(12) United States Patent (10) Patent No.: US 8,879,230 B2

Size: px
Start display at page:

Download "(12) United States Patent (10) Patent No.: US 8,879,230 B2"

Transcription

1 USOO B2 (12) United States Patent (10) Patent No.: US 8,879,230 B2 Wang et al. (45) Date of Patent: Nov. 4, 2014 (54) IC EMI FILTER WITH ESD PROTECTION USPC /118; 361/56 NCORPORATING LCRESONANCE TANKS (58) Field of Classification Search FOR REUECTION ENHANCEMENT USPC /56, (71) (72) (73) (*) (21) (22) (65) (51) (52) Applicant: Silergy Semiconductor Technology (Hangzhou) Ltd, Hangzhou (CN) Inventors: Albert Z. Wang, Grand Cayman (KY); Wen-Chin Wu, Grand Cayman (KY): Shijun Wang, Grand Cayman (KY); Nan Zhang, Grand Cayman (KY) Assignee: Silergy Semiconductor Technology (Hangzhou) Ltd, Hangzhou (CN) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 128 days. Appl. No.: 13/ Filed: Jan. 29, 2013 Prior Publication Data US 2014/ A1 Jul. 31, 2014 Int. C. HO2H 9/00 ( ) HO2H 9/04 ( ) U.S. C. CPC... H02H 9/044 ( ) See application file for complete search history. (56) References Cited U.S. PATENT DOCUMENTS 7,808,752 B2 * 10/2010 Richiuso et al / A1* 6/2014 Mallikarjunaswamy et al /531 * cited by examiner Primary Examiner Danny Nguyen (57) ABSTRACT An integrated circuit (IC) electromagnetic interference (EMI) filter with electrostatic discharge (ESD) protection incorpo rating inductor-capacitor (LC) resonance tanks is disclosed. The filter comprises at least one circuit composed of a diode and an inductor connected in series, wherein the diode induces a parasitic capacitance and the circuit is grounded. When a number of the circuit is two, a passive element is coupled between the two inductors and cooperates with them to induce two parasitic capacitances connected with the cir cuits. When a number of the circuit is one, two diodes respec tively connect with the inductor through two passive ele ments. Each diode can induce a parasitic capacitance. The two passive elements and the inductor can induce a parasitic capacitance connected with the circuit. 11 Claims, 10 Drawing Sheets

2 U.S. Patent Nov. 4, 2014 Sheet 1 of 10 US 8,879,230 B2 Fig. 1(b)(prior art)

3 U.S. Patent Nov. 4, 2014 Sheet 2 of 10 US 8,879,230 B2 Passband insertion loss ZIII -5 - SA l O fe II INI III III III II INI IN-1 I I I\ Rejection-band Attenuation O Frequency (MHz) Fig. 2(prior art)

4 U.S. Patent Nov. 4, 2014 Sheet 3 of 10 US 8,879,230 B ?? ; ~-1 -N Base Band System Board PCB trace, Especially the FPC trace Fig. 4(prior art)

5 U.S. Patent Nov. 4, 2014 Sheet 4 of 10 US 8,879,230 B2 "TH III THINI IIIT N. ITT I I INI INI III III III IIIA III \ III III III 11 II III - A. III III Frequency (MHz) Al: dBA2: dBA3: dBA4: dba5: dB MHz MHz MHz 1 OOOOOGHz GHz Fig. 5 (prior art)

6 U.S. Patent Nov. 4, 2014 Sheet 5 of 10 US 8,879,230 B Fig. 6(a) Fig. 6(b)

7 U.S. Patent Nov. 4, 2014 Sheet 6 of 10 US 8,879,230 B2-6 O III IIINI III, III W IIINY 7 1 O Frequency (MHz) Al: -2, 7983dBA2: dBA3: dBA4: dBA5: dB MHz MHz 800. OOOMHz GHz OOGHz (1: dB(2: dBK3: cBC 4: dB 5: dB MHz MHz 800. OOOMHZ GHz 2, 00000GHz Fig. 8

8 U.S. Patent Nov. 4, 2014 Sheet 7 of 10 US 8,879,230 B O Fig. 3 - Fig. 9 HESHHNII T LIN I I INI 1N - O & INI ; INI... I IN SI I II E. H III:M ;IIINVY I I ISM --rm c I I 3/ Frequency (MHz) Al: dBA2: dBA3: dBA4: dba5: dB MHz MHz 800. OOOMHz CHz GHz gol: dBO2: dBC3: dBC 4:-47. O71dB 5: dB MHz MHz MHz GHz 2, 00000GHz Fig. 10

9 U.S. Patent Nov. 4, 2014 Sheet 8 of 10 US 8,879,230 B A O -1 O --- Fig. 9 - Fig. 1 III a I III I III U. III 11 m Frequency (MHz) Al: dBA2: dba3: dBA4: dBA5: dB MHz MHz 800. OOOMHz GHz 2, 00000GHz (1: dBC2: dB(3: dB () 4: dB 5: db MHz MHz 800. OOOMHz 1. OOOOOGHz 2. OOOOOGHz Fig. 12

