Common-Mode Suppression Design for Gigahertz Differential Signals Based on C-Slotline

Size: px
Start display at page:

Download "Common-Mode Suppression Design for Gigahertz Differential Signals Based on C-Slotline"

Transcription

1 Progress In Electromagnetics Research C, Vol. 61, 17 26, 2016 Common-Mode Suppression Design for Gigahertz Differential Signals Based on C-Slotline Wei Zhuang 1, 2, Yongrong Shi 3, *, Wanchun Tang 1, 2, and Yafei Dai 2 Abstract For wideband common-mode noise suppression in high-speed differential signals, a low-cost compact filter is proposed and designed by etching two coupled C-slotlines on the ground plane. It is found that the bandwidth of the common-mode stopband over 10 db is from 2.4 GHz to 6.35 GHz with no degradation of the differential-mode insertion loss and group delay within the wide common-mode stopband. In time domain, the differential signal eye diagram is not deteriorated as well. In addition, an equivalent circuit model is developed and provides a quickly prediction of the common-mode stopband. The results show a good consistency between the simulations and measurements. 1. INTRODUCTION With the trend of high data rate transmission, differential signals have played an important role in the high-speed digital circuits because of their high immunity to noise, low crosstalk, and low electromagnetic interference (EMI) [1, 2]. Several high-speed serial link formats, such as PCI-Express 2.0, Gigabit Ethernet, SATA III etc., have data rates over 5 Gbps under the differential signal transmission. However, the common-mode noise is unavoidable in practical circuits due to timing skew, amplitude unbalance along the differential signal paths, or different rising/falling time. The commonmode noise above gigahertz frequency range will degrade the signal integrity and power integrity of the high-speed circuit system. Moreover, in high-speed serial link applications, cables are always necessary to transmit differential signals between the different electronic devices and the common-mode noise may couple to the I/O cables and induce EMI issues [3]. As a result,suppressing the common-mode noise without affecting the differential signal quality has become a necessity in high-speed circuit design. Several researches have contributed to the suppression of common-mode noise. The commonmode choke using a high permeability ferrite core is one of the most general approaches [4, 5], but this approach is valid only at MHz frequency range and the size reduction is difficult for the high density digital circuits [1]. For this reason, a broadband and miniaturized common-mode filter was proposed by Wu et al. [3] on the low-temperature co-fired ceramic (LTCC) with the common-mode noise suppression over 10 db in the frequency range of GHz. Recently, common-mode suppression filters employing the dumbbell-shaped [1] and UH-shaped [2] patterned ground plane were proposed based on process. The proposed filter of [2] is more advanced than the one of [1] due to smaller size and bandwidth enhancement. Besides, periodic complementary split ring resonators (CSRRs) [6] are used by Naqui et al. to the application of common-mode suppression. In [7], a common-mode filter consisted of meandered signal pair and an improved mushroom-type cell embeded in a or package substrate is proposed to efficiently reduce the EMI, but four layers and two metal vias are needed resulting in a complex design and high cost. The common-mode suppression behavior is also Received 6 September 2015, Accepted 16 December 2015, Scheduled 29 December 2015 * Corresponding author: Yongrong Shi (yongrongshi@hotmail.com). 1 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing , China. 2 Key Laboratory of Virtual Geographical Environment (Ministry of Education), School of Physics and Technology, Nanjing Normal University, China. 3 Nanjing Electronic Devices Institute, Nanjing, China.

2 18 Zhuang et al. investigated based on planar electromagnetic bandgap structures by Orlandi et al. in [8]. Besides, the artificial transmission line [9] and the multilayer liquid crystal polymer technology [10] are used in the common-mode suppression as well, and the balanced bandpass filters based on them are successfully designed. In this paper, a novel miniaturized and simplified common- mode filter is proposed for a wideband GHz common-mode noise suppression based on standard 2-layer process. The proposed commonmode filter consists of a pair of coupled microstrip lines on top of the substrate, and two symmetrical coupled C-slotlines etched on the ground plane. The inner coupling between the C-slotlines can effectively broaden the common-mode stopband bandwidth. An equivalent circuit model is established to explain the common-mode suppression characteristics and to quickly predict the common-mode stopband by the calculation of the common-mode insertion loss (S cc21 ). Compared with the previous work [1, 2, 6] which all implemented on 2-layer, the proposed structure has the smallest electric size as well as the maximum fractional bandwidth. Moreover, the proposed common-mode filter has the advantages of simple configuration design in contrast to the previous design in [2, 3, 6 9]. This paper is organized as follows. Section 2 presents the common-mode filter based on C-slotline and its design concept. In Section 3, common-mode stopband enhanced filter based on coupled C- slotlines and its equivalent circuit mode are proposed and discussed. To demonstrate the excellent common-mode noise suppression performance, the experimental results are given in Section 4. Finally, the conclusions are drawn in Section COMMON-MODE FILTER BASED ON C-SLOTLINE In [11], periodical straight slotlines are used to design a novel compact forward-ware directional coupler, and it has pointed out that the straight slotline can also be utilized to suppress the common-mode noise. Fig. 1 shows such a common-mode filter with the coupled microstrip lines on top of the substrate and a straight slotline etched symmetrically on the ground plane. Here, in this paper, only one straight slotline is applied instead of periodic slotlines in [11]. To reduce the size in the y direction shown in Fig. 1, the straight slotline is bent and formed a so-called C-slotline in Fig. 1. It will be shown, in the following, that the C-slotlines can easily be coupled with each other to broaden the common-mode stopband bandwidth as well as decreasing the size in the y direction. In order to avoid the magnetic field coupling between the coupled microstrip lines and the short-circuited terminal of the C-slotline, the distance d is taken as 1 mm in this paper, as shown in Fig. 1. The corresponding geometrical parameters are denoted as (W m, S m ) for the coupled microstrip lines, (L, W ) for the straight slotline (see Fig. 1) and (L 1, L 2, L 3, W s ) for the C-slotline (see Fig. 1). The substrate is chosen as FR4 (ε r = 4.5, tan δ = 0.035) with a of h = 0.4 mm. If we choose the geometrical parameters W m = 0.55 mm, S m = 0.36 mm, the odd- and even-mode characteristic impedance of the coupled microstrip line are 50 Ω and 65 Ω, respectively. The 50 Ω odd-mode characteristic impedance Figure 1. C-slotline. Three-dimensional view of the common-mode filter based on a straight slotline,

