Model Predictive Controller Design for Performance Study of a Coupled Tank Process

Size: px
Start display at page:

Download "Model Predictive Controller Design for Performance Study of a Coupled Tank Process"

Transcription

1 Model Predictive Controller Design for Performance Study of a Coupled Tank Process J. Gireesh Kumar & Veena Sharma Department of Electrical Engineering, NIT Hamirpur, Hamirpur, Himachal Pradesh, India Emial : gireesh.nith@gmail.com, veenanaresh@gmail.com Abstract - Model predictive control (MPC) is the class of advanced control techniques. A primary advantage to this approach is the explicit handling of constraints. In addition, the formulation for multivariable systems with time-delays is straightforward in this control. MPC utilizes an internal model to predict system dynamic behavior over a finite horizon. Control decisions are based on optimizing that predicted response. MPC is a discrete-time form of control, so inaccuracies in predicted behavior are corrected at the next control interval. This technique makes the control of processes to become more efficient and cost effective. Most of its applications are in the refining, petrochemical industries and in other chemical plants. Dynamic Matrix Control is a kind of model predictive control technique based on step response model of the process. In this paper, the dynamic matrix control algorithm is implemented on coupled tank test system and control quality has been analyzed using a simulation model with different setting parameters. From the simulation results it has been observed that dynamic matrix control algorithm can achieve good results with accuracy even with cross coupling and disturbance. Index Terms Model Predictive Control (MPC), Dynamic Matrix Control (DMC), Coupled tank I. INTRODUCTION Multivariable control techniques have an great importance in process industries[1]. The common problem in a process control industry is to control the process variables like fluid level, temperature and pressure in storage tanks and chemical reactors [2]. To solve these control problems we generally use P, PI and PID controllers. PID controllers are easy to implement and robust in nature. Although the PID perform well on wide class of process with robust performance, due to the feedback nature of these controllers it is difficult to control MIMO processes and the complexity of controlling increases for processes with interactions and disturbances [3]. The PID controllers have three parameters to be adjusted. Generally this can be done by trial and error basis or by using tuning algorithms. The main disadvantages of these controllers are they can t handle constraints and tuning of PID controllers is very difficult task. So we need a control strategy that can handle constraints and give better controller performance than PID controllers. One of the solutions is Model Predictive Control. In this paper to solve the problem of couple tank dynamic matrix control algorithm is used. II. MODEL PREDICTIVE CONTROL MPC is successful technique used in process industry for more than 30 years. The main advantage of MPC is handling of input and output variable constraints [4]. The term Model Predictive Control does not mean a specific control strategy, it is a collection of control methods that makes use of the process model to obtain the control signal by minimizing the objective function [5]. The applications of predictive control which are successful in use are as follows: Clinical anesthesia. Robot Manipulators. Distillation columns. Cement industry. Drying towers, etc. The advantages of MPC over other methods are as follows: 70

2 Compensates measurable disturbances by using feed forward control in a natural way. Resulting controller is easier to implement control law. Handles constraints. Very useful when future references are known. Strategy is easy to understand. The drawbacks of MPC are: When constraints are considered, the amount of computation required is higher. Greatest drawback is to identify process model correctly. The control actions are calculated using dynamic matrix which is formed by using step response coefficients. 1. Cost function Cost function plays an important role in finding control action. The cost function is formulated in such a way that the summation of present and future error is minimized by using the minimum control action. Due to process interactions it is not possible to keep all the outputs close to their set points. So to have a preference between outputs we include weights to the objective function. The cost function of DMC is given as follows: (1 A. MPC Strategy The strategy followed by the controllers belonging to the MPC family [6] is explained by using the following figure. : future output at k+l instant. : future setpoint at k+l instant. : change in control action at k+l instant.. Γ y l = Positive definite error weight matrix. = Positive semi definite controller weight matrix. Fig.1. MPC strategy. The basic idea is to predict the output Y(k) of process for p steps and future control moves are selected such that the predicted response has optimal characteristics. Here p is prediction horizon and m is control horizon. The future values of output Y(k) are predicted using the process model. This works fine when there is no model mismatch and disturbances. When there is model mismatch, the predicted output will not match actual output. So, only the first instant of the control action is applied. This control strategy is also called as Receding Horizon Control. D. Dynamic Matrix Control Dynamic Matrix Control (DMC) was introduced by Cutler and Ramaker through their publication in the year 1970 [7]. DMC algorithm is one of the most popular control algorithms of MPC. DMC is widely accepted in industries, mainly by petrochemical industries [8]. DMC uses step response of the model to predict the output. The cost function is to be minimized with subject to the following constraints: A. Manipulated variable constraints: The solution DMC contains the current and future control moves to be implemented. To avoid violations the constraints on manipulated variable is considered as (3) B. Manipulated Variable Rate Constraints The limitations of the rate of change in controller value is considered by adding manipulated variable rate constraints as (2) (4) 71

