring Using IoT Application Design of WSN for Environmental Monitoring Using IoT Application Sarika Shinde 1, Prof. Venkat N. Ghodke 2 P.G. Student, Department of E and TC Engineering, DPCOE Engineering College, Pune, Maharashtra,

More information

GESTURE BASED HOME AUTOMATION SYSTEM USING SPARTAN 3A, ASIC

GESTURE BASED HOME AUTOMATION SYSTEM USING SPARTAN 3A, ASIC Volume 118 No. 24 2018 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ GESTURE BASED HOME AUTOMATION SYSTEM USING SPARTAN 3A, ASIC 1 K.MADHAVA RAO, 2 BATTULA

More information

CONTACT: , ROBOTIC BASED PROJECTS

CONTACT: , ROBOTIC BASED PROJECTS ROBOTIC BASED PROJECTS 1. ADVANCED ROBOTIC PICK AND PLACE ARM AND HAND SYSTEM 2. AN ARTIFICIAL LAND MARK DESIGN BASED ON MOBILE ROBOT LOCALIZATION AND NAVIGATION 3. ANDROID PHONE ACCELEROMETER SENSOR BASED

More information

International Journal of Advance Engineering and Research Development. Wireless Control of Dc Motor Using RF Communication

International Journal of Advance Engineering and Research Development. Wireless Control of Dc Motor Using RF Communication International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 Special Issue SIEICON-2017,April -2017 e-issn : 2348-4470 p-issn : 2348-6406 Wireless

More information

Zig-Bee Robotic Panzer

Zig-Bee Robotic Panzer International Journal for Modern Trends in Science and Technology Volume: 03, Special Issue No: 02, March 2017 ISSN: 2455-3778 http://www.ijmtst.com Zig-Bee Robotic Panzer P.Bose Babu 1 V.Madhu Babu 2

More information

Small, Low Power, 3-Axis ±5 g Accelerometer ADXL325

Small, Low Power, 3-Axis ±5 g Accelerometer ADXL325 Small, Low Power, 3-Axis ±5 g Accelerometer ADXL325 FEATURES 3-axis sensing Small, low profile package 4 mm 4 mm 1.45 mm LFCSP Low power: 35 μa typical Single-supply operation: 1.8 V to 3.6 V 1, g shock

More information

III. MATERIAL AND COMPONENTS USED

III. MATERIAL AND COMPONENTS USED Prototype Development of a Smartphone- Controlled Robotic Vehicle with Pick- Place Capability Dheeraj Sharma Electronics and communication department Gian Jyoti Institute Of Engineering And Technology,

More information

Small, Low Power, 3-Axis ±3 g i MEMS Accelerometer ADXL330

Small, Low Power, 3-Axis ±3 g i MEMS Accelerometer ADXL330 Small, Low Power, 3-Axis ±3 g i MEMS Accelerometer ADXL33 FEATURES 3-axis sensing Small, low-profile package 4 mm 4 mm 1.4 mm LFCSP Low power 18 μa at VS = 1.8 V (typical) Single-supply operation 1.8 V

More information

Multitasking quad copter with hand gesture technology

Multitasking quad copter with hand gesture technology Multitasking quad copter with hand gesture technology Siddheshwar Naganath Morde, Vidya Vikas pratisthan institute of Engineering and technology, Solapur University/Maharashtra/India ersid111@gmail.com

More information

Pick and Place Robotic Arm Using Arduino

Pick and Place Robotic Arm Using Arduino Pick and Place Robotic Arm Using Arduino Harish K 1, Megha D 2, Shuklambari M 3, Amit K 4, Chaitanya K Jambotkar 5 1,2,3,4 5 th SEM Students in Department of Electrical and Electronics Engineering, KLE.I.T,

More information

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL337

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL337 Small, Low Power, 3-Axis ±3 g Accelerometer ADXL337 FEATURES 3-axis sensing Small, low profile package 3 mm 3 mm 1.4 mm LFCSP Low power: 3 μa (typical) Single-supply operation: 1.8 V to 3.6 V 1, g shock

More information

Electronics Design Laboratory Lecture #10. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #10. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #10 Electronics Design Laboratory 1 Lessons from Experiment 4 Code debugging: use print statements and serial monitor window Circuit debugging: Re check operation