3 Progress In Electromagnetics Research C, Vol. 61, Table 1. Geometrical parameters for the common-mode filters shown in Fig. 1. Fig. 1 L = 26 mm W = 1 mm Fig. 1 L 1 = 10 mm L 2 = 6 mm L 3 = 6 mm W s = 1 mm Figure 2. Equivalent circuit model of the common-mode filter shown in Fig. 1 for the even-mode analysis: general model, and its simplified model. is chosen for the differential signal transmission on the coupled microstrip line. An example of the geometrical parameters of the common-mode filters in Figs. 1 and is listed in Table 1, in which the total length of the C-slotline is equal to that of the straight slotline. Due to the symmetry of the structures in Fig. 1, the even-mode equivalent circuit model is shown in Fig. 2 by applying the perfect magnetic wall at the central plane between the coupled microstrip lines [11, 12]. The coupled microstrip lines will work in odd mode to propagate the differential signal, while the even mode is actually the common-mode for the coupled microstrip lines. Therefore, we only give the even-mode equivalent circuit model and will focus on investigating the even-mode in the following. As illustrated in Fig. 2, two transmission lines of characteristic impedance Z e and electric length θ e are connected by a short circuited slotline with the characteristic impedance Z s and the electric length θ s, which can be calculated by the formulas (1) (3) in [12]. ( ) 0.6 Ws ( Z s = ε r + ( ε r ) ) ε 2 r (ε r ) ( Ws h ) ln ( 100 h λ 0 θ s = β slotline l slotline = 2π l slotline λ s ( ) ( λ s Ws ε r = ln(ε r ) λ 0 h W s /h ( ) [ ] h ln 4.6 λ 0 εr 2 Ws /λ 0 ( W s /λ 0 ) λ 0 W s /h (W s /h ε r 2) ) ε r (h/λ 0 ) Ws /λ 0 (1) In fact, the equivalent circuit model in Fig. 2 can be simplified as Fig. 2 with Z d = jz s tan θ s. ) 0.5 (2) (3)

4 20 Zhuang et al. From Fig. 2, the transmission matrix can be written as and the common-mode insertion loss is [ABCD] T = [ABCD] 1 [ABCD] 2 [ABCD] 1 = S cc21 = [ ] AT B T C T D T 2 A T + B T /Z 0 + C T Z 0 + D T (5) where Z 0 is the port impedance. The calculated common-mode insertion loss is shown in Fig. 3 for the common-mode filters in Fig. 1 and. The results by the full wave software HFSS [18] are also added for comparison. One can see that good agreement is achieved. The slight discrepancy is mainly due to it that the transmission line model of the slotline is assumed to be ideal short-circuited. It can also be observed that there is a narrow common-mode stopband bandwidth ( S cc21 < GHz 5.6 GHz) for both of the C-slotline and the straight slotline. This is because only one unit cell (straight slotline and/or C-slotline) is used. To broaden the common-mode stopband bandwidth, two coupled C-slotlines are used in the following design. 3. PROPOSED COMMON-MODE FILTER BASED ON COUPLED C-SLOTLINES Figure 4 illustrates the proposed common-mode filters based on coupled C-slotlines, where the gap width W g between the two C-slotlines is 0.5 mm. Other geometrical parameters are taken the same as those in Section 2. The coupled C-slotlines structure is introduced here to broaden the common-mode stopband bandwidth due to its inner coupling. In order to predict the common-mode stopband for the common-mode filter in Fig. 4, the equivalent circuit model and its corresponding simplified model are, respectively, given in Figs. 5 and for the even-mode analysis. To provide a conceptual understanding of the equivalent circuit model, one half configuration of the proposed common-mode filter is also included in Fig. 5. In the simplified equivalent circuit model (Fig. 5), there are 4 blocks which are all two-port networks. Based on the definition of the port voltages and currents of the 4 blocks, one can see that block 1 and block 2 are in series to form a large block 12. The impedance matrix of this block 12 can then be expressed as [Z] 12 = [Z] 1 + [Z] 2 (6) where [Z] 1 and [Z] 2 are, respectively, the impedance matrices of the blocks 1 and 2. In block 2, there are 3 subblocks in cascaded in which the transmission matrix for the coupled slotlines in subblock 2 is (4) Figure 3. Comparsion of the common-mode insertion loss by the equivalent circuit model and HFSS for the common-mode filter in Fig. 1. Figure 4. Proposed common-mode filters based on coupled C-slotlines.

5 Progress In Electromagnetics Research C, Vol. 61, Figure 5. Equivalent circuit model of the proposed common-mode filter for even-mode analysis: the original model, the simplified model. given here for clearance [13]: [ABCD] s2 = Y s odd + Y s even Y s odd Y s even j 2Y s odd Y s even cot θ 4 Y s odd Y s even 2 tan θ 4 j Y odd even s Y s Y s odd + Y s even Y s odd Y s even with Y odd s = 1 Z odd and Y even s = 1 s Z even s. Z even s, Z odd s can be obtained from the numerical method [14, 15] or the extraction from the coupled slotlines model [17] as Zs i = Z 0 (S2 21,i S2 11,i 1) 2S 11,i (S 2 i = even, odd (8) 21,i S2 11,i 1) + 2S 11,i and θ 4 is defined according to the electric length of the even mode of the coupled slotline (i.e., coplanar waveguide mode) [16] because the even/odd mode dielectric lengths of the coupled slotline in Fig. 5 are approximately equal. The transmission matrices of the subblocks 1 and 3, together with blocks 1, 3 and 4, are easily obtained and not given here. Figure 6 gives the simulated results by the equivalent circuit model in Fig. 5 and HFSS. It can be observed that there is a broadened common-mode stopband due to the coupling between the two C- slotlines, compared with that in Fig. 5. Good agreement between the equivalent circuit model and HFSS can be seen. Moreover, two transmission zeros (2.7 GHz and 5.8 GHz) can also be observed which agrees with the HFSS result. Therefore, the equivalent circuit model in Fig. 5 can be used to quickly predict the common-mode stopband bandwidth at the initial design. It should be noted that the equivalent circuit model proposed in this paper is different from the one of the common-mode suppression design based on coupled defected ground structure (DGS) in [2]. The coupled C-slotline is modeled as transmission line in this paper, while the DGS is modeled as lumped LC circuits. A peak around 6 GHz in the curve of equivalent circuit model is mainly caused by the resonance, where L 1 + L 2 + L 3 W s = 13 mm (Fig. 5) is about one guided wavelength at 6 GHz. Finally, the effect of the design parameter L 3 and W g on the lower and upper bound cutoff frequencies (f L, f H ) is investigated by parametric analysis, respectively. In the parametric analysis, the total length of the C-slotline is unchanged and other geometrical parameters of the C-slotline described in Section 2 are used. For the calculation of f L and f H, the common-mode stopband is defined as S cc21 < 10 db which is good enough in high-speed digital circuit application [2, 3]. The calculated results by the equivalent circuit model and HFSS are shown in Figs. 7 and. Good consistency is observed. It can be seen that the change of W g will have more influence on the f L and f H than that of (7)