3 C. Output Variable Constraints The limitations on the output is considered by output constraints as (5) To provide interaction between the two tanks, they are connected through a pipe. It allows water flow between the tanks. It introduces cross coupling in the system [10]. The system model can be formulated by ordinary differential equations using Bernoulli s equation as follows: 2. DMC Tuning The tuning parameters of DMC are the prediction horizon p, control horizon m, sampling time t, weight matrices Γ y l and Γ u l. The prediction horizon p is used to predict the plant response for p future steps and find the optimal control action such that it minimizes the future error. The controller gives better performance for a long prediction horizon but it increases computational burden [9]. The control horizon m is used to find the optimal control actions for m steps. Generally control horizon m is chosen as m<p, long control horizon leads to unnecessary control action and long computational time and short control horizon leads to control actions which y are insensitive to modeling errors. The matrix Γ l reduces the tracking errors and guides the system to u follow the set point. The matrix Γ l controls the aggressiveness of the controller. III. THE COUPLED TANK PROCESS The coupled tank process is a two input two output process. The inputs to the process are the voltages to the pumps i,e u 1 (t) and u 2 (t). The outputs of the process are water level in tank 1 and tank2 i,e h 1 (t) and h 2 (t). The structure of coupled tank is as shown in figure Cross-sectional area of tank. - Cross-sectional area of the outlet hole. Water level in tank i. Equilibrium point calculation: We can calculate the equilibrium points from equations 6 and 7 equating to zero. (8) (9) Solving the above equations 8 and 9 using the parameters specified in the table 3.1 results: (10) (11) Now linearising equations 6 and 7 around equilibrium points we have (13) Fig.2. coupled tank system (14) 72

4 System Parameters Cross sectional area of couple tank reservoir (A) Value m 2 (15) Let (17) (16) (18) Cross sectional area of the outlet (a i ) *10-6 m 2 Range of input signal (u i ) 0 5 Volts Maximum allowable height in tank (h i ) 0.3 m Constant relating control voltage with the m/v-sec water flow from the pump (ƞ) Table 3.1: Coupled Tank system parameters Taking Laplace transform on both sides of equation, we have (19) IV. SIMULATION RESULTS A. Coupled Tank with interactions The DMC algorithm is applied on the coupled tank system with transfer function model with interactions i,e transfer function specified in equation 23. While applying interaction the valver x is fully open, i,e the gain related to valver x is 1. Here the objective (20) is to control the coupled tank problem with the following constraints: (21) (22) Manipulated variable constraint Manipulated variable rate constraint Output variable constraint (25) (26) By substituting the parameters specified in table 3.1 results in the following plant transfer function. (27 For simulation the prediction horizon p is chosen as 40 and control horizon m as 4.The results are as follows (23) From the above transfer function we can easily derive the transfer function for a coupled tank system without interactions as follows (24) The following table shows the system parameters which are used in simulation. Fig.3. plant response with interactions 73

5 Fig.4. control signal with interactions B. Coupled Tank with interaction and disturbance The DMC algorithm is applied on the coupled tank system with transfer function model with interactions and disturbance i,e transfer function specified in equation 23. The transfer function of the disturbance is as follows (28) The transfer function of disturbance is same as plant transfer function because disturbance is applied by opening q od1 and q od2 which is equivalent to applying a negative step to an single tank system. Here the disturbance of amplitude 1 cm is created by opening the valves R 1 and R 2.The results are as follows [2] W. Grega and A. Maciejczyk, Digital Control of a Tank System, IEEE Trans. on Education, vol. 37, pp , Aug I. Kaya, N, Tan and D. P. Atherton, A Simple Procedure for Improving the Performance of PID Controllers, IEEE Conf. on Control Applications, vol. 2, pp , [3] J. H. Lee, Model Predictive Control in the Process Industries: Review, Current Status and Future Outlook, in Proc. 2nd Asian Conf. on Control, vol. 2, pp , [4] J. Gireesh Kumar and Veena Sharma, An Application of Dynamic Matrix Control to a Process with Constraints, in Proc. 2nd Int. Conf. on Biomedical Engineering & Assistive Technologies, pp , dec 6-7, [5] M. Morari, J. H. Lee and C. E. García, Model Predictive Control, unpublished, [6] C. R. Cutler and B. L. Ramaker, Dynamic Matrix Control a computer control algorithm, in Proc. American Conf. on Control, San Francisco, [7] S. J. Qin and T. A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice, vol.11, pp , [8] S. A. Nirmala, B. Veena Abirami and D. Manamalli, Design of Model Predictive Controller for a Four-Tank Process Using Linear State Space Model and Performance Study for Reference Tracking under Disturbances, in Proc. Int. Conf. on Process Automation, Control and Computing, pp.1-5, [9] Uma Shankar, Modeling of Hybrid Dynamical System, M.Tech dissertation, NIT Hamirpur, july Fig.5. plant response and control signal with disturbance V. REFERENCES [1] Karl Henrik Johansson, The Quadruple-Tank Process: A Multivariable Laboratory Process with an Adjustable Zero, IEEE Trans. on Control Systems Technology, vol. 8, pp , May

MPC AND RTDA CONTROLLER FOR FOPDT & SOPDT PROCESS

MPC AND RTDA CONTROLLER FOR FOPDT & SOPDT PROCESS , pp.-109-113. Available online at http://www.bioinfo.in/contents.php?id=45 MPC AND RTDA CONTROLLER FOR FOPDT & SOPDT PROCESS SRINIVASAN K., SINGH J., ANBARASAN K., PAIK R., MEDHI R. AND CHOUDHURY K.D.