10 U.S. Patent Nov. 4, 2014 Sheet 9 of 10 US 8,879,230 B i

11 U.S. Patent Nov. 4, 2014 Sheet 10 of 10 US 8,879,230 B2

12 1. C EMFILTER WITH ESD PROTECTION NCORPORATING LCRESONANCE TANKS FOR REUECTION ENHANCEMENT BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic inter ference (EMI) filter, particularly to an integrated circuit (IC) EMI filter with electrostatic discharge (ESD) protection incorporating inductor-capacitor (LC) resonance tanks for rejection enhancement. 2. Description of the Related Art Low-pass filter circuit related to this invention is used to block incoming electromagnetic interferers to wireless com munication electronic systems. Such as a cellular phone. Such a low-pass filter circuit has several critical specifications (specs) to meet the system requirements, including a low pass-band insertion loss (IL), a broad pass-band and high rejection-band attenuation. A low insertion loss for the filter ensures the desired baseband signals passing through with as little energy loss as possible. A broad low pass-band, defined as the frequency bandwidth from direct-current (DC) to a cut-off frequency (i.e., f) measured at the 3 db insertion loss point, allows the desired baseband signals with wider fre quency spectrum (i.e., lots of useful baseband harmonic sig nals) to pass through filter. Typically, a wider pass-band (i.e., higher f, enables higher wireless communication data rates. The rejection-band is determined by the wireless system applications, typically featured from 800 MHz to 6 GHz. The rejection band serves to remove any high-frequency Electro magnetic Disturbance (EMI) interferers, or, noises, which are generally associated with the carrier band frequencies in radio-frequency (RF) systems. To ensure the desired data rates and signal integrity, a -30 db attenuation in the rejec tion-band for the EMI interferes is preferred in the EMI filter circuit designs, which means that the noise power must be reduced by a factor of 1000, to ensure the required signal-to noise ratio (SNR) for the wireless systems. It is well known that a t-shape CLC type filter 10, shown in FIG. 1(a), can theoretically achieve the required low-pass filter function described above. Similarly, a U-shape capacitor-resistor-ca pacitor (CRC) type LPF circuit 12, as illustrated in FIG. 1(b). can be used to achieve the required filter function. FIG. 2 describes the typical filter insertion loss curve, or, called the forward amplification gain (S2) curve characterized in the S-parameter measurement in practical designs. However, in practical filter designs, to achieve the required low insertion loss and broad pass-band, while obtaining high rejection band attenuation, are in conflict and very challenging, which requires careful filter circuit design trade-off and innovative design techniques. In particular, the S curve should have a very clean -3 db cut-off frequency (f) and a fast roll-off attenuation curve, i.e., a steep S curvature after the designed f point. The conventional CLC filter circuit cannot achieve these requirements due to various integrated circuit (IC) and package parasitic effects. All prior arts may not satisfactory due to the circuit performance and the circuit complexity. FIG. 1(a) shows the ideal CLC LPF filter circuit schemat ics, which is a classic third-order filter circuit. The filter circuit can be considered as a typical 2-port network consist ing of the port 1 (input) and the port 2 (output) symmetrically. This basic CLC filter consists of two capacitors and one inductor to realize the low-pass filter function. FIG. 3 shows a practical CLC LPF filter circuit schematic including the unavoidable parasitic components and integrated ESD pro tection diodes. A resistance 14 is the series resistance associ US 8,879,230 B ated with the conduction channel inductor 16, which causes the insertion loss due to resistive loss. Two inductance 18, one inductance 20 and one resistance 22 model the parasitic inductance and resistance associated with the bonding and package of the filter circuit, respectively. The capacitances 24 can utilize the junction capacitance of the integrated ESD protection diodes 26 (or other ESD protection devices). As shown in the filter schematics, any EMI interferers (i.e., noises) can be filtered out in each direction of the 2-port network. In a typical application scenario as illustrated in FIG. 4, the low-pass filter 28 is placed between the baseband IC chip 30 and the display 32 (e.g., a liquid crystal display, or LCD) port in a Smartphone printed circuit board (PCB). This filter allows the desired baseband signals pass through, while blocking the undesired high-frequency interferers emitted from the noisy LCD module. Some prior arts used fifth-order LC filter circuit and coupled inductors to enhance the filter performance. FIG. 5 depicts typical S. measurement result for a conventional CLC EMI filter circuit corresponding to a conventional filter shown in FIG.3. It supports a pass-band of about f=320 MHz wide, good for high data rates up to 120 Mbps. However, the rejection-band attenuation at 800 MHz is only about -23 db, which is less than the desired -30 db target. In view of the problems and shortcomings of the prior art, the present invention provides an integrated circuit (IC) elec tromagnetic interference (EMI) filter with electrostatic dis charge (ESD) protection incorporating inductor-capacitor (LC) resonance tanks, so as to solve the afore-mentioned problems of the prior art. SUMMARY OF THE INVENTION The objective of the present invention is to provide an integrated circuit (IC) electromagnetic interference (EMI) filter, which uses a high-order resonating LC tank method and integrates an Electromagnetic Disturbance (EMI) filter in the integrated circuit (IC) format with the required ESD protec tion components on a chip or within one package to achieve excellent filter circuit performance. To achieve the abovementioned objectives, the present invention proposes an IC EMI filter with ESD protection incorporating LC resonance tanks. The filter comprises a first diode with a first anode thereof coupled to the ground, and the first diode induces a first parasitic capacitance between a first cathode of the first diode and the first anode. The first cathode is coupled to a first inductor having a first series resistance. The ground is coupled to a second anode of a second diode. The second diode induces a second parasitic capacitance between a second cathode of the second diode and the second anode. The second cathode is coupled to a second inductor having a second series resistance. A first passive element is coupled between the first and second inductors. A first node between the first passive element and the first inductor is coupled to a first port. A second node between the first passive element and the second inductor is coupled to a second port. The first inductor, the second inductor, and the first passive element induce a third parasitic capacitance between the first node and the first anode and a fourth parasitic capacitance between the second node and the second anode. The present invention proposes another IC EMI filter with ESD protection. The filter comprises a first diode with a first anode thereof coupled to the ground, and the first diode induces a first parasitic capacitance between a first cathode of the first diode and the first anode. The first cathode is coupled to an inductor having a series resistance. The ground is coupled to a second anode of a second diode. The second

13 3 diode induces a second parasitic capacitance between a sec ond cathode of the second diode and the second anode. The second cathode is coupled to a first port. There is a first passive element coupled between the second cathode and the inductor. The ground is coupled to a third anode of a third diode. The third diode induces a third parasitic capacitance between a third cathode of the third diode and the third anode. The third cathode is coupled to a second port. There is a second passive element coupled between the third cathode and the inductor and cooperating with the first passive ele ment and the inductor to induce a fourth parasitic capacitance between the first anode and a node among the first passive element, the second passive element, and the inductor. Below, the embodiments are described in detailed in coop eration with the attached drawings to make easily understood the technical contents, characteristics, and accomplishments of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1(a) is a diagram Schematically showing a traditional CLC type low-pass-filter (LPF) circuit; FIG. 1(b) is a diagram Schematically showing a traditional CRC type LPF circuit; FIG. 2 is a diagram showing the typical filter insertion loss curve of a traditional LPF; FIG. 3 is a diagram schematically showing a traditional CLC type LPF circuit with integrated electrostatic discharge (ESD) protection diodes in real designs; FIG. 4 is a sample application diagram Schematically showing a traditional Electromagnetic Disturbance (EMI) filter; FIG. 5 is a diagram showing the typical filter insertion loss curve of the CLC type LPF shown in FIG.3: FIG. 6(a) is a diagram Schematically showing a CLC type LPF circuit using two L-C tanks at input and output ports according to an embodiment of the present invention; FIG. 6(b) is a diagram Schematically showing a CLC type LPF circuit using two L-C-C tanks at input and output ports according to an embodiment of the present invention; FIG. 7 is a diagram schematically showing a CLC type LPF circuit according to the first embodiment of the present inven tion; FIG. 8 is a diagram showing the insertion loss curve com parison for the CLC type LPFs shown in FIG.3 and FIG. 7 according to an embodiment of the present invention; FIG.9 is a diagram schematically showing a CLC type LPF circuit according to the second embodiment of the present invention; FIG. 10 is a diagram showing the insertion loss curve comparison for the CLC type LPFs shown in FIG.3 and FIG. 9 according to an embodiment of the present invention; FIG. 11 is a diagram Schematically showing a CLC type LPF circuit according to the third embodiment of the present invention; FIG. 12 is a diagram showing the insertion loss curve comparison for the CLC type LPFs shown in FIG.9 and FIG. 11 according to an embodiment of the present invention; FIG. 13 is a diagram schematically showing a CRC type LPF circuit according to the fourth embodiment of the present invention; FIG. 14 is a diagram schematically showing a CRC type LPF circuit according to the fifth embodiment of the present invention; and US 8,879,230 B FIG. 15 is a diagram schematically showing a CRC type LPF circuit according to the sixth embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION In the first embodiment, the present invention aims to improve the conventional CLC type filter shown in FIG. 3, which is depicted in FIG. 6 for its conceptual circuitry. The new filter circuit utilizes a special LC resonance tank at both signal input and output nodes of the conventional 2-port CLC filter circuit to improve the rejection band attenuation though careful frequency compensation. In one example schematic shown in FIG. 6(a), a new L-C tank consisting of an inductor 34 and a capacitor 36 is connected between Node-3 and Node-5, while a new L-C tank consisting of an inductor 38 and a capacitor 40 is connected between Node-4 and Node-5. Alternatively, FIG. 6(b) illustrates a similar new circuit using a first L-C-C tank and a second L-C-C tank at the input and output ports of the CLC LPF circuit, respectively. The first L-C-C tank consists of an inductor 42 and two capacitors 44 and 46, and the second L-C-C tank consists of an inductor 48 and two capacitors 50 and 52. Through accurate frequency compensation using the integrated LC tanks, the rejection band attenuation can be significantly improved by carefully design of the LC resonant frequency of the new circuit. Refer to FIG. 7. The first embodiment of the present inven tion is described as below. The present invention comprises a first diode 54. The first diode 54 can induce a first parasitic capacitance 56 between the first cathode and the first anode of the first diode 54. The first cathode is coupled to a first inductor 58 having a first series resistance 60. A second diode 62 can induce a second parasitic capacitance 64 coupled between the second cathode and the second anode of the second diode 62. The second cathode is coupled to a second inductor 66 having a second series resistance 68. The first and second anodes are coupled to the ground through a parasitic resistance 691 and a first parasitic inductor 692 connected in series and associated with bonding and package of the filter. A first passive element is coupled between the first and second inductors 58 and 66. In the first embodiment, the first passive element is exemplified by an inductor 70 with a series resis tance 72. A first node is placed between the inductor 70 and the first inductor 58, and a second node is placed between the inductor 70 and the second inductor 66. The first inductor 58, the second inductor 66, and the inductor 70 can induce a third parasitic capacitance 74 between the first node and the first anode and a fourth parasitic capacitance 76 between the sec ond node and the second anode. Besides, the first node is coupled to a first port through a second parasitic inductor 80 associated with bonding and package of the filter, and the second node is coupled to a second port through a third parasitic inductor 82 associated with bonding and package of the filter. FIG. 8 gives the insertion loss S curves for two typical LPF circuits in FIG. 3 and FIG. 7, which clearly shows the significant improvement in all critical specs by using the new circuit technique in the present invention. Specifically, the rejection-band attenuation is enhanced to -30 db while keep ing fl 320 MHz for broad pass-band. In actual design, the values for the first parasitic capacitance 56, the first inductor 58, the third parasitic capacitance 74, the second parasitic capacitance 64, the second inductor 66 and the parasitic resis tance 76, etc., ought to be selected rationally to purposely create the required frequency resonant points, as observed in FIG. 8, which serves to achieve a wider high-attenuation rejection bandwidth with sharp roll-off curve as desired.