More information

Android Phone Based Assistant System for Handicapped/Disabled/Aged People

Android Phone Based Assistant System for Handicapped/Disabled/Aged People IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 10 March 2017 ISSN (online): 2349-6010 Android Phone Based Assistant System for Handicapped/Disabled/Aged People

More information

P96.67 X Y Z ADXL330. Masse 10V. ENS-Lyon Département Physique-Enseignement. Alimentation 10V 1N nF. Masse

P96.67 X Y Z ADXL330. Masse 10V. ENS-Lyon Département Physique-Enseignement. Alimentation 10V 1N nF. Masse P96.67 X Y Z V Masse ENS-Lyon Département Physique-Enseignement 1N47 nf 78 Alimentation E M V Masse Benoit CAPITAINE Technicien ENS LYON mai 1 ACCEL BOARD Additional Board All Mikroelektronika s development

More information

Auto-Fact Security System

Auto-Fact Security System IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 Auto-Fact Security System Rasika Hedaoo Department of Electronics Engineering

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (  1 Biomimetic Based Interactive Master Slave Robots T.Anushalalitha 1, Anupa.N 2, Jahnavi.B 3, Keerthana.K 4, Shridevi.S.C 5 Dept. of Telecommunication, BMSCE Bangalore, India. Abstract The system involves

More information

VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING

VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING P.NARENDRA ILAYA PALLAVAN 1, S.HARISH 2, C.DHACHINAMOORTHI 3 1Assistant Professor, EIE Department, Bannari Amman Institute of Technology,

More information

L293x Quadruple Half-H Drivers

L293x Quadruple Half-H Drivers SLRS8D SEPTEMBER 8 REVISED JANUARY Lx Quadruple Half-H Drivers Features Description Wide Supply-Voltage Range: 4.5 V to V The L and LD devices are quadruple highcurrent half-h drivers. The L is designed

More information

Project Final Report: Directional Remote Control

Project Final Report: Directional Remote Control Project Final Report: by Luca Zappaterra xxxx@gwu.edu CS 297 Embedded Systems The George Washington University April 25, 2010 Project Abstract In the project, a prototype of TV remote control which reacts

More information

Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch

Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch Mr. T. P. Kausalya Nandan, S. N. Anvesh Kumar, M. Bhargava, P. Chandrakanth, M. Sairani Abstract In today s world working on robots

More information

AUTOMATIC MISSILE DETECTOR USING ULTRASONIC PROXIMITY DETECTOR

AUTOMATIC MISSILE DETECTOR USING ULTRASONIC PROXIMITY DETECTOR AUTOMATIC MISSILE DETECTOR USING ULTRASONIC PROXIMITY DETECTOR Narayan Thakkar, Shubham Sahu, Shrushti Sindhemeshram, Roshan Kumar Department of ETC Organization YCCE, Nagpur, Maharashtra, India Abstract

More information

ARTIFICIAL ROBOT NAVIGATION BASED ON GESTURE AND SPEECH RECOGNITION

ARTIFICIAL ROBOT NAVIGATION BASED ON GESTURE AND SPEECH RECOGNITION ARTIFICIAL ROBOT NAVIGATION BASED ON GESTURE AND SPEECH RECOGNITION ABSTRACT *Miss. Kadam Vaishnavi Chandrakumar, ** Prof. Hatte Jyoti Subhash *Research Student, M.S.B.Engineering College, Latur, India

More information

II. MAIN BLOCKS OF ROBOT

II. MAIN BLOCKS OF ROBOT AVR Microcontroller Based Wireless Robot For Uneven Surface Prof. S.A.Mishra 1, Mr. S.V.Chinchole 2, Ms. S.R.Bhagat 3 1 Department of EXTC J.D.I.E.T Yavatmal, Maharashtra, India. 2 Final year EXTC J.D.I.E.T

More information

Implementaion of High Performance Home Automation using Arduino

Implementaion of High Performance Home Automation using Arduino Indian Journal of Science and Technology, Vol 9(21), DOI: 10.17485/ijst/2016/v9i21/94842, June 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Implementaion of High Performance Home Automation

More information

Voice Guided Military Robot for Defence Application

Voice Guided Military Robot for Defence Application IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Voice Guided Military Robot for Defence Application Palak N. Patel Minal