6 22 Zhuang et al. Figure 6. Comparison of S cc21 by the equivalent circuit model and HFSS for the proposed commonmode filter of Fig. 4. Figure 7. Calculated f L and f H of the proposed common-mode filter by equivalent circuit model compared with HFSS with different L 3, with different W g. L 3. When W g decreases, f L will decrease and f H will increase. If W g is very small, e.g., 0.02 mm, f H will decrease since the common-mode stopband will split into two stopbands according to the criterion of S cc21 < 10 db. Hence, W g = 0.5 mm and L 3 = 4.0 mm are chosen in this paper based on the consideration of the common-mode stopband bandwidth, suppression level and fabrication tolerance, etc.. 4. RESULTS AND DISCUSSION The proposed common-mode filter in Fig. 4 with the geometrical parameters described in Section 3 is fabricated, and its photograph is shown in Fig. 8. A four-port vector network analyzer (Agilent N5244A) was used for the mixed-mode S-parameter measurement with Short-Open-Load-Thru (SOLT) calibration. Fig. 9 depicts the measured insertion losses for the differential-mode (S dd21 ) and the common-mode (S cc21 ). The results by equivalent circuit model and HFSS are also added for comparisons. From Fig. 9, reasonably good consistency between the measured and simulated results can be seen, and there is a wide stopband of GHz for the common-mode insertion loss (S cc21 ). On the other hand, the differential-mode insertion loss (S dd21 ) is not deteriorated within the common-mode stopband. The discrepancies between the measurements and the simulations for the common-mode and differential-mode insertion losses at high frequencies are mainly come from the fabrication tolerance,

7 Progress In Electromagnetics Research C, Vol. 61, Figure 8. The photograph of the fabricated common-mode filter. Figure 9. The comparisons of the insertion losses for the differential and common modes, and the group delay for the differential-mode with and without the coupled C-slotlines. Table 2. Eye diagram summary. Max. Eye Width Max. Eye Height Jitter Common-mode filter 106 ps 869 mv 20 ps Reference board 107 ps 888 mv 18 ps Figure 10. Simulated differential-mode eye diagrams for: common-mode filter and reference board. substrate loss of FR4 and the conductor loss of the SMA used. To keep good signal integrity for the differential signals, the group delay for the differential-mode also cannot be distorted by the coupled C-slotlines. Fig. 9 compares the differential-mode group delay of the proposed common-mode filter with and without the coupled C-slotlines. It is found that

8 24 Zhuang et al. the group delay in the common-mode stopband is almost the same with maximum error of 0.5%. Figures 10 and show the simulated differential-mode eye diagrams by Ansoft Designer [19] for the common-mode filter board and the reference board whose ground plane is solid, respectively. The input signal is 8 Gbps with 1 V amplitude. The eye diagram quality in terms of maximum eye height, maximum eye width, and jitter is compared and summarized in Table 2. It can be seen that the signal integrity of the differential signal is maintained by the proposed common-mode filter. It is verified again in time domain that the proposed common- mode filter exhibits excellent signal integrity of the differential signal. As shown in Table 3, compared to previously reported data which realized on 2-layer technology [1, 2, 6], the proposed common-mode filter has the maximum fractional bandwidth and the most compact electrical size with a simple configuration design. Regarding the common-mode suppression design in [8], the proposed common-mode filter has a larger fractional bandwidth and a simpler structure, while the suppression level and the electrical size are worse than those in [8]. The deep common-mode suppression level (with S cc21 < 20 db) of the common-mode filter ([1, 6, 8]) is better Table 3. Characteristic of the proposed common-mode filter compared with previous literatures. Design Ref. Technique Dumbbell-shaped [1] (3 unit cells) Frequency Range (GHz) Fractional Bandwidth Suppression Electrical Technology 2 Level S cc21 Size λ g % < 20 db layer [2] UH-shaped % < 10 db Metamaterial [3] Transmission % < 10 db Line [6] [7] [8] [9] This Work CSRR (3 unit cells) % < 20 db Meandered Signal Pair and Improved % < 10 db Mushroom-type Cell Artificial Transmission % < 20 db Line 2-layer 4-layer 2-layer 4-layer 2-layer Multilayer LPC Technology % < 10 db Multilayer LPC Coupled % < 10 db layer C-Slotlines Configuration Design Substrate material Simple FR4 Complex FR4 LTCC Complex substrate (ε r = 7.8) Rogers Complex RO3010 (ε r = 10.2) Complex FR4 Moderation ε r = 2.43 Moderation ε r = 3.15 Simple FR4

9 Progress In Electromagnetics Research C, Vol. 61, due to the application of periodic structure. For the multilayer common-mode filters (based on the metamaterial transmission line [3] and the hybrid structure of meandered signal pair and an improved mushroom-type cell [7], and LPC technology [9]), this work shows a good compromise between the common- mode suppression, design complexity and fabrication cost. 5. CONCLUSION In this paper, a novel common-mode suppression design based on C-slotline is proposed. The commonmode stopband enhancement is investigated based on coupled C-slotlines. Its even-mode equivalent circuit model is established to characterize the common-mode suppression performance and provide a quick prediction of the common-mode stopband. Finally, the excellent common-mode suppression performance is demonstrated by the full-wave simulation and measurement. Compared with previous common-mode filters, the proposed structure has significantly simplified the design as well as improving the common-mode suppression performance and reducing the electrical size. ACKNOWLEDGMENT This work is supported by the National Natural Science Foundation of China under Contract Number , the Natural Science Fund for Colleges and Universities in Jiangsu Province (15KJB510017) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. REFERENCES 1. Liu, W.-T., C.-H. Tsai, T.-W. Han, and T.-L. Wu, An embedded common-mode suppression filter for ghz differential signals using periodic defected ground plane, IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 4, , Wu, S.-J., C.-H. Tsai, T.-L. Wu, and T. Itoh, A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure, IEEE Trans. Microwave Theory Tech., Vol. 57, No. 4, , Tsai, C.-H. and T.-L. Wu, A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials, IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, , Yanagisawa, K., F. Zhang, T. Sato, Y. Miura, A new wideband common-mode noise filter consisting of Mn-Zn ferrite core and copper/polyimide tape wound coil, IEEE Trans. Magn., Vol. 41, No. 10, , Deng, J. and K. Y. See, In-circuit characteristics of common-mode chokes, IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, , Naqui, J., A. Fernandez-Prieto, M. Duran-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martin, Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications, IEEE Trans. Microwave Theory Tech., Vol. 60, No. 10, , Hsiao, C.-Y., C.-H. Tsai, C.-N. Chiu, and T.-L. Wu, Radiation suppression for cable-attached packages utilizing a compact embedded common-mode filter, IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 2, No. 10, , De Paulis, F., L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, Compact configuration for common mode filter design based on planar electromagnetic bandgap structures, IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, , Fernndez-Prieto, A., J. Martel-Villagran, F. Medina, F. Mesa, S. Qian, J. S. Hong, J. Naqui, and F. Martin, Dual-band differential filter using broadband common-mode rejection artificial transmission line, Progress In Electromagnetics Research, Vol. 139, , 2013.