14 5 Refer to FIG. 9. The second embodiment of the present invention is described as below. The present invention com prises a first diode 84. The first diode 84 can induce a first parasitic capacitance 86 between the first cathode and the first anode of the first diode 84. The first cathode is coupled to an inductor 88 having a series resistance 90. A second diode 92 can induce a second parasitic capacitance 94 between the second cathode and the second anode of the second diode 92. The second cathode is coupled to a first port through a second parasitic inductor 96 associated with bonding and package of the filter. A first passive element is coupled between the second cathode and the inductor 88. In the second embodi ment, the first passive element is exemplified by an inductor 98 with a series resistance 100. A third diode 102 can induce a third parasitic capacitance 104 between the third cathode and the third anode of the third diode 102. The third cathode is coupled to a second port through a third parasitic inductor 106 associated with bonding and package of the filter. The first, second and third anodes are coupled to the ground through a parasitic resistance 108 and a first parasitic inductor 110 connected in series and associated with bonding and package of the filter. A second passive element is coupled between the third cathode and the inductor 88 and cooperates with the inductor 98 and the inductor 88 to induce a fourth parasitic capacitance 112 between the first anode and a node among the second passive element, and the inductors 88 and 98. In the second embodiment, the second passive element is exemplified by an inductor 114 with a series resistance 116. FIG. 10 shows that the rejection-band attenuation perfor mance of this new LPF filter circuit improves significantly over the conventional circuit, i.e., f=328 MHz, a steeper roll-off curve from the pass-band to the rejection-band and much higher rejection-band attenuation (-33 db(a800 MHz vs.-23 db(a800 MHz, -47 db(a 1 GHz vs.-28 db(a 1 GHz, and -48 db(a).2 GHz vs. -40 db(a)2 GHz). Meanwhile, the second embodiment schematic helps to prevent possible inductor induced overshot in the Voltage clamping Voltage during ESD stressing. Refer to FIG. 11. The third embodiment of the present invention is described as below. The present invention com prises a first diode 54. The first diode 54 can induce a first parasitic capacitance 56 between the first cathode and the first anode of the first diode 54. The first cathode is coupled to a first inductor 58 having a first series resistance 60. A second diode 62 can induce a second parasitic capacitance 64 coupled between the second cathode and the second anode of the second diode 62. The second cathode is coupled to a second inductor 66 having a second series resistance 68. A first passive element is coupled between the first and second inductors 58 and 66. In the third embodiment, the first passive element is exemplified by an inductor 70 with a series resis tance 72. A first node is placed between the inductor 70 and the first inductor 58, and a second node is placed between the inductor 70 and the second inductor 66. A second passive element has two ends. One end is coupled to the first node, and another end is coupled to a second parasitic inductor 118 associated with bonding and package of the filter and a first port in order. The second passive element is coupled between the first node and the second parasitic inductor 118. The second passive element is exem plified by an inductor 120 with a series resistance 122. The third cathode of a third diode 124 is coupled to a third node between the second parasitic inductor 118 and the inductor 120, and the third diode 124 can induce a fifth parasitic capacitance 126 between the third cathode and the third anode of the third diode 124. A third passive element has two ends. One end is coupled to the second node, and another end US 8,879,230 B is coupled to a third parasitic inductor 128 associated with bonding and package of the filter and a second port in order. The third passive element is coupled between the second node and the third parasitic inductor 128 and cooperates with the first inductor 58, the second inductor 66, the inductors 70 and 120 to induce a third parasitic capacitance 130 between the first node and the first anode and a fourth parasitic capacitance 132 between the second node and the second anode. The third passive element is exemplified by an inductor 134 with a series resistance 136. The fourthcathode of a fourth diode 138 is coupled to a fourth node between the third parasitic induc tor 128 and the inductor 134. The fourth diode 138 can induce a sixth parasitic capacitance 140 between the fourth cathode and the fourth anode. Besides, the first, second, third, and fourth anodes are coupled to the ground through a parasitic resistance 142 and a first parasitic inductor 144 connected in series and associated with bonding and package of the filter. In the third embodiment, the invention results in new higher-order LPF filter circuit schematics utilizing several parallel frequency resonant LC tanks in a distributed network format. FIG. 11 illustrates one of such high-order LPF filter with two LC resonance tanks originated from that in FIG. 9. Such higher-order distributed LC resonance tank based LPF circuit allows very fine-tune in frequency compensation and therefore can further improve the RF filter performance including the critical rejection-band attenuation. FIG. 12 gives the S curve comparison of the new filter circuit shown in FIG. 11 and the one illustrated in FIG. 9, which clearly shows RF performance improvement, particularly the much steeper roll-off rate to excellent rejection band. In addition to the CLCLPF filters discussed previously, the new circuit techniques can be easily applied to any CRC type LPF circuits as well. Furthermore, they can be readily applied to any combined CLC and CRC mixed type filter circuits. For example, FIG. 13 is the fourth embodiment of the present invention. The fourth embodiment is different from the first embodiment in the first passive element. In the fourth embodiment, the first element is exemplified by a resistor 146. The first inductor 58, the second inductor 66, and the resistor 146 can induce a third parasitic capacitance 74 and a fourth parasitic capacitance 76. In addition, FIG. 14 and FIG. 15 are respectively the fifth and sixth embodiments of the present invention. By the same token, the fifth embodiment is different from the second embodiment in the first and second passive elements. In the fifth embodiment, the first and sec ond elements are respectively exemplified by resistors 148 and 150. The resistors 148 and 150 and the inductor 88 can induce a fourth parasitic capacitance 112. The sixth embodi ment is different from the third embodiment in the first, sec ond and third passive elements. In the sixth embodiment, the first, second and third elements are respectively exemplified by resistors 152, 154 and 156. The resistors 152,154 and 156, the first inductor 58, and the second inductor 66 can induce a third parasitic capacitance 130 and a fourth parasitic capaci tance 132. These new CRC filter circuits utilizing the new resonant LC tank technique achieves Superior rejection-band RF performance over its conventional counterpart. In conclusion, the present invention uses the LC tank method to achieve excellent filter circuit performance. The embodiments described above are only to exemplify the present invention but not to limit the scope of the present invention. Therefore, any equivalent modification or varia tion according to the shapes, structures, characteristics and spirit of the present invention is to be also included within the Scope of the present invention.