More information

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335 Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335 FEATURES 3-axis sensing Small, low profile package 4 mm 4 mm 1.45 mm LFCSP Low power : 35 μa (typical) Single-supply operation: 1.8 V to 3.6 V, g shock

More information

Ultra-small, economical and cheap radar made possible thanks to chip technology

Ultra-small, economical and cheap radar made possible thanks to chip technology Edition March 2018 Radar technology, Smart Mobility Ultra-small, economical and cheap radar made possible thanks to chip technology By building radars into a car or something else, you are able to detect

More information

Arduino Based Robot for Pick and Place Application

Arduino Based Robot for Pick and Place Application Arduino Based Robot for Pick and Place Application Priya H. Pande Pallavi V. Saklecha Prof. Pragati D. Pawar Prof. Atul N. Shire Abstract Here, the project is designed to develop a system in which robot

More information

Voice Activated Hospital Bed, Herat Beat, Temperature Monitoring and Alerting System

Voice Activated Hospital Bed, Herat Beat, Temperature Monitoring and Alerting System International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 5 (2017) pp. 643-647 Research India Publications http://www.ripublication.com Voice Activated Hospital Bed, Herat

More information

War Field Spying Robot With Night Vision Camera

War Field Spying Robot With Night Vision Camera War Field Spying Robot With Night Vision Camera Aaruni Jha, Apoorva Singh, Ravinder Turna, Sakshi Chauhan SRMSWCET, UPTU, India Abstract With the aim of the satisfying and meeting the changing needs of

More information

A Unique Home Automation System through MEMS

A Unique Home Automation System through MEMS A Unique Home Automation System through MEMS Neha Surin 1, Dr. R. P. Gupta 2 1 Department of Electrical Engineering, BIT, Sindri, (DHANBAD) 2 Assistant professor, Department of Electrical Engineering,

More information

BASIC-Tiger Application Note No. 059 Rev Motor control with H bridges. Gunther Zielosko. 1. Introduction

BASIC-Tiger Application Note No. 059 Rev Motor control with H bridges. Gunther Zielosko. 1. Introduction Motor control with H bridges Gunther Zielosko 1. Introduction Controlling rather small DC motors using micro controllers as e.g. BASIC-Tiger are one of the more common applications of those useful helpers.

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

PLC BASED RAILWAY LEVEL CROSSING GATE CONTROL

PLC BASED RAILWAY LEVEL CROSSING GATE CONTROL PLC BASED RAILWAY LEVEL CROSSING GATE CONTROL R.Gopinathan *1 and B.Sivashankar #2 * Assistant professor, Mechatronics, SNS College of Technology, Coimbatore,India. # UG scholar, Mechatronics, SNS College

More information

1. INTRODUCTION. Road Characterization of Digital maps. A. Technical Background. B. Proposed System

1. INTRODUCTION. Road Characterization of Digital maps. A. Technical Background. B. Proposed System 1. INTRODUCTION Here, implementation a novel system to detect, maintain and warn the forthcoming road inconsistencies. In hilly, fog affected and unmaintained areas, vehicles/ motorists are more prone

More information

Training Schedule. Robotic System Design using Arduino Platform

Training Schedule. Robotic System Design using Arduino Platform Training Schedule Robotic System Design using Arduino Platform Session - 1 Embedded System Design Basics : Scope : To introduce Embedded Systems hardware design fundamentals to students. Processor Selection

More information

The Speech Based Floor Cleaning Robot

The Speech Based Floor Cleaning Robot International journal of Systems and Technologies ISSN 0-0 The Speech Based Floor Cleaning Robot Sidhartha Velpula, Sunil Babu Thota, V.S.G.V.Sridhar, Syed Inthiyaz, Siva Kumar Abstract: Munuswamy, Students,

More information

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture # ECEN 7 Electronics Design Laboratory Project Must rely on fully functional Lab circuits, Lab circuit is optional Can re do wireless or replace it with a different

More information

Robotics is a fascinating subject more

Robotics is a fascinating subject more REMOTE-CONTROLLED LAND ROVER A DIY ROBOTIC PROJECT DWIVEDI & S KUMAR GP CAPT K.C. BHASIN (RETD), S.C. DWIVEDI, SUNIL KUMAR Robotics is a fascinating subject more so, if you have to fabricate a robot yourself.