10 26 Zhuang et al. 10. Fernndez-Prieto, A., S. Qian, J. S. Hong, J. Martel-Villagran, F. Medina, F. Mesa, J. Naqui, and F. Martin, Common-mode suppression for balanced bandpass filters in multilayer liquid crystal polymer technology, IET Microw. Antennas Propag., Vol. 9, No. 12, , Hsu, S.-K., J.-C. Yen, and T.-L. Wu, A novel compact forward-wave directional coupler design using periodical patterned ground structure, IEEE Trans. Microwave Theory Tech., Vol. 59, No. 3, , Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, 2nd Edition, Artech House, Norwood, MA, Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Norwood, MA, Knorr, J. B. and K.-D. Kuchler, Analysis of coupled slots and coplanar strips on dielectric substrate, IEEE Trans. Microwave Theory Tech., Vol. 23, No. 7, , Aikawa, M. and Hiroyo, Analysis of coupled slots and coplanar strips on dielectric substrate, IEEE Trans. Microwave Theory Tech., Vol. 28, No. 6, , Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Wiley, New York, NY, Hsu, S.-K., C.H. Tsai, and T.-L. Wu, A novel miniaturized forward-wave directional coupler with periodical mushroom-shaped ground plane, IEEE Trans. Microwave Theory Tech., Vol. 58, No. 8, , Ansys Corporation, high frequency structure simulator, Available: Simons, R. N., Ansys Corporation, ansoft designer V6., Available:

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Progress In Electromagnetics Research Letters, Vol. 75, 39 45, 218 Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Lihua Wu 1, Shanqing Wang 2,LuetaoLi 3, and Chengpei

More information

Bandpass-Response Power Divider with High Isolation

Bandpass-Response Power Divider with High Isolation Progress In Electromagnetics Research Letters, Vol. 46, 43 48, 2014 Bandpass-Response Power Divider with High Isolation Long Xiao *, Hao Peng, and Tao Yang Abstract A novel wideband multilayer power divider

More information

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China Progress In Electromagnetics Research Letters, Vol. 17, 181 189, 21 A MINIATURIZED BRANCH-LINE COUPLER WITH WIDEBAND HARMONICS SUPPRESSION B. Li Ministerial Key Laboratory of JGMT Nanjing University of

More information

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND Progress In Electromagnetics Research Letters, Vol. 2, 77 86, 211 A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND L.-N. Chen, Y.-C. Jiao, H.-H. Xie, and F.-S. Zhang National

More information

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012 Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012 A COMPACT DUAL-BAND PLANAR BRANCH-LINE COUPLER D. C. Ji *, B. Wu, X. Y. Ma, and J. Z. Chen 1 National Key Laboratory of Antennas and Microwave

More information

Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure

Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure PIERS ONLINE, VOL. 2, NO. 6, 26 71 Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure Bian Wu, Bin Li, Tao Su, and Chang-Hong Liang National Key Laboratory of Antennas

More information

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

Progress In Electromagnetics Research Letters, Vol. 23, , 2011 Progress In Electromagnetics Research Letters, Vol. 23, 173 180, 2011 A DUAL-MODE DUAL-BAND BANDPASS FILTER USING A SINGLE SLOT RING RESONATOR S. Luo and L. Zhu School of Electrical and Electronic Engineering

More information

High Selectivity Wideband Bandpass Filter Based on Transversal Signal-Interaction Concepts Loaded with Open and Shorted Stubs

High Selectivity Wideband Bandpass Filter Based on Transversal Signal-Interaction Concepts Loaded with Open and Shorted Stubs Progress In Electromagnetics Research Letters, Vol. 64, 133 139, 2016 High Selectivity Wideband Bandpass Filter Based on Transversal Signal-Interaction Concepts Loaded with Open and Shorted Stubs Liwei

More information

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION Progress In Electromagnetics Research Letters, Vol. 41, 125 134, 2013 DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION Maoze Wang *, Fushun Zhang, Jian Sun, Ke Chen, and Bin Wen National

More information

A Folded SIR Cross Coupled WLAN Dual-Band Filter

A Folded SIR Cross Coupled WLAN Dual-Band Filter Progress In Electromagnetics Research Letters, Vol. 45, 115 119, 2014 A Folded SIR Cross Coupled WLAN Dual-Band Filter Zi Jian Su *, Xi Chen, Long Li, Bian Wu, and Chang-Hong Liang Abstract A compact cross-coupled

More information

HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR

HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR Progress In Electromagnetics Research Letters, Vol. 7, 193 201, 2009 HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR S. S. Karthikeyan and R. S. Kshetrimayum Department

More information

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS Progress In Electromagnetics Research, PIER 101, 33 42, 2010 NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS L. Zhang, Z.-Y. Yu, and S.-G. Mo Institute of Applied Physics University of Electronic

More information

Metamaterial Inspired CPW Fed Compact Low-Pass Filter

Metamaterial Inspired CPW Fed Compact Low-Pass Filter Progress In Electromagnetics Research C, Vol. 57, 173 180, 2015 Metamaterial Inspired CPW Fed Compact Low-Pass Filter BasilJ.Paul 1, *, Shanta Mridula 1,BinuPaul 1, and Pezholil Mohanan 2 Abstract A metamaterial

More information

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS Progress In Electromagnetics Research Letters, Vol. 18, 179 186, 21 DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS L. Wang, H. C. Yang, and Y. Li School of Physical

More information

Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications

Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications Progress In Electromagnetics Research Letters, Vol. 50, 79 84, 2014 Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications Hong-Li Wang, Hong-Wei Deng, Yong-Jiu

More information

A MINIATURIZED UWB BPF BASED ON NOVEL SCRLH TRANSMISSION LINE STRUCTURE

A MINIATURIZED UWB BPF BASED ON NOVEL SCRLH TRANSMISSION LINE STRUCTURE Progress In Electromagnetics Research Letters, Vol. 19, 67 73, 2010 A MINIATURIZED UWB BPF BASED ON NOVEL SCRLH TRANSMISSION LINE STRUCTURE J.-K. Wang and Y.-J. Zhao College of Information Science and

More information

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS Progress In Electromagnetics Research C, Vol. 33, 123 132, 2012 COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS B. Henin * and A. Abbosh School of ITEE, The University of Queensland, QLD 4072,

More information

COMPLEMENTARY SPLIT RING RESONATORS WITH DUAL MESH-SHAPED COUPLINGS AND DEFECTED GROUND STRUCTURES FOR WIDE PASS-BAND AND STOP-BAND BPF DESIGN