15 7 What is claimed is: 1. An integrated circuit (IC) electromagnetic interference (EMI) filter with electrostatic discharge (ESD) protection incorporating inductor-capacitor (LC) resonance tanks com prising: a first diode with a first anode thereof coupled to a ground, and said first diode induces a first parasitic capacitance between a first cathode of said first diode and said first anode; a first inductor having a first series resistance and coupled to said first cathode: a second diode with a second anode thereof coupled to said ground, and said second diode induces a second parasitic capacitance between a second cathode of said second diode and said second anode: a second inductor having a second series resistance and coupled to said second cathode; and a first passive element coupled between said first and sec ond inductors, a first node between said first passive element and said first inductor coupled to a first port, a Second node between said first passive element and said Second inductor coupled to a second port, and said first inductor, said second inductor, and said first passive element induce a third parasitic capacitance between said first node and said first anode and a fourth parasitic capacitance between said second node and said second anode. 2. The ICEMI filter with ESD protection incorporating the LC resonance tanks according to claim 1, wherein said first and second anodes are coupled to said ground through a parasitic resistance and a first parasitic inductor connected in series and associated with bonding and package; said first node is coupled to said first port through a second parasitic inductor associated with said bonding and package; and said Second node is coupled to said second port through a third parasitic inductor associated with said bonding and package. 3. The ICEMI filter with ESD protection incorporating the LC resonance tanks according to claim 1, wherein said first passive element is a resistor or an inductor with a series resistance. 4. The ICEMI filter with ESD protection incorporating the LC resonance tanks according to claim 1, further comprising: a second passive element coupled between said first node and said first port; a third diode with a third cathode thereof coupled to a third node between said first port and said second passive element, and a third anode thereof coupled to said ground, and said third diode induces a fifth parasitic capacitance between said third cathode and said third anode; a third passive element coupled between said second node and said second port and cooperating with said first inductor, said second inductor, said first and second passive elements to induce said third parasitic capaci tance and said fourth parasitic capacitance; and a fourth diode with a fourth cathode thereof coupled to a fourth node between said second port and said third passive element, and a fourth anode thereof coupled to said ground, and said fourth diode induces a sixth para Sitic capacitance between said fourth cathode and said fourth anode. 5. The ICEMI filter with ESD protection incorporating the LC resonance tanks according to claim 4, wherein said first, Second, third, and fourth anodes are coupled to said ground US 8,879,230 B through a parasitic resistance and a first parasitic inductor connected in series and associated with bonding and package; said third node is coupled to said first port through a second parasitic inductor associated with said bonding and package; and said fourth node is coupled to said second port through a third parasitic inductor associated with said bonding and package. 6. The ICEMI filter with ESD protection incorporating the LC resonance tanks according to claim 4, wherein said sec ond passive element is an inductor with a series resistance and said third passive element is an inductor with a series resis tance. 7. The ICEMI filter with ESD protection incorporating the LC resonance tanks according to claim 4, wherein said sec ond passive element is a resistor and said third passive ele ment is a resistor. 8. An integrated circuit (IC) electromagnetic interference (EMI) filter with electrostatic discharge (ESD) protection incorporating inductor-capacitor (LC) resonance tanks com prising: a first diode with a first anode thereof coupled to a ground, and said first diode induces a first parasitic capacitance between a first cathode of said first diode and said first anode: an inductor having a series resistance and coupled to said first cathode: a second diode with a second anode thereof coupled to said ground, and said second diode induces a second parasitic capacitance between a second cathode of said second diode and said second anode, and said second cathode is coupled to a first port; a first passive element coupled between said second cath ode and said inductor; a third diode with a third anode thereof coupled to said ground, and said third diode induces a third parasitic capacitance between a third cathode of said third diode and said third anode, and said third cathode is coupled to a second port; and a second passive element coupled between said third cath ode and said inductor and cooperating with said first passive element and said inductor to induce a fourth parasitic capacitance between said first anode and a node among said first passive element, said second passive element, and said inductor. 9. The ICEMI filter with ESD protection incorporating the LC resonance tanks according to claim 8, wherein said first, Second and third anodes are coupled to said ground through a parasitic resistance and a first parasitic inductor connected in series and associated with bonding and package; said second cathode is coupled to said first port through a second parasitic inductor associated with said bonding and package; and said third cathode is coupled to said second port through a third parasitic inductor associated with said bonding and package. 10. The IC EMI filter with ESD protection incorporating the LC resonance tanks according to claim 8, wherein said first passive element is an inductor with a series resistance and said second passive element is an inductor with a series resis tance. 11. The IC EMI filter with ESD protection incorporating the LC resonance tanks according to claim 8, wherein said first passive element is a resistor and said second passive element is a resistor.

(12) United States Patent (10) Patent No.: US B2. Chokkalingam et al. (45) Date of Patent: Dec. 1, 2009

(12) United States Patent (10) Patent No.: US B2. Chokkalingam et al. (45) Date of Patent: Dec. 1, 2009 USOO7626469B2 (12) United States Patent (10) Patent No.: US 7.626.469 B2 Chokkalingam et al. (45) Date of Patent: Dec. 1, 2009 (54) ELECTRONIC CIRCUIT (58) Field of Classification Search... 33 1/8, 331/16-18,

More information

(12) United States Patent (10) Patent No.: US 6,337,722 B1

(12) United States Patent (10) Patent No.: US 6,337,722 B1 USOO6337722B1 (12) United States Patent (10) Patent No.: US 6,337,722 B1 Ha () Date of Patent: *Jan. 8, 2002 (54) LIQUID CRYSTAL DISPLAY PANEL HAVING ELECTROSTATIC DISCHARGE 5,195,010 A 5,220,443 A * 3/1993

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 (19) United States US 2011 0043209A1 (12) Patent Application Publication (10) Pub. No.: US 2011/0043209 A1 Zhu (43) Pub. Date: (54) COIL DECOUPLING FORAN RF COIL (52) U.S. Cl.... 324/322 ARRAY (57) ABSTRACT

More information

Si,"Sir, sculptor. Sinitialising:

Si,Sir, sculptor. Sinitialising: (19) United States US 20090097281A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0097281 A1 LIN (43) Pub. Date: Apr. 16, 2009 (54) LEAKAGE-INDUCTANCE ENERGY Publication Classification RECYCLING

More information

(12) United States Patent (10) Patent No.: US 6, 177,908 B1

(12) United States Patent (10) Patent No.: US 6, 177,908 B1 USOO6177908B1 (12) United States Patent (10) Patent No.: US 6, 177,908 B1 Kawahata et al. (45) Date of Patent: Jan. 23, 2001 (54) SURFACE-MOUNTING TYPE ANTENNA, 5,861,854 * 1/1999 Kawahate et al.... 343/700

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0052224A1 Yang et al. US 2005OO52224A1 (43) Pub. Date: Mar. 10, 2005 (54) (75) (73) (21) (22) QUIESCENT CURRENT CONTROL CIRCUIT

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 2015O108945A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0108945 A1 YAN et al. (43) Pub. Date: Apr. 23, 2015 (54) DEVICE FOR WIRELESS CHARGING (52) U.S. Cl. CIRCUIT

More information

(12) United States Patent

(12) United States Patent US009 159725B2 (12) United States Patent Forghani-Zadeh et al. (10) Patent No.: (45) Date of Patent: Oct. 13, 2015 (54) (71) (72) (73) (*) (21) (22) (65) (51) CONTROLLED ON AND OFF TIME SCHEME FORMONOLTHC

More information

16-?t R.S. S. Y \

16-?t R.S. S. Y \ US 20170 155182A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0155182 A1 Rijssemus et al. (43) Pub. Date: Jun. 1, 2017 (54) CABLE TAP Publication Classification - - -

More information

(12) United States Patent (10) Patent No.: US 7,577,002 B2. Yang (45) Date of Patent: *Aug. 18, 2009

(12) United States Patent (10) Patent No.: US 7,577,002 B2. Yang (45) Date of Patent: *Aug. 18, 2009 US007577002B2 (12) United States Patent (10) Patent No.: US 7,577,002 B2 Yang (45) Date of Patent: *Aug. 18, 2009 (54) FREQUENCY HOPPING CONTROL CIRCUIT 5,892,352 A * 4/1999 Kolar et al.... 323,213 FOR

More information

(12) United States Patent (10) Patent No.: US 6,373,236 B1. Lemay, Jr. et al. (45) Date of Patent: Apr. 16, 2002

(12) United States Patent (10) Patent No.: US 6,373,236 B1. Lemay, Jr. et al. (45) Date of Patent: Apr. 16, 2002 USOO6373236B1 (12) United States Patent (10) Patent No.: Lemay, Jr. et al. (45) Date of Patent: Apr. 16, 2002 (54) TEMPERATURE COMPENSATED POWER 4,205.263 A 5/1980 Kawagai et al. DETECTOR 4,412,337 A 10/1983

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007 184283B2 (10) Patent No.: US 7,184,283 B2 Yang et al. (45) Date of Patent: *Feb. 27, 2007 (54) SWITCHING FREQUENCYJITTER HAVING (56) References Cited OUTPUT RIPPLE CANCEL

More information

USOO A. United States Patent (19) 11 Patent Number: 5,272,450 Wisherd (45) Date of Patent: Dec. 21, 1993