More information

Review of Tuning Methods of DMC and Performance Evaluation with PID Algorithms on a FOPDT Model

Review of Tuning Methods of DMC and Performance Evaluation with PID Algorithms on a FOPDT Model 2010 International Conference on Advances in Recent Technologies in Communication and Computing Review of Tuning Methods of DMC and Performance Evaluation with PID Algorithms on a FOPDT Model R D Kokate

More information

Relay Feedback based PID Controller for Nonlinear Process

Relay Feedback based PID Controller for Nonlinear Process Relay Feedback based PID Controller for Nonlinear Process I.Thirunavukkarasu, Dr.V.I.George, * and R.Satheeshbabu Abstract This work is about designing a relay feedback based PID controller for a conical

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 1 p. 1/13 4F3 - Predictive Control Lecture 1 - Introduction to Predictive Control Jan Maciejowski jmm@eng.cam.ac.uk http://www-control.eng.cam.ac.uk/homepage/officialweb.php?id=1

More information

Simple Models That Illustrate Dynamic Matrix Control

Simple Models That Illustrate Dynamic Matrix Control Session 3513 Simple Models That Illustrate Dynamic Matrix Control Charles R. Nippert Widener Univeristy Abstract Dynamic Matrix Control (DMC) is one of the most popular methods of model predictive control.

More information

MODEL BASED CONTROL FOR INTERACTING AND NON-INTERACTING LEVEL PROCESS USING LABVIEW

MODEL BASED CONTROL FOR INTERACTING AND NON-INTERACTING LEVEL PROCESS USING LABVIEW MODEL BASED CONTROL FOR INTERACTING AND NON-INTERACTING LEVEL PROCESS USING LABVIEW M.Lavanya 1, P.Aravind 2, M.Valluvan 3, Dr.B.Elizabeth Caroline 4 PG Scholar[AE], Dept. of ECE, J.J. College of Engineering&

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

A Candidate to Replace PID Control: SISO Constrained LQ Control 1

A Candidate to Replace PID Control: SISO Constrained LQ Control 1 A Candidate to Replace PID Control: SISO Constrained LQ Control 1 James B. Rawlings Department of Chemical Engineering University of Wisconsin Madison Austin, Texas February 9, 24 1 This talk is based

More information

Parameter Estimation based Optimal control for a Bubble Cap Distillation Column

Parameter Estimation based Optimal control for a Bubble Cap Distillation Column International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 974-429 Vol.6, No.1, pp 79-799, Jan-March 214 Parameter Estimation based Optimal control for a Bubble Cap Distillation Column Manimaran.M,

More information

Variable Structure Control Design for SISO Process: Sliding Mode Approach

Variable Structure Control Design for SISO Process: Sliding Mode Approach International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 97-9 Vol., No., pp 5-5, October CBSE- [ nd and rd April ] Challenges in Biochemical Engineering and Biotechnology for Sustainable Environment

More information

Logic Developer Process Edition Function Blocks

Logic Developer Process Edition Function Blocks GE Intelligent Platforms Logic Developer Process Edition Function Blocks Delivering increased precision and enabling advanced regulatory control strategies for continuous process control Logic Developer

More information

The issue of saturation in control systems using a model function with delay

The issue of saturation in control systems using a model function with delay The issue of saturation in control systems using a model function with delay Ing. Jaroslav Bušek Supervisor: Prof. Ing. Pavel Zítek, DrSc. Abstract This paper deals with the issue of input saturation of

More information

Continuous Time Model Predictive Control for a Magnetic Bearing System

Continuous Time Model Predictive Control for a Magnetic Bearing System PIERS ONLINE, VOL. 3, NO. 2, 27 22 Continuous Time Model Predictive Control for a Magnetic Bearing System Jianming Huang College of Automation, Chongqing University, Chongqing, China Liuping Wang and Yang

More information

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

Process Control Laboratory Using Honeywell PlantScape

Process Control Laboratory Using Honeywell PlantScape Process Control Laboratory Using Honeywell PlantScape Christi Patton Luks, Laura P. Ford University of Tulsa Abstract The University of Tulsa has recently revised its process controls class from one 3-hour

More information

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System Journal of Advanced Computing and Communication Technologies (ISSN: 347-84) Volume No. 5, Issue No., April 7 Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System By S.Janarthanan,

More information

-binary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive

-binary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive Process controls are necessary for designing safe and productive plants. A variety of process controls are used to manipulate processes, however the most simple and often most effective is the PID controller.

More information

Design of PID Controller with Compensator using Direct Synthesis Method for Unstable System

Design of PID Controller with Compensator using Direct Synthesis Method for Unstable System www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 5 Issue 4 April 2016, Page No. 16202-16206 Design of PID Controller with Compensator using Direct Synthesis

More information

Tuning interacting PID loops. The end of an era for the trial and error approach

Tuning interacting PID loops. The end of an era for the trial and error approach Tuning interacting PID loops The end of an era for the trial and error approach Introduction Almost all actuators and instruments in the industry that are part of a control system are controlled by a PI(D)

More information

EFFICIENT CONTROL OF LEVEL IN INTERACTING CONICAL TANKS USING REAL TIME CONCEPTS

EFFICIENT CONTROL OF LEVEL IN INTERACTING CONICAL TANKS USING REAL TIME CONCEPTS EFFICIENT CONTROL OF LEVEL IN INTERACTING CONICAL TANKS USING REAL TIME CONCEPTS V. Karthikeyan Department of Electrical and Electronics Engineering, Dr. M.G.R. Educational and Research Institute, University,

More information

PID versus MPC Performance for SISO Dead-time Dominant Processes

PID versus MPC Performance for SISO Dead-time Dominant Processes Preprints of the th IFAC International Symposium on Dynamics and Control of Process Systems The International Federation of Automatic Control December -, 3. Mumbai, India PID versus MPC Performance for