COMPLEMENTARY SPLIT RING RESONATORS WITH DUAL MESH-SHAPED COUPLINGS AND DEFECTED GROUND STRUCTURES FOR WIDE PASS-BAND AND STOP-BAND BPF DESIGN Progress In Electromagnetics Research Letters, Vol. 10, 19 28, 2009 COMPLEMENTARY SPLIT RING RESONATORS WITH DUAL MESH-SHAPED COUPLINGS AND DEFECTED GROUND STRUCTURES FOR WIDE PASS-BAND AND STOP-BAND BPF

More information

A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure

A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure Progress In Electromagnetics Research Letters, Vol. 63, 53 57, 216 A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure Lizhong Song 1,

More information

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY Progress In Electromagnetics Research, Vol. 137, 585 597, 2013 NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY Gui Liu 1, * and Yongle Wu 2 1 College of Physics & Electronic

More information

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground Progress In Electromagnetics Research Letters, Vol. 61, 25 30, 2016 Broadband and Gain Enhanced Bowtie Antenna with AMC Ground Xue-Yan Song *, Chuang Yang, Tian-Ling Zhang, Ze-Hong Yan, and Rui-Na Lian

More information

Ultra-Compact LPF with Wide Stop-Band

Ultra-Compact LPF with Wide Stop-Band June, 207 Ultra-Compact LPF with Wide Stop-Band Prashant Kumar Singh, Anjini Kumar Tiwary Abstract An ultra-compact, planar, wide stop-band and low cost low-pass filter (LPF) is proposed using microstrip

More information

Design of Broadband Transition Structure from Microstrip to Slotline with Band Notched Characteristic

Design of Broadband Transition Structure from Microstrip to Slotline with Band Notched Characteristic Progress In Electromagnetics Research Letters, Vol. 73, 05 2, 208 Design of Broadband Transition Structure from Microstrip to Slotline with Band Notched Characteristic Fa-Kun Sun, Wu-Sheng Ji *, Xiao-Chun

More information

Electronic Science and Technology of China, Chengdu , China

Electronic Science and Technology of China, Chengdu , China Progress In Electromagnetics Research Letters, Vol. 35, 107 114, 2012 COMPACT BANDPASS FILTER WITH MIXED ELECTRIC AND MAGNETIC (EM) COUPLING B. Fu 1, *, X.-B. Wei 1, 2, X. Zhou 1, M.-J. Xu 1, and J.-X.

More information

A Novel Dual-Band SIW Filter with High Selectivity

A Novel Dual-Band SIW Filter with High Selectivity Progress In Electromagnetics Research Letters, Vol. 6, 81 88, 216 A Novel Dual-Band SIW Filter with High Selectivity Yu-Dan Wu, Guo-Hui Li *, Wei Yang, and Tong Mou Abstract A novel dual-band substrate

More information

White Rose Research Online URL for this paper: Version: Accepted Version

White Rose Research Online URL for this paper:   Version: Accepted Version This is a repository copy of Compact half-mode substrate integrated waveguide bandpass filters with capacitively loaded complementary single split ring resonators. White Rose Research Online URL for this

More information

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS Progress In Electromagnetics Research C, Vol. 23, 1 14, 2011 QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS C. A. Zhang, Y. J. Cheng *, and Y. Fan

More information

H.-W. Wu Department of Computer and Communication Kun Shan University No. 949, Dawan Road, Yongkang City, Tainan County 710, Taiwan

H.-W. Wu Department of Computer and Communication Kun Shan University No. 949, Dawan Road, Yongkang City, Tainan County 710, Taiwan Progress In Electromagnetics Research, Vol. 107, 21 30, 2010 COMPACT MICROSTRIP BANDPASS FILTER WITH MULTISPURIOUS SUPPRESSION H.-W. Wu Department of Computer and Communication Kun Shan University No.

More information

Planar Wideband Balun with Novel Slotline T-Junction Transition

Planar Wideband Balun with Novel Slotline T-Junction Transition Progress In Electromagnetics Research Letters, Vol. 64, 73 79, 2016 Planar Wideband Balun with Novel Slotline T-Junction Transition Ya-Li Yao*, Fu-Shun Zhang, Min Liang, and Mao-Ze Wang Abstract A planar

More information

Progress In Electromagnetics Research, Vol. 107, , 2010

Progress In Electromagnetics Research, Vol. 107, , 2010 Progress In Electromagnetics Research, Vol. 107, 101 114, 2010 DESIGN OF A HIGH BAND ISOLATION DIPLEXER FOR GPS AND WLAN SYSTEM USING MODIFIED STEPPED-IMPEDANCE RESONATORS R.-Y. Yang Department of Materials

More information

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND Progress In Electromagnetics Research C, Vol. 14, 45 52, 2010 A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND R.-Y. Yang, J.-S. Lin, and H.-S. Li Department

More information

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs Progress In Electromagnetics Research Letters, Vol. 26, 69 78, 2011 UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs H.-Y. Lai *, Z.-Y. Lei, Y.-J. Xie, G.-L. Ning, and K. Yang Science

More information

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure Progress In Electromagnetics Research C, Vol. 51, 95 101, 2014 RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure Jun Zheng 1, 2, Shaojun Fang 1, Yongtao Jia 3, *, and

More information

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER Progress In Electromagnetics Research C, Vol. 11, 229 236, 2009 A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER E. Jafari, F. Hodjatkashani, and R. Rezaiesarlak Department

More information

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna Progress In Electromagnetics Research Letters, Vol. 46, 19 24, 2014 Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna Hao Wang *, Shu-Fang Liu, Wen-Tao Li, and Xiao-Wei Shi Abstract A compact

More information

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS Progress In Electromagnetics Research C, Vol. 10, 87 99, 2009 COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS A. Danideh Department of Electrical Engineering Islamic Azad University (IAU),

More information

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND Progress In Electromagnetics Research Letters, Vol. 29, 167 173, 212 MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND X.-C. Zhang 1, 2, *, C.-H. Liang 1, and J.-W. Xie 2 1

More information

Progress In Electromagnetics Research Letters, Vol. 9, 59 66, 2009

Progress In Electromagnetics Research Letters, Vol. 9, 59 66, 2009 Progress In Electromagnetics Research Letters, Vol. 9, 59 66, 2009 QUASI-LUMPED DESIGN OF BANDPASS FILTER USING COMBINED CPW AND MICROSTRIP M. Chen Department of Industrial Engineering and Managenment

More information

Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR

Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR 66 H. Y. ZENG, G. M. WANG, ET AL., MINIATURIZATION OF BRANCH-LINE COUPLER USING CRLH-TL WITH NOVEL MSSS CSSRR Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines

More information

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS Progress In Electromagnetics Research Letters, Vol. 31, 159 168, 2012 A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS S-M. Zhang *, F.-S. Zhang, W.-Z. Li, T. Quan, and H.-Y. Wu National

More information

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications Progress In Electromagnetics Research Letters, Vol. 75, 13 18, 2018 Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications Ruixing Zhi, Mengqi Han, Jing Bai, Wenying Wu, and