USOO A. United States Patent (19) 11 Patent Number: 5,272,450 Wisherd (45) Date of Patent: Dec. 21, 1993 O HIHHHHHHHHHHHHIII USOO5272450A United States Patent (19) 11 Patent Number: 5,272,450 Wisherd (45) Date of Patent: Dec. 21, 1993 (54) DCFEED NETWORK FOR WIDEBANDRF POWER AMPLIFIER FOREIGN PATENT DOCUMENTS

More information

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1. KO (43) Pub. Date: Oct. 28, 2010

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1. KO (43) Pub. Date: Oct. 28, 2010 (19) United States US 20100271151A1 (12) Patent Application Publication (10) Pub. No.: US 2010/0271151 A1 KO (43) Pub. Date: Oct. 28, 2010 (54) COMPACT RC NOTCH FILTER FOR (21) Appl. No.: 12/430,785 QUADRATURE

More information

(12) United States Patent

(12) United States Patent USOO9641 137B2 (12) United States Patent Duenser et al. (10) Patent No.: (45) Date of Patent: US 9,641,137 B2 May 2, 2017 (54) ELECTRIC AMPLIFIER CIRCUIT FOR AMPLIFYING AN OUTPUT SIGNAL OF A MCROPHONE

More information

(12) United States Patent

(12) United States Patent USOO69997.47B2 (12) United States Patent Su (10) Patent No.: (45) Date of Patent: Feb. 14, 2006 (54) PASSIVE HARMONIC SWITCH MIXER (75) Inventor: Tung-Ming Su, Kao-Hsiung Hsien (TW) (73) Assignee: Realtek

More information

(12) United States Patent

(12) United States Patent USOO881 1048B2 (12) United States Patent Zhang et al. (10) Patent No.: (45) Date of Patent: Aug. 19, 2014 (54) MEDIUM VOLTAGE VARIABLE FREQUENCY DRIVING SYSTEM (75) Inventors: Yi Zhang, Shanghai (CN);

More information

(*) Notice: Subject to any disclaimer, the term of this E. E. E. " "...O.E.

(*) Notice: Subject to any disclaimer, the term of this E. E. E.  ...O.E. USOO6957055B2 (12) United States Patent (10) Patent No.: US 6,957,055 B2 Gamliel (45) Date of Patent: Oct. 18, 2005 (54) DOUBLE BALANCED FET MIXER WITH 5,361,409 A 11/1994 Vice... 455/326 HIGH IP3 AND

More information

(12) United States Patent

(12) United States Patent USOO9304615B2 (12) United States Patent Katsurahira (54) CAPACITIVE STYLUS PEN HAVING A TRANSFORMER FOR BOOSTING ASIGNAL (71) Applicant: Wacom Co., Ltd., Saitama (JP) (72) Inventor: Yuji Katsurahira, Saitama

More information

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1 (19) United States US 2010O2.13871 A1 (12) Patent Application Publication (10) Pub. No.: US 2010/0213871 A1 CHEN et al. (43) Pub. Date: Aug. 26, 2010 54) BACKLIGHT DRIVING SYSTEM 3O Foreign Application

More information

(12) United States Patent

(12) United States Patent (12) United States Patent JakobSSOn USOO6608999B1 (10) Patent No.: (45) Date of Patent: Aug. 19, 2003 (54) COMMUNICATION SIGNAL RECEIVER AND AN OPERATING METHOD THEREFOR (75) Inventor: Peter Jakobsson,

More information

6,064,277 A * 5/2000 Gilbert 331/117 R 6,867,658 Bl * 3/2005 Sibrai et al 331/185 6,927,643 B2 * 8/2005 Lazarescu et al. 331/186. * cited by examiner

6,064,277 A * 5/2000 Gilbert 331/117 R 6,867,658 Bl * 3/2005 Sibrai et al 331/185 6,927,643 B2 * 8/2005 Lazarescu et al. 331/186. * cited by examiner 111111111111111111111111111111111111111111111111111111111111111111111111111 US007274264B2 (12) United States Patent (10) Patent o.: US 7,274,264 B2 Gabara et al. (45) Date of Patent: Sep.25,2007 (54) LOW-POWER-DISSIPATIO

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO9463468B2 () Patent No.: Hiley (45) Date of Patent: Oct. 11, 2016 (54) COMPACT HIGH VOLTAGE RF BO3B 5/08 (2006.01) GENERATOR USING A SELF-RESONANT GOIN 27/62 (2006.01) INDUCTOR

More information

rectifying smoothing circuit

rectifying smoothing circuit USOO648671.4B2 (12) United States Patent (10) Patent No.: Ushida et al. (45) Date of Patent: Nov. 26, 2002 (54) HALF-BRIDGE INVERTER CIRCUIT (56) References Cited (75) Inventors: Atsuya Ushida, Oizumi-machi

More information

(12) United States Patent (10) Patent No.: US 6,433,976 B1. Phillips (45) Date of Patent: Aug. 13, 2002

(12) United States Patent (10) Patent No.: US 6,433,976 B1. Phillips (45) Date of Patent: Aug. 13, 2002 USOO6433976B1 (12) United States Patent (10) Patent No.: US 6,433,976 B1 Phillips (45) Date of Patent: Aug. 13, 2002 (54) INSTANTANEOUS ARC FAULT LIGHT 4,791,518 A 12/1988 Fischer... 361/42 DETECTOR WITH

More information

United States Patent (19) Nilssen

United States Patent (19) Nilssen United States Patent (19) Nilssen (4) HIGH-EFFICIENCY SINGLE-ENDED INVERTER CRCUIT 76) Inventor: Ole K. Nilssen, Caesar Dr. Rte. 4, Barrington, Ill. 60010 21 Appl. No.: 33,33 (22) Filed: Apr. 2, 1979 (1)

More information

(12) United States Patent (10) Patent No.: US 9,449,544 B2

(12) United States Patent (10) Patent No.: US 9,449,544 B2 USOO9449544B2 (12) United States Patent () Patent No.: Duan et al. (45) Date of Patent: Sep. 20, 2016 (54) AMOLED PIXEL CIRCUIT AND DRIVING (58) Field of Classification Search METHOD CPC... A01B 12/006;

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1. Yamamoto et al. (43) Pub. Date: Mar. 25, 2004

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1. Yamamoto et al. (43) Pub. Date: Mar. 25, 2004 (19) United States US 2004.0058664A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0058664 A1 Yamamoto et al. (43) Pub. Date: Mar. 25, 2004 (54) SAW FILTER (30) Foreign Application Priority

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 2004O1893.99A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0189399 A1 Hu et al. (43) Pub. Date: Sep. 30, 2004 (54) BIAS CIRCUIT FOR A RADIO FREQUENCY (30) Foreign Application

More information

(12) United States Patent (10) Patent No.: US 8,228,693 B2

(12) United States Patent (10) Patent No.: US 8,228,693 B2 USOO8228693B2 (12) United States Patent (10) Patent No.: US 8,228,693 B2 Petersson et al. (45) Date of Patent: Jul. 24, 2012 (54) DC FILTER AND VOLTAGE SOURCE (56) References Cited CONVERTER STATION COMPRISING

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Black, Jr. USOO6759836B1 (10) Patent No.: (45) Date of Patent: Jul. 6, 2004 (54) LOW DROP-OUT REGULATOR (75) Inventor: Robert G. Black, Jr., Oro Valley, AZ (US) (73) Assignee:

More information

(12) United States Patent (10) Patent No.: US 6,765,374 B1

(12) United States Patent (10) Patent No.: US 6,765,374 B1 USOO6765374B1 (12) United States Patent (10) Patent No.: Yang et al. (45) Date of Patent: Jul. 20, 2004 (54) LOW DROP-OUT REGULATOR AND AN 6,373.233 B2 * 4/2002 Bakker et al.... 323/282 POLE-ZERO CANCELLATION

More information

(12) United States Patent

(12) United States Patent USOO7043221B2 (12) United States Patent Jovenin et al. (10) Patent No.: (45) Date of Patent: May 9, 2006 (54) (75) (73) (*) (21) (22) (86) (87) (65) (30) Foreign Application Priority Data Aug. 13, 2001