More information

Development of a Robotic Vehicle and Implementation of a Control Strategy for Gesture Recognition through Leap Motion device

Development of a Robotic Vehicle and Implementation of a Control Strategy for Gesture Recognition through Leap Motion device RESEARCH ARTICLE OPEN ACCESS Development of a Robotic Vehicle and Implementation of a Control Strategy for Gesture Recognition through Leap Motion device 1 Dr. V. Nithya, 2 T. Sree Harsha, 3 G. Tarun Kumar,

More information

Rahul Krishna K 1, Meera A 2, Nikhil Mathew 3 1,2,3 EEE Department, Mar Athanesius College of Engineering, Kothamangalam

Rahul Krishna K 1, Meera A 2, Nikhil Mathew 3 1,2,3 EEE Department, Mar Athanesius College of Engineering, Kothamangalam Wireless Human Detection Robot Rahul Krishna K 1, Meera A 2, Nikhil Mathew 3 1,2,3 EEE Department, Mar Athanesius College of Engineering, Kothamangalam Abstract: The advent of new high-speed technology

More information

Robotics And Remotely Operated Vehicles. P. A. Kulkarni S. G. Karad

Robotics And Remotely Operated Vehicles. P. A. Kulkarni S. G. Karad Robotics And Remotely Operated Vehicles P. A. Kulkarni S. G. Karad MAE, Alandi, Pune, India. 412105. pakulkarni@mitpune.com, shivajikarad@mitpune.com Abstract - In this paper, we present controlling of

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

Divya Singh, Manisha Verma, Rachana Sahu, Shruti Kantode, Shailendra Singh

Divya Singh, Manisha Verma, Rachana Sahu, Shruti Kantode, Shailendra Singh International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2017 IJSRCSEIT Volume 2 Issue 3 ISSN : 2456-3307 Android Application Based Robotic Vehicle Divya

More information

Golden Research Thoughts

Golden Research Thoughts ORIGINAL ARTICLE ISSN 2231-5063 Golden Research Thoughts MICROCONTROLLER BASED WIRELESS INCLINATION MEASUREMENT ORIGINAL ARTICLE SYSTEM FOR TILTING BLENDERS USING RF MODULE Siddharth B. Maraje, Anmol Kumar

More information

[Kokane, 4(2), February, 2017] ISSN: IMPACT FACTOR

[Kokane, 4(2), February, 2017] ISSN: IMPACT FACTOR WIRELESS WATER LEVEL INDICATOR Kokane Sandesh 1, Chaskar Jitendra 2, Gawde Tanuja 3 & Gaikwad Akshay 4 1,2,3 & 4 Research Scholar, Department of Electronics and Telecommunication Engineering, Jaihind Polytechnic

More information

An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting

An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting K. Prathyusha Assistant professor, Department of ECE, NRI Institute of Technology, Agiripalli Mandal, Krishna District,

More information

Autonomous Obstacle Avoiding and Path Following Rover

Autonomous Obstacle Avoiding and Path Following Rover Volume 114 No. 9 2017, 271-281 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Autonomous Obstacle Avoiding and Path Following Rover ijpam.eu Sandeep Polina

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

Introduction to Arduino HW Labs

Introduction to Arduino HW Labs Introduction to Arduino HW Labs In the next six lab sessions, you ll attach sensors and actuators to your Arduino processor This session provides an overview for the devices LED indicators Text/Sound Output

More information

MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it

MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it The main aim of this project is video coverage at required places with the help of digital camera and high power LED.

More information

Satellite Dish Positioning System

Satellite Dish Positioning System IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 7 December 2017 ISSN (online): 2349-6010 Satellite Dish Positioning System Mrs. Shweta S. Waghmare Mr. Parag

More information

KINECT CONTROLLED HUMANOID AND HELICOPTER

KINECT CONTROLLED HUMANOID AND HELICOPTER KINECT CONTROLLED HUMANOID AND HELICOPTER Muffakham Jah College of Engineering & Technology Presented by : MOHAMMED KHAJA ILIAS PASHA ZESHAN ABDUL MAJEED AZMI SYED ABRAR MOHAMMED ISHRAQ SARID MOHAMMED

More information

Small and Thin ±18 g Accelerometer ADXL321

Small and Thin ±18 g Accelerometer ADXL321 Small and Thin ±18 g Accelerometer ADXL321 FEATURES Small and thin 4 mm 4 mm 1.4 mm LFCSP package 3 mg resolution at Hz Wide supply voltage range: 2.4 V to 6 V Low power: 3 µa at VS = 2.4 V (typ) Good