More information

VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH

VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH H. H. TAHIR, A. A. A. AL-RAWI MECHATRONICS DEPARTMENT, CONTROL AND MECHATRONICS RESEARCH CENTRE, ELECTRONICS SYSTEMS AND

More information

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller International Journal of Emerging Trends in Science and Technology Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller Authors Swarup D. Ramteke 1, Bhagsen J. Parvat 2

More information

Online Tuning of Two Conical Tank Interacting Level Process

Online Tuning of Two Conical Tank Interacting Level Process Online Tuning of Two Conical Tank Interacting Level Process S.Vadivazhagi 1, Dr.N.Jaya Research Scholar, Dept. of E&I, Annamalai University, Chidambaram, Tamilnadu, India 1 Associate Professor, Dept. of

More information

CONTROLLER DESIGN BASED ON MODEL PREDICTIVE CONTROL FOR A NONLINEAR PROCESS

CONTROLLER DESIGN BASED ON MODEL PREDICTIVE CONTROL FOR A NONLINEAR PROCESS CONTROLLER DESIGN BASED ON MODEL PREDICTIVE CONTROL FOR A NONLINEAR PROCESS Nithya Venkatesan School of Electrical Engineering, VIT University, Chennai Campus TamilNadu, India,600 048. nithya.venkatesan@gmail.com

More information

PID-control and open-loop control

PID-control and open-loop control Automatic Control Lab 1 PID-control and open-loop control This version: October 24 2011 P I D REGLERTEKNIK Name: P-number: AUTOMATIC LINKÖPING CONTROL Date: Passed: 1 Introduction The purpose of this

More information

LOAD FREQUENCY CONTROL FOR A TWO-AREA INTERCONNECTED POWER SYSTEM BY USING SLIDING MODE CONTROLLER

LOAD FREQUENCY CONTROL FOR A TWO-AREA INTERCONNECTED POWER SYSTEM BY USING SLIDING MODE CONTROLLER LOAD FREQUENCY CONTROL FOR A TWO-AREA INTERCONNECTED POWER SYSTEM BY USING SLIDING MODE CONTROLLER 1 P.GOWRI NAIDU, 2 R.GOVARDHANA RAO 1 PG student of ANITS College, 2 Director of ANITS College, Visakhapatnam,

More information

Enhance operational efficiency with Advanced Process Control (APC) Integration of APC in SIMATIC PCS 7 SIMATIC PCS 7. Answers for industry.

Enhance operational efficiency with Advanced Process Control (APC) Integration of APC in SIMATIC PCS 7 SIMATIC PCS 7. Answers for industry. Enhance operational efficiency with Advanced Control (APC) Integration of APC in SIMATIC PCS 7 SIMATIC PCS 7 Answers for industry. Modern closed-loop control systems in the process industry In today s

More information

CHAPTER 3 DESIGN OF MULTIVARIABLE CONTROLLERS FOR THE IDEAL CSTR USING CONVENTIONAL TECHNIQUES

CHAPTER 3 DESIGN OF MULTIVARIABLE CONTROLLERS FOR THE IDEAL CSTR USING CONVENTIONAL TECHNIQUES 31 CHAPTER 3 DESIGN OF MULTIVARIABLE CONTROLLERS FOR THE IDEAL CSTR USING CONVENTIONAL TECHNIQUES 3.1 INTRODUCTION PID controllers have been used widely in the industry due to the fact that they have simple

More information

*Engineering and Industrial Services, TATA Consultancy Services Limited **Professor Emeritus, IIT Bombay

*Engineering and Industrial Services, TATA Consultancy Services Limited **Professor Emeritus, IIT Bombay System Identification and Model Predictive Control of SI Engine in Idling Mode using Mathworks Tools Shivaram Kamat*, KP Madhavan**, Tejashree Saraf* *Engineering and Industrial Services, TATA Consultancy

More information

SPEED CONTROLLER DESIGN FOR STEAM TURBINE

SPEED CONTROLLER DESIGN FOR STEAM TURBINE SPEED CONTROLLER DESIGN FOR STEAM TURBINE Rekha Rajan 1, Muhammed Salih. P 2, N. Anilkumar 3 PG Student [I&C], Dept. of EEE, MES College of Engineering, Kuttippuram, Kerala, India 1 Assistant professor,

More information

Optimized Tuning of PI Controller for a Spherical Tank Level System Using New Modified Repetitive Control Strategy

Optimized Tuning of PI Controller for a Spherical Tank Level System Using New Modified Repetitive Control Strategy International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Volume 3, Issue 6 (September 212), PP. 74-82 Optimized Tuning of PI Controller for a Spherical

More information

Predictive Repetitive Control Based on Frequency Decomposition

Predictive Repetitive Control Based on Frequency Decomposition 1 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July, 1 ThC1.6 Predictive Repetitive Control Based on Frequency Decomposition Liuping Wang 1, Shan Chai 1, and E. Rogers 1 School

More information

A Comparison of Optimal Control Strategies for a Toy Helicopter

A Comparison of Optimal Control Strategies for a Toy Helicopter A Comparison of Optimal Control Strategies for a Toy Helicopter Jonas Balderud and David I. Wilson Dept. of Electrical Engineering, Karlstad University, Sweden e-mail: jonas.balderud@kau.se, david.wilson@kau.se

More information

Neural Network Predictive Controller for Pressure Control

Neural Network Predictive Controller for Pressure Control Neural Network Predictive Controller for Pressure Control ZAZILAH MAY 1, MUHAMMAD HANIF AMARAN 2 Department of Electrical and Electronics Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar,