More information

United States Patent (19) Theriault

United States Patent (19) Theriault United States Patent (19) Theriault 54 DIPLEXER FOR TELEVISION TUNING SYSTEMS 75) Inventor: Gerald E. Theriault, Hopewell, N.J. 73) Assignee: RCA Corporation, New York, N.Y. 21) Appi. No.: 294,131 22 Filed:

More information

(12) United States Patent

(12) United States Patent US009355808B2 (12) United States Patent Huang et al. (54) (71) (72) (73) (*) (21) (22) (65) (30) (51) (52) NECTION LOCKED MAGNETRON MCROWAVE GENERATOR WITH RECYCLE OF SPURIOUS ENERGY Applicant: Sichuan

More information

M3 d. (12) United States Patent US 7,317,435 B2. Jan. 8, (45) Date of Patent: (10) Patent No.: (75) Inventor: Wei-Chieh Hsueh, Tainan (TW) T GND

M3 d. (12) United States Patent US 7,317,435 B2. Jan. 8, (45) Date of Patent: (10) Patent No.: (75) Inventor: Wei-Chieh Hsueh, Tainan (TW) T GND US7317435B2 (12) United States Patent Hsueh (10) Patent No.: (45) Date of Patent: Jan. 8, 2008 (54) PIXEL DRIVING CIRCUIT AND METHD FR USE IN ACTIVE MATRIX LED WITH THRESHLD VLTAGE CMPENSATIN (75) Inventor:

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Crawford 11 Patent Number: 45) Date of Patent: Jul. 3, 1990 54 (76) (21) 22 (51) (52) (58) 56 LASERRANGEFINDER RECEIVER. PREAMPLETER Inventor: Ian D. Crawford, 1805 Meadowbend

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 20060270.380A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0270380 A1 Matsushima et al. (43) Pub. Date: Nov.30, 2006 (54) LOW NOISE AMPLIFICATION CIRCUIT (30) Foreign

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 US 2011 O187416A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0187416A1 Bakker (43) Pub. Date: Aug. 4, 2011 (54) SMART DRIVER FOR FLYBACK Publication Classification CONVERTERS

More information

(12) United States Patent (10) Patent No.: US 6,879,224 B2. Frank (45) Date of Patent: Apr. 12, 2005

(12) United States Patent (10) Patent No.: US 6,879,224 B2. Frank (45) Date of Patent: Apr. 12, 2005 USOO6879224B2 (12) United States Patent (10) Patent No.: Frank (45) Date of Patent: Apr. 12, 2005 (54) INTEGRATED FILTER AND IMPEDANCE EP 1231713 7/2002 MATCHING NETWORK GB 228758O 2/1995 JP 6-260876 *

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 US 20070046374A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/00463.74 A1 Kim (43) Pub. Date: (54) LINEARITY-IMPROVED DIFFERENTIAL Publication Classification AMPLIFICATION

More information

(12) United States Patent (10) Patent No.: US 8, B1

(12) United States Patent (10) Patent No.: US 8, B1 US008072262B1 (12) United States Patent () Patent No.: US 8,072.262 B1 Burt et al. (45) Date of Patent: Dec. 6, 2011 (54) LOW INPUT BIAS CURRENT CHOPPING E. R ck 358 lu y et al.... 341/143 SWITCH CIRCUIT

More information

(12) United States Patent

(12) United States Patent USOO9443458B2 (12) United States Patent Shang (10) Patent No.: (45) Date of Patent: US 9.443.458 B2 Sep. 13, 2016 (54) DRIVING CIRCUIT AND DRIVING METHOD, GOA UNIT AND DISPLAY DEVICE (71) Applicant: BOE

More information

(12) United States Patent (10) Patent No.: US 8,013,715 B2

(12) United States Patent (10) Patent No.: US 8,013,715 B2 USO080 13715B2 (12) United States Patent (10) Patent No.: US 8,013,715 B2 Chiu et al. (45) Date of Patent: Sep. 6, 2011 (54) CANCELING SELF-JAMMER SIGNALS IN AN 7,671,720 B1* 3/2010 Martin et al.... 340/10.1

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Kowalewski (54) RADIO FREQUENCY SWITCH EMPLOYING REED SWITCHES AND A QUARTER WAVE LINE 75) inventor: Rolf E. Kowalewski, Palatine, Ill. (73) Assignee: Motorola, Inc., Franklin

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003009 1220A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0091220 A1 Sato et al. (43) Pub. Date: May 15, 2003 (54) CAPACITIVE SENSOR DEVICE (75) Inventors: Hideaki

More information

(12) United States Patent

(12) United States Patent USOO72487B2 (12) United States Patent Schulz et al. (54) CIRCUIT ARRANGEMENT FOR DETECTING THE CAPACITANCE OR CHANGE OF CAPACITANCE OF A CAPACTIVE CIRCUIT ELEMENT OR OF A COMPONENT (75) Inventors: Joerg

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007035123B2 (10) Patent No.: US 7,035,123 B2 Schreiber et al. (45) Date of Patent: Apr. 25, 2006 (54) FREQUENCY CONVERTER AND ITS (56) References Cited CONTROL METHOD FOREIGN

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 US 20140354413A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0354413 A1 Sirinamarattana et al. (43) Pub. Date: Dec. 4, 2014 (54) CHARGE-PUMP CIRCUIT FOR IMPROVING Publication

More information

Vmod (12) United States Patent US 7.411,469 B2. *Aug. 12, Perry et al. (45) Date of Patent: (10) Patent No.:

Vmod (12) United States Patent US 7.411,469 B2. *Aug. 12, Perry et al. (45) Date of Patent: (10) Patent No.: USOO741 1469B2 (12) United States Patent Perry et al. (10) Patent No.: (45) Date of Patent: US 7.411,469 B2 *Aug. 12, 2008 (54) CIRCUIT ARRANGEMENT (75) Inventors: Colin Leslie Perry, Swindon (GB); Stephen

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States US 2013 0307772A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0307772 A1 WU (43) Pub. Date: Nov. 21, 2013 (54) INTERACTIVE PROJECTION SYSTEM WITH (52) U.S. Cl. LIGHT SPOT

More information

202 19' 19 19' (12) United States Patent 202' US 7,050,043 B2. Huang et al. May 23, (45) Date of Patent: (10) Patent No.

202 19' 19 19' (12) United States Patent 202' US 7,050,043 B2. Huang et al. May 23, (45) Date of Patent: (10) Patent No. US00705.0043B2 (12) United States Patent Huang et al. (10) Patent No.: (45) Date of Patent: US 7,050,043 B2 May 23, 2006 (54) (75) (73) (*) (21) (22) (65) (30) Foreign Application Priority Data Sep. 2,

More information

(12) United States Patent (10) Patent No.: US 6,593,696 B2

(12) United States Patent (10) Patent No.: US 6,593,696 B2 USOO65.93696B2 (12) United States Patent (10) Patent No.: Ding et al. (45) Date of Patent: Jul. 15, 2003 (54) LOW DARK CURRENT LINEAR 5,132,593 7/1992 Nishihara... 315/5.41 ACCELERATOR 5,929,567 A 7/1999

More information

(12) United States Patent (10) Patent No.: US 6,275,104 B1

(12) United States Patent (10) Patent No.: US 6,275,104 B1 USOO6275104B1 (12) United States Patent (10) Patent No.: Holter (45) Date of Patent: Aug. 14, 2001 (54) MULTISTAGE AMPLIFIER WITH LOCAL 4,816,711 3/1989 Roza... 330/149 ERROR CORRECTION 5,030.925 7/1991

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007.961391 B2 (10) Patent No.: US 7.961,391 B2 Hua (45) Date of Patent: Jun. 14, 2011 (54) FREE SPACE ISOLATOR OPTICAL ELEMENT FIXTURE (56) References Cited U.S. PATENT DOCUMENTS

More information

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1 (19) United S tates US 20020003503A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0003503 A1 Justice (43) Pub. Date: Jan. 10, 2002 (54) TWIN COILA NTENNA (76) Inventor: Christopher M. Justice,

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005O134516A1 (12) Patent Application Publication (10) Pub. No.: Du (43) Pub. Date: Jun. 23, 2005 (54) DUAL BAND SLEEVE ANTENNA (52) U.S. Cl.... 3437790 (75) Inventor: Xin Du, Schaumburg,

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1. Muza (43) Pub. Date: Sep. 6, 2012 HIGH IMPEDANCE BASING NETWORK (57) ABSTRACT

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1. Muza (43) Pub. Date: Sep. 6, 2012 HIGH IMPEDANCE BASING NETWORK (57) ABSTRACT US 20120223 770A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0223770 A1 Muza (43) Pub. Date: Sep. 6, 2012 (54) RESETTABLE HIGH-VOLTAGE CAPABLE (52) U.S. Cl.... 327/581

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Kang et al. USOO6906581B2 (10) Patent No.: (45) Date of Patent: Jun. 14, 2005 (54) FAST START-UP LOW-VOLTAGE BANDGAP VOLTAGE REFERENCE CIRCUIT (75) Inventors: Tzung-Hung Kang,

More information

United States Patent (19) Archibald

United States Patent (19) Archibald United States Patent (19) Archibald 54 ELECTROSURGICAL UNIT 75 Inventor: G. Kent Archibald, White Bear Lake, Minn. 73 Assignee: Minnesota Mining and Manufacturing Company, Saint Paul, Minn. (21) Appl.