More information

Traffic Signal Control System With Ambulance Assistance

Traffic Signal Control System With Ambulance Assistance IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 4, Ver. IV (Jul.-Aug. 2017), PP 71-79 www.iosrjournals.org Traffic Signal Control

More information

WAR FIELD SPYING ROBOT WITH NIGHT VISION CAMERA

WAR FIELD SPYING ROBOT WITH NIGHT VISION CAMERA WAR FIELD SPYING ROBOT WITH NIGHT VISION CAMERA Sakshi Balasaheb Chavanke 1, Tejal Dnyandev Barhate 2 1,2 Third year Electrical Student, Department of Electrical Engineering, Guru Gobind Singh Polytechnic

More information

Real Time Hand Gesture Tracking for Network Centric Application

Real Time Hand Gesture Tracking for Network Centric Application Real Time Hand Gesture Tracking for Network Centric Application Abstract Chukwuemeka Chijioke Obasi 1 *, Christiana Chikodi Okezie 2, Ken Akpado 2, Chukwu Nnaemeka Paul 3, Asogwa, Chukwudi Samuel 1, Akuma

More information

ADVANCED FALL IDENTIFICATION SYSTEM

ADVANCED FALL IDENTIFICATION SYSTEM ADVANCED FALL IDENTIFICATION SYSTEM ROHIT KUMAR 1, S. SRI SURYA SRIKANTH 2 Abstract: The population of 65-and over aged people in the developed countries will approach 20% of total population in the next

More information

5800 AND AND BiMOS II LATCHED DRIVERS UCN5800L UCN5800A

5800 AND AND BiMOS II LATCHED DRIVERS UCN5800L UCN5800A 800 AND 80 Data Sheet 2680.0B CLEAR 2 UCN800L UCN800A V DD 3 OUTPUT ENABLE SUPPLY The UCN800A/L and UCN80A/EP/LW latched-input BiMOS ICs merge high-current, high-voltage outputs with CMOS logic. The CMOS

More information

TOUCH SCREEN BASED SPEED CONTROL OF SINGLE PHASE INDUCTION MOTOR

TOUCH SCREEN BASED SPEED CONTROL OF SINGLE PHASE INDUCTION MOTOR TOUCH SCREEN BASED SPEED CONTROL OF SINGLE PHASE INDUCTION MOTOR Neetu Singh M.R 1, Sarat Kumar Sahoo 2 1 Student, 2 Assistant Professor, School of Electrical Engineering, VIT University, (India) ABSTRACT

More information

LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES

LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES 1 Guntha Karthik, 2 Prof.Singam Jayanthu, 3 Bhushan N Patil, and 4 R.Prashanth

More information

MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS

MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS 1 RAKSHA A R, 2 KAVYA B, 3 PRAVEENA ANAJI, 4 NANDESH K N 1,2 UG student, 3,4 Assistant Professor Department of

More information

CSE 165: 3D User Interaction. Lecture #7: Input Devices Part 2

CSE 165: 3D User Interaction. Lecture #7: Input Devices Part 2 CSE 165: 3D User Interaction Lecture #7: Input Devices Part 2 2 Announcements Homework Assignment #2 Due tomorrow at 2pm Sony Move check out Homework discussion Monday at 6pm Input Devices CSE 165 -Winter

More information

Energy Efficient Ceiling Fan using BLDC Motor

Energy Efficient Ceiling Fan using BLDC Motor Energy Efficient Ceiling Fan using BLDC Motor Sahid. P. C Eee Department Mace Kothamangalam Kerala Muhammed Shafi. P Eee Department Mace Kothamangalam Kerala Irshad. P. M Vishnu. P Albin Thomas Eee Department

More information

Analog Integrations Corporation 4F, 9 Industry E. 9th Rd, Science-Based Industrial Park, Hsinchu, Taiwan DS

Analog Integrations Corporation 4F, 9 Industry E. 9th Rd, Science-Based Industrial Park, Hsinchu, Taiwan DS 8-Channel Darlington Drivers FEATURES Improved Replacement for ULN80. Fast Turn-on and Turn-off. TTL/CMOS Compatible. APPLICATIONS Stepping Motor Driver. Relay Driver. LED Driver. Solenoid Driver. DESCRIPTION