More information

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications Progress In Electromagnetics Research Letters, Vol. 55, 1 6, 2015 Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications Yuan Xu *, Cilei Zhang, Yingzeng Yin, and

More information

NEW DUAL-BAND BANDPASS FILTER WITH COM- PACT SIR STRUCTURE

NEW DUAL-BAND BANDPASS FILTER WITH COM- PACT SIR STRUCTURE Progress In Electromagnetics Research Letters Vol. 18 125 134 2010 NEW DUAL-BAND BANDPASS FILTER WITH COM- PACT SIR STRUCTURE J.-K. Xiao School of Computer and Information Hohai University Changzhou 213022

More information

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 23, 147 155, 2011 A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Z.-N. Song, Y. Ding, and K. Huang National Key Laboratory of Antennas

More information

COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION

COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION Progress In Electromagnetics Research C, Vol. 16, 233 239, 2010 COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION J. S. Kim Department of Information and Communications Engineering Kyungsung University

More information

A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER

A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER Progress In Electromagnetics Research Letters, Vol. 36, 171 179, 213 A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER Qianyin Xiang, Quanyuan Feng *, Xiaoguo Huang, and Dinghong Jia School of Information

More information

A Compact Quad-Band Bandpass Filter Using Multi-Mode Stub-Loaded Resonator

A Compact Quad-Band Bandpass Filter Using Multi-Mode Stub-Loaded Resonator Progress In Electromagnetics Research Letters, Vol. 61, 39 46, 2016 A Compact Quad-Band Bandpass Filter Using Multi-Mode Stub-Loaded Resonator Lakhindar Murmu * and Sushrut Das Abstract This paper presents

More information

Novel High-Selectivity Dual-Band Substrate Integrated Waveguide Filter with Multi-Transmission Zeros

Novel High-Selectivity Dual-Band Substrate Integrated Waveguide Filter with Multi-Transmission Zeros Progress In Electromagnetics Research Letters, Vol. 47, 7 12, 214 Novel High-Selectivity Dual-Band Substrate Integrated Waveguide Filter with Multi-Transmission Zeros Guo-Hui Li *, Xiao-Qi Cheng, Hao Jian,

More information

IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE

IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE Progress In Electromagnetics Research M, Vol. 3, 205 215, 2008 IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE M. Moradian and M. Khalaj-Amirhosseini

More information

DESIGN OF A TRIPLE-PASSBAND MICROSTRIP BAND- PASS FILTER WITH COMPACT SIZE

DESIGN OF A TRIPLE-PASSBAND MICROSTRIP BAND- PASS FILTER WITH COMPACT SIZE J. of Electromagn. Waves and Appl., Vol. 24, 2333 2341, 2010 DESIGN OF A TRIPLE-PASSBAND MICROSTRIP BAND- PASS FILTER WITH COMPACT SIZE H.-W. Wu Department of Computer and Communication Kun Shan University

More information

A Compact Miniaturized Frequency Selective Surface with Stable Resonant Frequency

A Compact Miniaturized Frequency Selective Surface with Stable Resonant Frequency Progress In Electromagnetics Research Letters, Vol. 62, 17 22, 2016 A Compact Miniaturized Frequency Selective Surface with Stable Resonant Frequency Ning Liu 1, *, Xian-Jun Sheng 2, and Jing-Jing Fan

More information

Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi

Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi Progress In Electromagnetics Research Letters, Vol. 63, 115 121, 2016 Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi Mojtaba Mirzaei and Mohammad A. Honarvar *

More information

A Semi-Elliptical Wideband Directional Coupler

A Semi-Elliptical Wideband Directional Coupler Progress In Electromagnetics Research C, Vol. 79, 139 148, 2017 A Semi-Elliptical Wideband Directional Coupler Yew-Chiong Lo 1, *, Boon-Kuan Chung 2,andEng-HockLim 2 Abstract A new design of wideband directional

More information

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays Mr. F. Benikhlef 1 and Mr. N. Boukli-Hacen 2 1 Research Scholar, telecommunication,

More information

A Compact UWB Bandpass Filter using Hybrid Fractal Shaped DGS 1 Babu Lal Shahu

A Compact UWB Bandpass Filter using Hybrid Fractal Shaped DGS 1 Babu Lal Shahu 38 A Compact UWB Bandpass Filter using Hybrid Fractal Shaped DGS 1 Babu Lal Shahu 1 Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Deoghar Campus, Deoghar-814142,

More information

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 1, 185 191, 29 A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS T. Yang, C. Liu, L. Yan, and K.

More information

Wideband Unidirectional Bowtie Antenna with Pattern Improvement

Wideband Unidirectional Bowtie Antenna with Pattern Improvement Progress In Electromagnetics Research Letters, Vol. 44, 119 124, 4 Wideband Unidirectional Bowtie Antenna with Pattern Improvement Jia-Yue Zhao *, Zhi-Ya Zhang, Neng-Wu Liu, Guang Fu, and Shu-Xi Gong Abstract

More information

THE DESIGN AND FABRICATION OF A HIGHLY COM- PACT MICROSTRIP DUAL-BAND BANDPASS FILTER

THE DESIGN AND FABRICATION OF A HIGHLY COM- PACT MICROSTRIP DUAL-BAND BANDPASS FILTER Progress In Electromagnetics Research, Vol. 112, 299 307, 2011 THE DESIGN AND FABRICATION OF A HIGHLY COM- PACT MICROSTRIP DUAL-BAND BANDPASS FILTER C.-Y. Chen and C.-C. Lin Department of Electrical Engineering

More information

Compact Varactor-Tuned Bandpass Filter Using Open Split-Ring Resonators

Compact Varactor-Tuned Bandpass Filter Using Open Split-Ring Resonators Progress In Electromagnetics Research Letters, Vol. 49, 99 104, 2014 Compact Varactor-Tuned Bandpass Filter Using Open Split-Ring Resonators Cheng Liu, Xinhuai Wang *, Yangbing Xu, and Xiaowei Shi Abstract

More information

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION Progress In Electromagnetics Research Letters, Vol. 21, 11 18, 2011 DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION W.-J. Wu, Y.-Z. Yin, S.-L. Zuo, Z.-Y. Zhang, and W. Hu National Key

More information

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE J. of Electromagn. Waves and Appl., Vol. 2, No. 8, 993 16, 26 ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE F. Yang, V. Demir, D. A. Elsherbeni, and A. Z. Elsherbeni

More information

EXTENDED DOUBLET BANDPASS FILTERS IMPLE- MENTED WITH MICROSTRIP RESONATOR AND FULL-/HALF-MODE SUBSTRATE INTEGRATED CAVI- TIES

EXTENDED DOUBLET BANDPASS FILTERS IMPLE- MENTED WITH MICROSTRIP RESONATOR AND FULL-/HALF-MODE SUBSTRATE INTEGRATED CAVI- TIES Progress In Electromagnetics Research, Vol. 108, 433 447, 2010 EXTENDED DOUBLET BANDPASS FILTERS IMPLE- MENTED WITH MICROSTRIP RESONATOR AND FULL-/HALF-MODE SUBSTRATE INTEGRATED CAVI- TIES L.-S. Wu, J.-F.