More information

(12) United States Patent (10) Patent No.: US 6,770,955 B1

(12) United States Patent (10) Patent No.: US 6,770,955 B1 USOO6770955B1 (12) United States Patent (10) Patent No.: Coccioli et al. () Date of Patent: Aug. 3, 2004 (54) SHIELDED ANTENNA INA 6,265,774 B1 * 7/2001 Sholley et al.... 7/728 SEMCONDUCTOR PACKAGE 6,282,095

More information

(12) United States Patent (10) Patent No.: US 6,512,361 B1

(12) United States Patent (10) Patent No.: US 6,512,361 B1 USOO6512361B1 (12) United States Patent (10) Patent No.: US 6,512,361 B1 Becker (45) Date of Patent: Jan. 28, 2003 (54) 14/42-VOLTAUTOMOTIVE CIRCUIT 5,420.503 5/1995 Beha TESTER 5,517,183 A 5/1996 Bozeman,

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 US 2012014.6687A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/014.6687 A1 KM (43) Pub. Date: (54) IMPEDANCE CALIBRATION CIRCUIT AND Publication Classification MPEDANCE

More information

As the frequency spectrum gets crowded,

As the frequency spectrum gets crowded, Design of a Simple Tunable/ Switchable Bandpass Filter Adaptive and multimode wireless equipment can benefit from filters that can vary their center frequency and bandwidth By K. Jeganathan National University

More information

( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub. No. : US 2017 / A1 ( 52 ) U. S. CI. CPC... HO2P 9 / 48 ( 2013.

( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub. No. : US 2017 / A1 ( 52 ) U. S. CI. CPC... HO2P 9 / 48 ( 2013. THE MAIN TEA ETA AITOA MA EI TA HA US 20170317630A1 ( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub No : US 2017 / 0317630 A1 Said et al ( 43 ) Pub Date : Nov 2, 2017 ( 54 ) PMG BASED

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1. Luo et al. (43) Pub. Date: Jun. 8, 2006

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1. Luo et al. (43) Pub. Date: Jun. 8, 2006 (19) United States US 200601 19753A1 (12) Patent Application Publication (10) Pub. No.: US 2006/01 19753 A1 Luo et al. (43) Pub. Date: Jun. 8, 2006 (54) STACKED STORAGE CAPACITOR STRUCTURE FOR A THIN FILM

More information

(12) United States Patent

(12) United States Patent USOO7068OB2 (12) United States Patent Moraveji et al. (10) Patent No.: () Date of Patent: Mar. 21, 2006 (54) (75) (73) (21) (22) (65) (51) (52) (58) CURRENT LIMITING CIRCUITRY Inventors: Farhood Moraveji,

More information

HHHHHH. United States Patent (19) 11 Patent Number: 5,079,455. McCafferty et al. tor to provide a negative feedback path for charging the

HHHHHH. United States Patent (19) 11 Patent Number: 5,079,455. McCafferty et al. tor to provide a negative feedback path for charging the United States Patent (19) McCafferty et al. (54. SURGE CURRENT-LIMITING CIRCUIT FOR A LARGE-CAPACITANCE LOAD 75 Inventors: Lory N. McCafferty; Raymond K. Orr, both of Kanata, Canada 73) Assignee: Northern

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 US 2011 OO63266A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0063266 A1 Chung et al. (43) Pub. Date: (54) PIXEL CIRCUIT OF DISPLAY PANEL, Publication Classification METHOD

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 (19) United States US 2011 O155810A1 (12) Patent Application Publication (10) Pub. No.: US 2011/0155810 A1 TANGUCH et al. (43) Pub. Date: Jun. 30, 2011 (54) ANTENNA DEVICE AND RADIO (30) Foreign Application

More information

(12) United States Patent

(12) United States Patent USOO7768461 B2 (12) United States Patent Cheng et al. (54) ANTENNA DEVICE WITH INSERT-MOLDED ANTENNA PATTERN (75) Inventors: Yu-Chiang Cheng, Taipei (TW); Ping-Cheng Chang, Chaozhou Town (TW); Cheng-Zing

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 2015 0028681A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0028681 A1 L (43) Pub. Date: Jan. 29, 2015 (54) MULTI-LEVEL OUTPUT CASCODE POWER (57) ABSTRACT STAGE (71)

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 US 2003.01225O2A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0122502 A1 Clauberg et al. (43) Pub. Date: Jul. 3, 2003 (54) LIGHT EMITTING DIODE DRIVER (52) U.S. Cl....

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1. KM (43) Pub. Date: Oct. 24, 2013

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1. KM (43) Pub. Date: Oct. 24, 2013 (19) United States US 20130279282A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0279282 A1 KM (43) Pub. Date: Oct. 24, 2013 (54) E-FUSE ARRAY CIRCUIT (52) U.S. Cl. CPC... GI IC 17/16 (2013.01);

More information

the sy (12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States (43) Pub. Date: Jan. 29, 2015 slope Zero-CIOSSing

the sy (12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States (43) Pub. Date: Jan. 29, 2015 slope Zero-CIOSSing (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0028830 A1 CHEN US 2015 0028830A1 (43) Pub. Date: (54) (71) (72) (73) (21) (22) (30) CURRENTMODE BUCK CONVERTER AND ELECTRONIC

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 (19) United States US 20160090275A1 (12) Patent Application Publication (10) Pub. No.: US 2016/0090275 A1 Piech et al. (43) Pub. Date: Mar. 31, 2016 (54) WIRELESS POWER SUPPLY FOR SELF-PROPELLED ELEVATOR

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Tang USOO647.6671B1 (10) Patent No.: (45) Date of Patent: Nov. 5, 2002 (54) PING-PONG AMPLIFIER WITH AUTO ZERONG AND CHOPPING (75) Inventor: Andrew T. K. Tang, San Jose, CA (US)

More information

(12) United States Patent (10) Patent No.: US 6,774,758 B2

(12) United States Patent (10) Patent No.: US 6,774,758 B2 USOO6774758B2 (12) United States Patent (10) Patent No.: US 6,774,758 B2 Gokhale et al. (45) Date of Patent: Aug. 10, 2004 (54) LOW HARMONIC RECTIFIER CIRCUIT (56) References Cited (76) Inventors: Kalyan

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States US 20130249761A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0249761 A1 LOh et al. (43) Pub. Date: Sep. 26, 2013 (54) SMARTANTENNA FOR WIRELESS (52) U.S. Cl. COMMUNICATIONS

More information

(12) United States Patent

(12) United States Patent USOO8629708B2 (12) United States Patent Ben-Yishay et al. (10) Patent No.: (45) Date of Patent: Jan. 14, 2014 (54) HIGH CONVERSION GAIN HIGH SUPPRESSION BALANCED CASCODE FREQUENCY QUADRUPLER (75) Inventors:

More information

(12) United States Patent (10) Patent No.: US 7,009,450 B2

(12) United States Patent (10) Patent No.: US 7,009,450 B2 USOO700945OB2 (12) United States Patent (10) Patent No.: US 7,009,450 B2 Parkhurst et al. (45) Date of Patent: Mar. 7, 2006 (54) LOW DISTORTION AND HIGH SLEW RATE OUTPUT STAGE FOR WOLTAGE FEEDBACK (56)