More information

Md. Aftab Alam, Dr. Ramjee Parsad Gupta IJSRE Volume 4 Issue 7 July 2016 Page 5537

Md. Aftab Alam, Dr. Ramjee Parsad Gupta IJSRE Volume 4 Issue 7 July 2016 Page 5537 Volume 4 Issue 07 July-2016 Pages-5537-5550 ISSN(e):2321-7545 Website: http://ijsae.in DOI: http://dx.doi.org/10.18535/ijsre/v4i07.12 Simulation of Intelligent Controller for Temperature of Heat Exchanger

More information

DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGRATING PROCESSES

DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGRATING PROCESSES DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGRATING PROCESSES B.S.Patil 1, L.M.Waghmare 2, M.D.Uplane 3 1 Ph.D.Student, Instrumentation Department, AISSMS S Polytechnic,

More information

CHAPTER 11: DIGITAL CONTROL

CHAPTER 11: DIGITAL CONTROL When I complete this chapter, I want to be able to do the following. Identify examples of analog and digital computation and signal transmission. Program a digital PID calculation Select a proper execution

More information

Control of a Double -Effect Evaporator using Neural Network Model Predictive Controller

Control of a Double -Effect Evaporator using Neural Network Model Predictive Controller Control of a Double -Effect Evaporator using Neural Network Model Predictive Controller 1 Srinivas B., 2 Anil Kumar K., 3* Prabhaker Reddy Ginuga 1,2,3 Chemical Eng. Dept, University College of Technology,

More information

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control 1 Deepa Shivshant Bhandare, 2 Hafiz Shaikh and 3 N. R. Kulkarni 1,2,3 Department of Electrical Engineering,

More information

Extensions and Modifications of Relay Autotuning

Extensions and Modifications of Relay Autotuning Extensions and Modifications of Relay Autotuning Mats Friman Academic Dissertation Department of Chemical Engineering Åbo Akademi University FIN-20500 Åbo, Finland Preface This thesis is the result of

More information

Digital Control of MS-150 Modular Position Servo System

Digital Control of MS-150 Modular Position Servo System IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS-150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland

More information

PID Controller Design Based on Radial Basis Function Neural Networks for the Steam Generator Level Control

PID Controller Design Based on Radial Basis Function Neural Networks for the Steam Generator Level Control BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6 No 5 Special Issue on Application of Advanced Computing and Simulation in Information Systems Sofia 06 Print ISSN: 3-970;

More information

Performance Monitor Raises Service Factor Of MPC

Performance Monitor Raises Service Factor Of MPC Tom Kinney ExperTune Inc. Hubertus, WI Performance Monitor Raises Service Factor Of MPC Presented at ISA2003, Houston, TX October, 2003 Copyright 2003 Instrumentation, Systems and Automation Society. All

More information

Petersson, Mikael; Årzén, Karl-Erik; Sandberg, Henrik; de Maré, Lena

Petersson, Mikael; Årzén, Karl-Erik; Sandberg, Henrik; de Maré, Lena Implementation of a Tool for Control Structure Assessment Petersson, Mikael; Årzén, Karl-Erik; Sandberg, Henrik; de Maré, Lena Published in: Proceedings of the 15th IFAC world congress Link to publication

More information

Key words: Internal Model Control (IMC), Proportion Integral Derivative (PID), Q-parameters

Key words: Internal Model Control (IMC), Proportion Integral Derivative (PID), Q-parameters Volume 4, Issue 6, June 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Internal Model

More information

Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time Process

Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time Process International Journal of Electronics and Computer Science Engineering 538 Available Online at www.ijecse.org ISSN- 2277-1956 Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time

More information

Procidia Control Solutions Dead Time Compensation

Procidia Control Solutions Dead Time Compensation APPLICATION DATA Procidia Control Solutions Dead Time Compensation AD353-127 Rev 2 April 2012 This application data sheet describes dead time compensation methods. A configuration can be developed within

More information

Compensation of Dead Time in PID Controllers

Compensation of Dead Time in PID Controllers 2006-12-06 Page 1 of 25 Compensation of Dead Time in PID Controllers Advanced Application Note 2006-12-06 Page 2 of 25 Table of Contents: 1 OVERVIEW...3 2 RECOMMENDATIONS...6 3 CONFIGURATION...7 4 TEST

More information

Think About Control Fundamentals Training. Terminology Control. Eko Harsono Control Fundamental

Think About Control Fundamentals Training. Terminology Control. Eko Harsono Control Fundamental Think About Control Fundamentals Training Terminology Control Eko Harsono eko.harsononus@gmail.com; 1 Contents Topics: Slide No: Process Control Terminology 3-10 Control Principles 11-18 Basic Control

More information

Design of PID Controller for IPDT System Based On Double First Order plus Time Delay Model

Design of PID Controller for IPDT System Based On Double First Order plus Time Delay Model Volume 119 No. 15 2018, 1563-1569 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ Design of PID Controller for IPDT System Based On Double First Order plus

More information

Fuzzy Based Control Using Lab view For Temperature Process

Fuzzy Based Control Using Lab view For Temperature Process Fuzzy Based Control Using Lab view For Temperature Process 1 S.Kavitha, 2 B.Chinthamani, 3 S.Joshibha Ponmalar 1 Assistant Professor, Dept of EEE, Saveetha Engineering College Tamilnadu, India 2 Assistant