More information

A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM

A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM 1 J. H.VARDE, 2 N.B.GOHIL, 3 J.H.SHAH 1 Electronics & Communication Department, Gujarat Technological University, Ahmadabad, India

More information

Accident Sensor with Google Map Locator

Accident Sensor with Google Map Locator IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 Accident Sensor with Google Map Locator Steffie Tom Keval Velip Aparna

More information

Obstacle Avoiding Robot

Obstacle Avoiding Robot Obstacle Avoiding Robot Trinayan Saharia 1, Jyotika Bauri 2, Mrs. Chayanika Bhagabati 3 1,2 Student, 3 Asst. Prof., ECE, Assam down town University, Assam Abstract: An obstacle avoiding robot is an intelligent

More information

University of Toronto. Companion Robot Security. ECE1778 Winter Wei Hao Chang Apper Alexander Hong Programmer

University of Toronto. Companion Robot Security. ECE1778 Winter Wei Hao Chang Apper Alexander Hong Programmer University of Toronto Companion ECE1778 Winter 2015 Creative Applications for Mobile Devices Wei Hao Chang Apper Alexander Hong Programmer April 9, 2015 Contents 1 Introduction 3 1.1 Problem......................................

More information

Fabrication of the kinect remote-controlled cars and planning of the motion interaction courses

Fabrication of the kinect remote-controlled cars and planning of the motion interaction courses Available online at www.sciencedirect.com ScienceDirect Procedia - Social and Behavioral Sciences 174 ( 2015 ) 3102 3107 INTE 2014 Fabrication of the kinect remote-controlled cars and planning of the motion

More information

PBL 3717/2 Stepper Motor Drive Circuit

PBL 3717/2 Stepper Motor Drive Circuit April 998 PBL / Stepper Motor Drive Circuit Description PBL / is a bipolar monolithic circuit intended to control and drive the current in one winding of a stepper motor. The circuit consists of a LS-TTL

More information

A 3D Gesture Based Control Mechanism for Quad-copter

A 3D Gesture Based Control Mechanism for Quad-copter I J C T A, 9(13) 2016, pp. 6081-6090 International Science Press A 3D Gesture Based Control Mechanism for Quad-copter Adarsh V. 1 and J. Subhashini 2 ABSTRACT Objectives: The quad-copter is one of the

More information

Soldier Tracking and Health Indication System Using ARM7 LPC-2148

Soldier Tracking and Health Indication System Using ARM7 LPC-2148 Soldier Tracking and Health Indication System Using ARM7 LPC-2148 Shraddha Mahale, Ekta Bari, Kajal Jha Mechanism under Guidance of Prof. Elahi Shaikh (HOD) Electronics Engineering, Mumbai University Email:

More information

High-Level Programming for Industrial Robotics: using Gestures, Speech and Force Control

High-Level Programming for Industrial Robotics: using Gestures, Speech and Force Control High-Level Programming for Industrial Robotics: using Gestures, Speech and Force Control Pedro Neto, J. Norberto Pires, Member, IEEE Abstract Today, most industrial robots are programmed using the typical

More information

DTMF Controlled Robot

DTMF Controlled Robot DTMF Controlled Robot Devesh Waingankar 1, Aaditya Agarwal 2, Yash Murudkar 3, Himanshu Jain 4, Sonali Pakhmode 5 ¹Information Technology-University of Mumbai, India Abstract- Wireless-controlled robots

More information

DISCONTINUED PRODUCT FOR REFERENCE ONLY. QUAD HIGH-CURRENT, HIGH-VOLTAGE SOURCE DRIVER FEATURES

DISCONTINUED PRODUCT FOR REFERENCE ONLY. QUAD HIGH-CURRENT, HIGH-VOLTAGE SOURCE DRIVER FEATURES Data Sheet 29309.10 2944 V S Capable of driving loads to 4 A at supply voltages to 60 V (inductive loads to 35 V), the UDN2944W is a quad high-current, highvoltage source driver. Each of the four power

More information

WifiBotics. An Arduino Based Robotics Workshop

WifiBotics. An Arduino Based Robotics Workshop WifiBotics An Arduino Based Robotics Workshop WifiBotics is the workshop designed by RoboKart group pioneers in this field way back in 2014 and copied by many competitors. This workshop is based on the

More information