More information

VDD. (12) Patent Application Publication (10) Pub. No.: US 2004/ A1. (19) United States. I Data. (76) Inventors: Wen-Cheng Yen, Taichung (TW);

VDD. (12) Patent Application Publication (10) Pub. No.: US 2004/ A1. (19) United States. I Data. (76) Inventors: Wen-Cheng Yen, Taichung (TW); (19) United States US 2004O150593A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0150593 A1 Yen et al. (43) Pub. Date: Aug. 5, 2004 (54) ACTIVE MATRIX LED DISPLAY DRIVING CIRCUIT (76) Inventors:

More information

(12) United States Patent (10) Patent No.: US 6,436,044 B1

(12) United States Patent (10) Patent No.: US 6,436,044 B1 USOO643604.4B1 (12) United States Patent (10) Patent No.: Wang (45) Date of Patent: Aug. 20, 2002 (54) SYSTEM AND METHOD FOR ADAPTIVE 6,282,963 B1 9/2001 Haider... 73/602 BEAMFORMER APODIZATION 6,312,384

More information

(12) United States Patent

(12) United States Patent USOO7123644B2 (12) United States Patent Park et al. (10) Patent No.: (45) Date of Patent: Oct. 17, 2006 (54) PEAK CANCELLATION APPARATUS OF BASE STATION TRANSMISSION UNIT (75) Inventors: Won-Hyoung Park,

More information

(12) United States Patent (10) Patent No.: US 7,560,992 B2

(12) United States Patent (10) Patent No.: US 7,560,992 B2 US007560992B2 (12) United States Patent (10) Patent No.: Vejzovic (45) Date of Patent: Jul. 14, 2009 (54) DYNAMICALLY BIASEDAMPLIFIER 6,927,634 B1* 8/2005 Kobayashi... 330,296 2003, OOO6845 A1 1/2003 Lopez

More information

United States Patent (19) Price, Jr.

United States Patent (19) Price, Jr. United States Patent (19) Price, Jr. 11 4) Patent Number: Date of Patent: Dec. 2, 1986 4) (7) (73) 21) 22 1) 2 8) NPN BAND GAP VOLTAGE REFERENCE Inventor: John J. Price, Jr., Mesa, Ariz. Assignee: Motorola,

More information

(12) United States Patent (10) Patent No.: US 8,937,567 B2

(12) United States Patent (10) Patent No.: US 8,937,567 B2 US008.937567B2 (12) United States Patent (10) Patent No.: US 8,937,567 B2 Obata et al. (45) Date of Patent: Jan. 20, 2015 (54) DELTA-SIGMA MODULATOR, INTEGRATOR, USPC... 341/155, 143 AND WIRELESS COMMUNICATION

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 (19) United States US 2011 O156684A1 (12) Patent Application Publication (10) Pub. No.: US 2011/0156684 A1 da Silva et al. (43) Pub. Date: Jun. 30, 2011 (54) DC-DC CONVERTERS WITH PULSE (52) U.S. Cl....

More information

United States Patent (19 11 Patent Number: 5,592,073 Redlich 45) Date of Patent: Jan. 7, 1997

United States Patent (19 11 Patent Number: 5,592,073 Redlich 45) Date of Patent: Jan. 7, 1997 IIII US005592073A United States Patent (19 11 Patent Number: 5,592,073 Redlich 45) Date of Patent: Jan. 7, 1997 54) TRIAC CONTROL CIRCUIT Ramshaw, R. S., "Power Electronics Semiconductor 75) Inventor:

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Bohan, Jr. (54) 75 RELAXATION OSCILLATOR TYPE SPARK GENERATOR Inventor: John E. Bohan, Jr., Minneapolis, Minn. (73) Assignee: Honeywell Inc., Minneapolis, Minn. (21) Appl. No.:

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States US 20080O88415A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0088415 A1 Quan (43) Pub. Date: (54) TUNING AN RFID READER WITH Publication Classification ELECTRONIC SWITCHES

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 US 20060280289A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0280289 A1 Hanington et al. (43) Pub. Date: Dec. 14, 2006 (54) X-RAY TUBE DRIVER USING AM AND FM (57) ABSTRACT

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Pfeffer et al. 11 (45 Oct. 5, 1976 54) (75) 73) 22) 21 (52) 51) 58) ALTERNATOR-RECTFER UNIT WITH PHASE WINDING AND RECTIFIER SETS SUBJECT TO SERIES-PARALLEL SWITCHING Inventors:

More information

III. Main N101 ( Y-104. (10) Patent No.: US 7,142,997 B1. (45) Date of Patent: Nov. 28, Supply. Capacitors B

III. Main N101 ( Y-104. (10) Patent No.: US 7,142,997 B1. (45) Date of Patent: Nov. 28, Supply. Capacitors B US007 142997 B1 (12) United States Patent Widner (54) (75) (73) (*) (21) (22) (51) (52) (58) (56) AUTOMATIC POWER FACTOR CORRECTOR Inventor: Edward D. Widner, Austin, CO (US) Assignee: Tripac Systems,

More information

AUDIO MEMORY AUDIO ANALOG IN) FILES HEADPHONE) 1. AUDOANALOG 26 - SIGNAL OUTPUTE STRF RECHARGING BATTERY LINE OUT) PORTABLEAUDIO DEVICE 32

AUDIO MEMORY AUDIO ANALOG IN) FILES HEADPHONE) 1. AUDOANALOG 26 - SIGNAL OUTPUTE STRF RECHARGING BATTERY LINE OUT) PORTABLEAUDIO DEVICE 32 US007616973B2 (12) United States Patent Zhu et al. (10) Patent No.: (45) Date of Patent: US 7.616,973 B2 *Nov. 10, 2009 (54) PORTABLE AUDIO DEVICE HAVING REDUCED SENSTIVITY TO RF INTERFERENCE AND RELATED

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USO0973O294B2 (10) Patent No.: US 9,730,294 B2 Roberts (45) Date of Patent: Aug. 8, 2017 (54) LIGHTING DEVICE INCLUDING A DRIVE 2005/001765.6 A1 1/2005 Takahashi... HO5B 41/24

More information

USOO A United States Patent (19) 11 Patent Number: 5,512,817. Nagaraj (45) Date of Patent: Apr. 30, 1996

USOO A United States Patent (19) 11 Patent Number: 5,512,817. Nagaraj (45) Date of Patent: Apr. 30, 1996 IIIHIIII USOO5512817A United States Patent (19) 11 Patent Number: Nagaraj (45) Date of Patent: Apr. 30, 1996 54 BANDGAP VOLTAGE REFERENCE 5,309,083 5/1994 Pierret et al.... 323/313 GENERATOR 5,39980 2/1995

More information

(12) United States Patent (10) Patent No.: US 7,804,379 B2

(12) United States Patent (10) Patent No.: US 7,804,379 B2 US007804379B2 (12) United States Patent (10) Patent No.: Kris et al. (45) Date of Patent: Sep. 28, 2010 (54) PULSE WIDTH MODULATION DEAD TIME 5,764,024 A 6, 1998 Wilson COMPENSATION METHOD AND 6,940,249

More information

United States Patent 19 Anderson

United States Patent 19 Anderson United States Patent 19 Anderson 54 LAMP (76) Inventor: John E. Anderson, 4781 McKinley Dr., Boulder, Colo. 80302 (21) Appl. No.: 848,680 22 Filed: Nov. 4, 1977 Related U.S. Application Data 63 Continuation

More information

(12) United States Patent (10) Patent No.: US 8,390,371 B2 Ardehali (45) Date of Patent: Mar. 5, 2013

(12) United States Patent (10) Patent No.: US 8,390,371 B2 Ardehali (45) Date of Patent: Mar. 5, 2013 US008390371B2 (12) United States Patent (10) Patent No.: US 8,390,371 B2 Ardehali (45) Date of Patent: Mar. 5, 2013 (54) TUNABLE (58) Field of Classi?cation Search..... 327/552i554 TRANSCONDUCTANCE-CAPACITANCE

More information