More information

COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER

COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER Progress In Electromagnetics Research Letters, Vol. 26, 161 168, 2011 COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER J. Li 1 and C.-L. Wei 2, * 1 College of Science, China Three Gorges

More information

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications Progress In Electromagnetics Research Letters, Vol. 61, 131 137, 2016 A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications Zhao Yang *, Cilei Zhang, Yingzeng Yin, and

More information

D. Packiaraj a, K.J. Vinoy b, M. Ramesh a & A.T. Kalghatgi a a Central Research Laboratory, Bharat Electronics Limited,

D. Packiaraj a, K.J. Vinoy b, M. Ramesh a & A.T. Kalghatgi a a Central Research Laboratory, Bharat Electronics Limited, This article was downloaded by: [D PACKIARAJ] On: 14 April 2013, At: 20:55 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

F. Fan, Z. Yan, and J. Jiang National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , China

F. Fan, Z. Yan, and J. Jiang National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , China Progress In Electromagnetics Research Letters, Vol. 5, 5 57, 2008 DESIGN OF A NOVEL COMPACT POWER DIVIDER WITH HARMONIC SUPPRESSION F. Fan, Z. Yan, and J. Jiang National Laboratory of Antennas and Microwave

More information

DEFECTED MICROSTRIP STRUCTURE BASED BANDPASS FILTER

DEFECTED MICROSTRIP STRUCTURE BASED BANDPASS FILTER DEFECTED MICROSTRIP STRUCTURE BASED BANDPASS FILTER M.Subhashini, Mookambigai college of engineering, Tamilnadu, India subha6688@gmail.com ABSTRACT A defected microstrip structure (DMS) unit is proposed

More information

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 13, 75 81, 2010 DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS S. Gai, Y.-C. Jiao, Y.-B. Yang, C.-Y. Li, and J.-G. Gong

More information

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION Progress In Electromagnetics Research, PIER 76, 477 484, 2007 TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION Y.-J. Wu, B.-H. Sun, J.-F. Li, and Q.-Z. Liu National Key Laboratory of Antennas

More information

COMPACT RECONFIGURABLE HMSIW BANDPASS FILTER LOADED BY CSRR

COMPACT RECONFIGURABLE HMSIW BANDPASS FILTER LOADED BY CSRR Progress In Electromagnetics Research Letters, Vol. 40, 191 200, 2013 COMPACT RECONFIGURABLE HMSIW BANDPASS FILTER LOADED BY CSRR Zhu-Dan Wang *, Feng Wei, Li Zhang, and Xiaowei Shi National Laboratory

More information

High-Selectivity UWB Filters with Adjustable Transmission Zeros

High-Selectivity UWB Filters with Adjustable Transmission Zeros Progress In Electromagnetics Research Letters, Vol. 52, 51 56, 2015 High-Selectivity UWB Filters with Adjustable Transmission Zeros Liang Wang *, Zhao-Jun Zhu, and Shang-Yang Li Abstract This letter proposes

More information

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points Progress In Electromagnetics Research Letters, Vol. 67, 97 102, 2017 Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points Xinyao Luo *, Jiade Yuan, and Kan Chen Abstract A compact directional

More information

Introduction: Planar Transmission Lines

Introduction: Planar Transmission Lines Chapter-1 Introduction: Planar Transmission Lines 1.1 Overview Microwave integrated circuit (MIC) techniques represent an extension of integrated circuit technology to microwave frequencies. Since four

More information

Compact Microstrip Narrow Bandpass Filter with Good Selectivity and Wide Stopband Rejection for Ku-Band Applications

Compact Microstrip Narrow Bandpass Filter with Good Selectivity and Wide Stopband Rejection for Ku-Band Applications Progress In Electromagnetics Research Letters, Vol. 57, 55 59, 2015 Compact Microstrip Narrow Bandpass Filter with Good Selectivity and Wide Stopband Rejection for Ku-Band Applications Haibo Jiang 1, 2,

More information

ANALYSIS AND APPLICATION OF SHUNT OPEN STUBS BASED ON ASYMMETRIC HALF-WAVELENGTH RESONATORS STRUCTURE

ANALYSIS AND APPLICATION OF SHUNT OPEN STUBS BASED ON ASYMMETRIC HALF-WAVELENGTH RESONATORS STRUCTURE Progress In Electromagnetics Research, Vol. 125, 311 325, 212 ANALYSIS AND APPLICATION OF SHUNT OPEN STUBS BASED ON ASYMMETRIC HALF-WAVELENGTH RESONATORS STRUCTURE X. Li 1, 2, 3, * and H. Wang1, 2, 3 1

More information

Progress In Electromagnetics Research Letters, Vol. 8, , 2009

Progress In Electromagnetics Research Letters, Vol. 8, , 2009 Progress In Electromagnetics Research Letters, Vol. 8, 181 190, 2009 COMPACT DUAL-BAND REJECTION FILTER BASED ON COMPLEMENTARY MEANDER LINE SPLIT RING RESONATOR X. Hu Division of Electromagnetic Engineering

More information

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 15, 107 116, 2010 COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS F. Li, L.-S. Ren, G. Zhao,

More information

Novel Compact Tri-Band Bandpass Filter Using Multi-Stub-Loaded Resonator

Novel Compact Tri-Band Bandpass Filter Using Multi-Stub-Loaded Resonator Progress In Electromagnetics Research C, Vol. 5, 139 145, 214 Novel Compact Tri-Band Bandpass Filter Using Multi-Stub-Loaded Resonator Li Gao *, Jun Xiang, and Quan Xue Abstract In this paper, a compact

More information

Compact Broadband End-Fire Antenna with Metamaterial Transmission Line

Compact Broadband End-Fire Antenna with Metamaterial Transmission Line Progress In Electromagnetics Research Letters, Vol. 73, 37 44, 2018 Compact Broadband End-Fire Antenna with Metamaterial Transmission Line Liang-Yuan Liu * and Jing-Qi Lu Abstract A broadband end-fire

More information

PLANAR MICROSTRIP BANDPASS FILTER WITH WIDE DUAL BANDS USING PARALLEL-COUPLED LINES AND STEPPED IMPEDANCE RESONATORS

PLANAR MICROSTRIP BANDPASS FILTER WITH WIDE DUAL BANDS USING PARALLEL-COUPLED LINES AND STEPPED IMPEDANCE RESONATORS Progress In Electromagnetics Research C, Vol. 35, 49 61, 213 PLANAR MICROSTRIP BANDPASS FILTER WITH WIDE DUAL BANDS USING PARALLEL-COUPLED LINES AND STEPPED IMPEDANCE RESONATORS Jayaseelan Marimuthu *,