More information

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID

More information

DEVELOPMENT OF MULTI INPUT MULTI OUTPUT COUPLED PROCESS CONTROL LABORATORY TEST SETUP

DEVELOPMENT OF MULTI INPUT MULTI OUTPUT COUPLED PROCESS CONTROL LABORATORY TEST SETUP International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 1, Jan-Feb 2016, pp. 97-104, Article ID: IJARET_07_01_012 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=1

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

MULTIPLE-MODEL DEAD-BEAT CONTROLLER IN CASE OF CONTROL SIGNAL CONSTRAINTS

MULTIPLE-MODEL DEAD-BEAT CONTROLLER IN CASE OF CONTROL SIGNAL CONSTRAINTS MULTIPLE-MODEL DEAD-BEAT CONTROLLER IN CASE OF CONTROL SIGNAL CONSTRAINTS Emil Garipov Teodor Stoilkov Technical University of Sofia 1 Sofia Bulgaria emgar@tu-sofiabg teodorstoilkov@syscontcom Ivan Kalaykov

More information

Keywords: Fuzzy Logic, Genetic Algorithm, Non-linear system, PI Controller.

Keywords: Fuzzy Logic, Genetic Algorithm, Non-linear system, PI Controller. Volume 3, Issue 8, August 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Implementation

More information

Fundamentals of Industrial Control

Fundamentals of Industrial Control Fundamentals of Industrial Control 2nd Edition D. A. Coggan, Editor Practical Guides for Measurement and Control Preface ix Contributors xi Chapter 1 Sensors 1 Applications of Instrumentation 1 Introduction

More information

9/17/2015. Contents. ELEC-E8101 Digital and Optimal Control (5 cr), autumn 2015

9/17/2015. Contents. ELEC-E8101 Digital and Optimal Control (5 cr), autumn 2015 ELEC-E8101 Digital and Optimal Control (5 cr), autumn 2015 Lectures Fridays at 12.15-14.00, room AS2 Lecturer: Kai Zenger, TuAS-house, room 3567, kai.zenger(at)aalto.fi Exercise hours Wednesdays at 14.15-16.00

More information

New Technology for Closed-Loop System Identification, PID Control Loop Optimization and Advanced Process Control

New Technology for Closed-Loop System Identification, PID Control Loop Optimization and Advanced Process Control New Technology for Closed-Loop System Identification, PID Control Loop Optimization and Advanced Process Control J. Lepore and S. Howes PiControl Solutions LLC, Texas, USA (e-mail: steve@picontrolsolutions.com).

More information

Control Design Made Easy By Ryan Gordon

Control Design Made Easy By Ryan Gordon Control Design Made Easy By Ryan Gordon 2014 The MathWorks, Inc. 1 Key Themes You can automatically tune PID controllers in MATLAB from acquired data You can automatically tune PID controllers from dynamic

More information

Automatic Control Motion control Advanced control techniques

Automatic Control Motion control Advanced control techniques Automatic Control Motion control Advanced control techniques (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations (I) 2 Besides the classical

More information

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station RESEARCH ARTICLE OPEN ACCESS Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station Shaunak Chakrabartty 1, Dr.I.Thirunavukkarasu 2 And Mukul Kumar Shahi 3 1 Department

More information

Automatic Load Frequency Control of Two Area Power System Using Proportional Integral Derivative Tuning Through Internal Model Control

Automatic Load Frequency Control of Two Area Power System Using Proportional Integral Derivative Tuning Through Internal Model Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 2 Ver. I (Mar. Apr. 2016), PP 13-17 www.iosrjournals.org Automatic Load Frequency

More information

CHARACTERIZATION and modeling of large-signal

CHARACTERIZATION and modeling of large-signal IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 53, NO. 2, APRIL 2004 341 A Nonlinear Dynamic Model for Performance Analysis of Large-Signal Amplifiers in Communication Systems Domenico Mirri,

More information

Non Linear Tank Level Control using LabVIEW Jagatis Kumaar B 1 Vinoth K 2 Vivek Vijayan C 3 P Aravind 4

Non Linear Tank Level Control using LabVIEW Jagatis Kumaar B 1 Vinoth K 2 Vivek Vijayan C 3 P Aravind 4 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 01, 2015 ISSN (online): 2321-0613 Non Linear Tank Level Control using LabVIEW Jagatis Kumaar B 1 Vinoth K 2 Vivek Vijayan

More information

Comparison of Conventional Controller with Model Predictive Controller for CSTR Process

Comparison of Conventional Controller with Model Predictive Controller for CSTR Process Comparison of Conventional Controller with Model Predictive Controller for CSTR Process S.Allwin 1, S.Biksha natesan 2, S.Abirami 3, H.Kala 4, A.Udhaya prakash 5 Assistant professor, Department of ICE,

More information

Think About Control Fundamentals Training. Terminology Control. Eko Harsono Control Fundamental - Con't

Think About Control Fundamentals Training. Terminology Control. Eko Harsono Control Fundamental - Con't Think About Control Fundamentals Training Terminology Control Eko Harsono eko.harsononus@gmail.com; 1 Contents Topics: Slide No: Advance Control Loop 3-10 Control Algorithm 11-25 Control System 26-32 Exercise

More information

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Vivek Kumar Bhatt 1, Dr. Sandeep Bhongade 2 1,2 Department of Electrical Engineering, S. G. S. Institute of Technology

More information

Robust PID Auto-tuning for the Quadruple Tank System

Robust PID Auto-tuning for the Quadruple Tank System Preprint, 11th IFAC Symposium on Dynamics Control of Process Systems, including Biosystems Robust PID Auto-tuning for the Quadruple Tank System Clara M. Ionescu, Anca Maxim, Cosmin Copot, Robin De Keyser

More information

Rapid and precise control of a micro-manipulation stage combining H with ILC algorithm

Rapid and precise control of a micro-manipulation stage combining H with ILC algorithm Rapid and precise control of a micro-manipulation stage combining H with ILC algorithm *Jie Ling 1 and Xiaohui Xiao 1, School of Power and Mechanical Engineering, WHU, Wuhan, China xhxiao@whu.edu.cn ABSTRACT

More information

Analysis of Transient Response for Coupled Tank System via Conventional and Particle Swarm Optimization (PSO) Techniques

Analysis of Transient Response for Coupled Tank System via Conventional and Particle Swarm Optimization (PSO) Techniques Analysis of Transient Response for Coupled Tank System via Conventional and Particle Swarm Optimization (PSO) Techniques H. I. Jaafar #, S. Y. S. Hussien #2, N. A. Selamat #3, M. N. M. Nasir #4, M. H.

More information

Tuning of PID Controller for Cascade Unstable systems Using Genetic Algorithm P.Vaishnavi, G.Balasubramanian.

Tuning of PID Controller for Cascade Unstable systems Using Genetic Algorithm P.Vaishnavi, G.Balasubramanian. Volume 8 No. 8 28, 2-29 ISSN: 3-88 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Tuning of PID Controller for Cascade Unstable systems Using Genetic Algorithm P.Vaishnavi,

More information

SET POINT TRACKING CAPABILITY ANALYSIS FOR AN INDUSTRIAL IPDT PROCESS MODEL

SET POINT TRACKING CAPABILITY ANALYSIS FOR AN INDUSTRIAL IPDT PROCESS MODEL Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal (EEIEJ), Vol., No., August 24 SET POINT TRACKING CAPABILITY ANALYSIS FOR AN INDUSTRIAL IPDT PROCESS MODEL

More information

Design and Development of Model Predictive Controller for Binary Distillation Column

Design and Development of Model Predictive Controller for Binary Distillation Column IN (Online): 239-764 Design and Development of Model Predictive Controller for Binary Distillation Column. ivakumar, hennes Mathew 2 Professor, Electronics and Instrumentation, t. Joseph s College of Engineering,

More information

Process Control Using a Neural Network Combined with the Conventional PID Controllers

Process Control Using a Neural Network Combined with the Conventional PID Controllers ) 196 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 2, No. 3, September, 2000 Process Control Using a Neural Network Combined with the Conventional PID Controllers Moonyong

More information

Assessment Of Diverse Controllers For A Cylindrical Tank Level Process

Assessment Of Diverse Controllers For A Cylindrical Tank Level Process IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Assessment Of Diverse Controllers For A Cylindrical Tank Level Process

More information

Optimization-based design of multisine signals for plant-friendly identification of highly interactive systems

Optimization-based design of multisine signals for plant-friendly identification of highly interactive systems Optimization-based design of multisine signals for plant-friendly identification of highly interactive systems Hans D. Mittelmann*, Gautam Pendse Department of Mathematics and Statistics College of Liberal

More information

MMC based D-STATCOM for Different Loading Conditions

MMC based D-STATCOM for Different Loading Conditions International Journal of Engineering Research And Management (IJERM) ISSN : 2349-2058, Volume-02, Issue-12, December 2015 MMC based D-STATCOM for Different Loading Conditions D.Satish Kumar, Geetanjali

More information

Decoupling control loops using ExperTune software

Decoupling control loops using ExperTune software Decoupling control loops using ExperTune software Theory, diagnosis, and practical considerations Bernardo Soares Torres, M.Sc. (ATAN) Lívia Camargos R. de Oliveira (ATAN) Topics to be covered in this

More information

Papermaking Process Online Measurement and Control of Paper Ash Content

Papermaking Process Online Measurement and Control of Paper Ash Content Sensors & Transducers 204 by IFSA Publishing, S. L. http://www.sensorsportal.com Papermaking Process Online Measurement and Control of Paper Ash Content, 2 Zhongjun XIAO School of Electrical Engineering

More information

USING SYSTEM RESPONSE FUNCTIONS OF

USING SYSTEM RESPONSE FUNCTIONS OF USING SYSTEM RESPONSE FUNCTIONS OF LIQUID PIPELINES FOR LEAK AND BLOCKAGE DETECTION Pedro J. Lee " PhD Di,ssertation, 4th February, 2005 FACULTV OF ENGINEERING, COMPUTER AND MATHEMATICAL SCIENCES School

More information

Design of Model Based PID Controller Tuning for Pressure Process

Design of Model Based PID Controller Tuning for Pressure Process ISSN (Print) : 3 3765 Design of Model Based PID Controller Tuning for Pressure Process A.Kanchana 1, G.Lavanya, R.Nivethidha 3, S.Subasree 4, P.Aravind 5 UG student, Dept. of ICE, Saranathan College Engineering,

More information

ISSN Vol.04,Issue.06, June-2016, Pages:

ISSN Vol.04,Issue.06, June-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.06, June-2016, Pages:1117-1121 Design and Development of IMC Tuned PID Controller for Disturbance Rejection of Pure Integrating Process G.MADHU KUMAR 1, V. SUMA