More information

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications Progress In Electromagnetics Research, Vol. 148, 63 71, 2014 A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications Kun Ma, Zhi Qin Zhao

More information

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS Progress In Electromagnetics Research Letters, Vol. 26, 39 48, 2011 PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS F.-C. Ren *, F.-S. Zhang, J.-H. Bao, Y.-C. Jiao, and L. Zhou National

More information

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR Progress In Electromagnetics Research Letters, Vol. 35, 89 98, 2012 COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR K. C. Lee *, H. T. Su, and M. K. Haldar School of Engineering, Computing

More information

A MINIATURIZED LOWPASS/BANDPASS FILTER US- ING DOUBLE ARROW HEAD DEFECTED GROUND STRUCTURE WITH CENTERED ETCHED ELLIPSE

A MINIATURIZED LOWPASS/BANDPASS FILTER US- ING DOUBLE ARROW HEAD DEFECTED GROUND STRUCTURE WITH CENTERED ETCHED ELLIPSE Progress In Electromagnetics Research Letters, Vol. 24, 99 107, 2011 A MINIATURIZED LOWPASS/BANDPASS FILTER US- ING DOUBLE ARROW HEAD DEFECTED GROUND STRUCTURE WITH CENTERED ETCHED ELLIPSE M. H. Al Sharkawy

More information

S. Fallahzadeh and M. Tayarani Department of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran

S. Fallahzadeh and M. Tayarani Department of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran Progress In Electromagnetics Research Letters, Vol. 11, 167 172, 2009 A COMPACT MICROSTRIP BANDSTOP FILTER S. Fallahzadeh and M. Tayarani Department of Electrical Engineering Iran University of Science

More information

UWB Bandpass Filter with Wide Stopband Using Lumped Coupling Capacitors

UWB Bandpass Filter with Wide Stopband Using Lumped Coupling Capacitors LITERATURE REVIEW UWB Bandpass Filter with Wide Stopband Using Lumped Coupling Capacitors This paper [1] introduces an improved performance ultra-wideband bandpass filter by using lumped capacitors as

More information

DESIGN AND REALIZATION OF THREE-POLE BAND- PASS FILTER WITH SPURIOUS RESPONSE SUPPRES- SION USING DEFECTED GROUND STRUCTURES

DESIGN AND REALIZATION OF THREE-POLE BAND- PASS FILTER WITH SPURIOUS RESPONSE SUPPRES- SION USING DEFECTED GROUND STRUCTURES Progress In Electromagnetics Research C, Vol. 45, 87 100, 2013 DESIGN AND REALIZATION OF THREE-POLE BAND- PASS FILTER WITH SPURIOUS RESPONSE SUPPRES- SION USING DEFECTED GROUND STRUCTURES Alia Zakriti

More information

A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth

A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth Progress In Electromagnetics Research Letters, Vol. 69, 3 8, 27 A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth Bo Zhou *, Jing Pan Song, Feng Wei, and Xiao Wei Shi Abstract

More information

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs)

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs) Progress In Electromagnetics Research Letters, Vol. 44, 81 86, 2014 Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs) Jun Li *, Shan

More information

A COMPACT MULTILAYER CONFIGURATION FILTER WITH INNER MIXED ELECTRIC AND MAGNETIC COUPLING

A COMPACT MULTILAYER CONFIGURATION FILTER WITH INNER MIXED ELECTRIC AND MAGNETIC COUPLING Progress In Electromagnetics Research C, Vol. 39, 77 89, 2013 A COMPACT MULTILAYER CONFIGURATION FILTER WITH INNER MIXED ELECTRIC AND MAGNETIC COUPLING Wei Tang, Jun He *, and Xiaobo Yang Research Institute

More information

Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability

Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability Progress In Electromagnetics Research Letters, Vol. 53, 13 19, 215 Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability Lulu Bei 1, 2, Shen Zhang 2, *, and Kai

More information

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency Progress In Electromagnetics Research M, Vol. 1, 13 131, 17 Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency Priyanka Usha *

More information

Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters

Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters Manoj Kumar *, Ravi Gowri Department of Electronics and Communication Engineering Graphic Era University, Dehradun,

More information

Broadband Rectangular Waveguide to GCPW Transition

Broadband Rectangular Waveguide to GCPW Transition Progress In Electromagnetics Research Letters, Vol. 46, 107 112, 2014 Broadband Rectangular Waveguide to GCPW Transition Jun Dong 1, *, Tao Yang 1, Yu Liu 1, Ziqiang Yang 1, and Yihong Zhou 2 Abstract

More information

MINIATURIZED UWB BANDPASS FILTER WITH DUAL NOTCH BANDS AND WIDE UPPER STOPBAND

MINIATURIZED UWB BANDPASS FILTER WITH DUAL NOTCH BANDS AND WIDE UPPER STOPBAND Progress In Electromagnetics Research Letters, Vol. 38, 161 170, 2013 MINIATURIZED UWB BANDPASS FILTER WITH DUAL NOTCH BANDS AND WIDE UPPER STOPBAND Pankaj Sarkar 1, *, Manimala Pal 2, Rowdra Ghatak 3,

More information

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR Progress In Electromagnetics Research Letters, Vol. 25, 67 75, 211 DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR X. Mu *, W. Jiang, S.-X. Gong, and F.-W. Wang Science

More information

Compact Narrow Band Non-Degenerate Dual-Mode Microstrip Filter with Etched Square Lattices

Compact Narrow Band Non-Degenerate Dual-Mode Microstrip Filter with Etched Square Lattices J. Electromagnetic Analysis & Applications, 2010, 2: 98-103 doi:10.4236/jemaa.2010.22014 Published Online February 2010 (www.scirp.org/journal/jemaa) Compact Narrow Band Non-Degenerate Dual-Mode Microstrip

More information

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 16, 11 19, 21 A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS Z.-Y. Liu, Y.-Z.

More information

A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE

A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE Progress In Electromagnetics Research Letters, Vol. 21, 31 40, 2011 A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE X.

More information

A NOVEL BANDPASS FILTER OF SUBSTRATE INTE- GRATED WAVEGUIDE (SIW) BASED ON S-SHAPED EBG

A NOVEL BANDPASS FILTER OF SUBSTRATE INTE- GRATED WAVEGUIDE (SIW) BASED ON S-SHAPED EBG Progress In Electromagnetics Research Letters, Vol. 36, 191 2, 213 A NOVEL BANDPASS FILTER OF SUBSTRATE INTE- GRATED WAVEGUIDE (SIW) BASED ON S-SHAPED EBG Dan Li 1, *, Chuangming Tong 1, 2, Junsong Bao

More information