More information

A Discrete Time Model of Boiler Drum and Heat Exchanger QAD Model BDT 921

A Discrete Time Model of Boiler Drum and Heat Exchanger QAD Model BDT 921 International onference on Instrumentation, ontrol & Automation IA009 October 0-, 009, Bandung, Indonesia A Discrete Time Model of Boiler Drum and Heat Exchanger QAD Model BDT 91 Tatang Mulyana *, Mohd

More information

Address for Correspondence

Address for Correspondence Research Paper MODEL PREDICTIVE CONTROL LAW OF SEPIC CONVERTER 1 P. Annapandi, 2 S.Selvaperumal, Address for Correspondence 1 Professor, Dept. of Electrical and Electronics Engineering, FRANCIS XAVIER

More information

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department,

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department, OPTIMAL TUNING PARAMETERS OF PROPORTIONAL INTEGRAL CONTROLLER IN FEEDBACK CONTROL SYSTEMS. Gamze İŞ 1, ChandraMouli Madhuranthakam 2, Erdoğan Alper 1, Ibrahim H. Mustafa 2,3, Ali Elkamel 2 1 Chemical Engineering

More information

Load frequency control in Single area with traditional Ziegler-Nichols PID Tuning controller

Load frequency control in Single area with traditional Ziegler-Nichols PID Tuning controller Load frequency control in Single area with traditional Ziegler-Nichols PID Tuning Gajendra Singh Thakur 1, Ashish Patra 2 Deptt. Of Electrical, MITS, RGPV 1, 2,,M.Tech Student 1,Associat proff 2 Email:

More information

Fuzzy Based Control Using Lab view For Temperature Process

Fuzzy Based Control Using Lab view For Temperature Process Fuzzy Based Control Using Lab view For Temperature Process 1 S.Kavitha, 2 B.Chinthamani, 3 S.Joshibha Ponmalar 1 Assistant Professor, Dept of EEE, Saveetha Engineering College Tamilnadu, India 2 Assistant

More information

Class 5. Competency Exam Round 1. The Process Designer s Process. Process Control Preliminaries. On/Off Control The Simplest Controller

Class 5. Competency Exam Round 1. The Process Designer s Process. Process Control Preliminaries. On/Off Control The Simplest Controller Class 5 Competency Exam Round 1 Proportional Control Starts Friday, September 17 Ends Friday, October 1 Process Control Preliminaries The final control element, process and sensor/transmitter all have

More information

PID Control Tuning VIA Particle Swarm Optimization for Coupled Tank System

PID Control Tuning VIA Particle Swarm Optimization for Coupled Tank System ISSN: -7, Volume-4, Issue-, May 4 PID Control Tuning VIA Particle Swarm Optimization for Coupled Tank System S.Y.S Hussien, H.I Jaafar, N.A Selamat, F.S Daud, A.F.Z Abidin Abstract This paper presents

More information

DC Motor Speed Control Using Machine Learning Algorithm

DC Motor Speed Control Using Machine Learning Algorithm DC Motor Speed Control Using Machine Learning Algorithm Jeen Ann Abraham Department of Electronics and Communication. RKDF College of Engineering Bhopal, India. Sanjeev Shrivastava Department of Electronics

More information

Find, read or write documentation which describes work of the control loop: Process Control Philosophy. Where the next information can be found:

Find, read or write documentation which describes work of the control loop: Process Control Philosophy. Where the next information can be found: 1 Controller uning o implement continuous control we should assemble a control loop which consists of the process/object, controller, sensors and actuators. Information about the control loop Find, read

More information

Relay Based Auto Tuner for Calibration of SCR Pump Controller Parameters in Diesel after Treatment Systems

Relay Based Auto Tuner for Calibration of SCR Pump Controller Parameters in Diesel after Treatment Systems Abstract Available online at www.academicpaper.org Academic @ Paper ISSN 2146-9067 International Journal of Automotive Engineering and Technologies Special Issue 1, pp. 26 33, 2017 Original Research Article

More information

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns 1224 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008 Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A.

More information

ENGG4420 END OF CHAPTER 1 QUESTIONS AND PROBLEMS

ENGG4420 END OF CHAPTER 1 QUESTIONS AND PROBLEMS CHAPTER 1 By Radu Muresan University of Guelph Page 1 ENGG4420 END OF CHAPTER 1 QUESTIONS AND PROBLEMS September 25 12 12:45 PM QUESTIONS SET 1 1. Give 3 advantages of feedback in control. 2. Give 2 disadvantages

More information

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR)

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR) Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR) Ajit Kumar Mittal M.TECH Student, B.I.T SINDRI Dhanbad, India Dr. Pankaj Rai Associate Professor, Department of Electrical

More information

Embedded Control Project -Iterative learning control for

Embedded Control Project -Iterative learning control for Embedded Control Project -Iterative learning control for Author : Axel Andersson Hariprasad Govindharajan Shahrzad Khodayari Project Guide : Alexander Medvedev Program : Embedded Systems and Engineering

More information

CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS

CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS Journal of Engineering Science and Technology EURECA 2013 Special Issue August (2014) 59-67 School of Engineering, Taylor s University CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS

More information

IN heating, ventilating, and air-conditioning (HVAC) systems,

IN heating, ventilating, and air-conditioning (HVAC) systems, 620 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 1, FEBRUARY 2007 A Neural Network Assisted Cascade Control System for Air Handling Unit Chengyi Guo, Qing Song, Member, IEEE, and Wenjian Cai,

More information