Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays

Size: px
Start display at page:

Download "Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays"

Transcription

1 Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays Mr. F. Benikhlef 1 and Mr. N. Boukli-Hacen 2 1 Research Scholar, telecommunication, Faculty of Technology, University of tlemcen, Algeria. 2 Professor, Telecommunication, Faculty of Technology, University of tlemcen, Algeria. Abstract: Microstrip patch antennas became very popular in mobile and radio wireless communication because of their easy analysis and fabrication, and their attractive radiation characteristics. However, they have some drawbacks of low efficiency, narrow bandwidth and surface wave losses. A new solution method using electromagnetic bandgap (EBG) materials as substrates, has attracted increasing attention. Unlike other methods, this new method utilizes the inherent properties of dielectric materials to enhance microstrip antenna performance. In this paper, the effects of a two-dimensional EBG Structures (operating at 2.4GHz) on the performance of microstrip patch antenna arrays are investigated using the Ansoft High Frequency Selective Simulator (HFSS TM )in the first part. In the second part of the paper, two element microstrip patch antenna array on a uniform substrate suffer from strong mutual coupling due to the pronounced surface waves. Therefore, 2D-EBG Structures are integrated into the antennas to reduce the mutual coupling. Keywords: Electromagnetic band gap (EBG), Microstrip patch antenna (MPA), mutual coupling, Surface waves. INTRODUCTION In recent years, different types of antennas have been used in wireless services. Very popular planar antennas (e.g. patch ones) excel in a low cost, a low profile and a simple mass production. On the other hand, patch antennas exhibit a narrow bandwidth and low gain. Moreover, surface waves can be excited in the substrate, which decreases the antenna efficiency [1][2][3]. Electromagnetic band gap (EBG) structures became widely used in microwave- and radio engineering. They have drawn a lot of interests in the electromagnetics and antenna community recently. The EBG structures are periodical cells consisting of metallic and dielectric elements. Two major characteristics of EBG structures are to reflect incident plane waves in-phase rather than out of phase and to prohibit the propagation of surface waves in a certain frequency band. The suppression of surface wave propagation leading to the enhanced antenna gain and the suppressed back radiation improves the performance of antenna [4][5][6]. The aims of this paper are the design of a 2D-photonic crystal that gives the suitable bandgap to suppress the antenna surface waves, the design of a rectangular microstrip antenna with EBG structure to operate at 2.4GHz frequency with improvement in the maximum radiation pattern and the integration of the 2D- EBG into an antenna arrays system to evaluate the mutual coupling for both frequency domains. Band gap characterization of the EBG structure Indeed, the formation of the bandgap is dependent on the periodicity of the crystal, but it is also heavily dependent on the refractive index (dielectric constant) ratios between the base material (the substrate as a whole) and the impurities that form the crystal. Typically, the refractive index ratio must be at least 2: 1 (substrate-to-impurity) ratio for the bandgap to exist [7]. A photonic crystal essential behaves much like a bandstop filter, rejecting the propagation of energy over a fixed band of frequencies. However, once a defect is introduced such that it disrupts the periodicity in the crystal, an area to localize or trap electromagnetic energy is established. In this region, a passband response is created. This ability to confine and guide electromagnetic energy has several practical applications at microwave frequencies as filters, couplers, and especially antennas. The idea is to design a patch antenna on a 2D photonic crystal substrate, where the patch becomes the defect in the crystal structure. In this case, a crystal array of cylindrical air holes are patterned into the dielectric substrate of the patch antenna. In the paper, a purely dielectric EBG structure is used to suppress surface waves. The EBG structure is formed by holes drilled into the dielectric material Taconic CER-10(tm) with the dielectric constant 10, dissipation factor , and thickness 3.125mm. Taconic CER-10(tm) is chosen due to the higher excitation of surface waves. The cut off frequency can be calculated using [8]: n. c f c = 4. h ε r 1 (1) Where c is the velocity of light in free space, h is the substrate thickness, and ε r its dielectric constant, n = 0, 2, 4, for TM modes and n = 1, 3, 5, for TE modes.. According to results, all higher order surface wave modes are safely away from the working (f c1 = 8GHz),it is only needed to eliminate the TM 0(excited mode). The EBG structure should be designed so that the antenna operating frequency should be located at the center of the Bandgap. To determine the suitable EBG structure dimensions and the appropriate TM bandgap for our antenna to work for Wi-Fi application frequency band. We studied Variation of Bandgap Length with the Filling Factor. The study is restricted for 0.4 Rc/a 0.5. The obtained results of 7472

2 Variation of the first TM bandgap Length with the Filling Factor are shown in figure 1, the antenna operating frequency is 2.4GHz. Figure 2: Dispersion diagram of the designed EBG structure. (In MATLAB) Figure 1: Variation of length of the first TM bandgap with respect to the filling factor. By inspection of the results of Figure 1, we find that as the filling factor increases, _ The normalized center frequency increases because it is inversely proportional to the equivalent dielectric relative permittivity which is reduced by the insertion of the air holes. _ The bandgap length (BGL) increases since of the surface wave suppression gets stronger by increasing the filling factor. A trade off should be made to design a photonic crystal of low lattice constant (low normalized center frequency) and wide bandgap. Therefore, to fit the desired requirements we selected (Rc/a)=0.48. where (Rc=18.5mm) is the radius of holes, (a=38.541mm) is the lattice constant. The dispersion diagram that characterize our found EBG structure is shown in Figure 2. It reveals the first and second bandgaps for TM polarization. The dispersion diagram that characterize our found EBG structure is shown in Figure 1. It reveals the first and second bandgaps for TM polarization. It is seen from the Figure 1, two TM-band gaps are appeared, the first one is between [ ] the second is between [ ]. Antenna design and configuration In order to identify and verify the improvement of the performance of microstrip antenna on EBG substrates, designed a conventional antenna and the proposed antenna. The width of the rectangular patch antenna is usually chosen to be larger than the length of the patch, L to get higher bandwidth. The antenna is designed to operate at frequency 2.4GHz In this paper, we use Taconic (tm) dielectric material as patch substrates whose dielectric constant is 10. The antenna is fed by a coaxial probe. The point of excitation is adjustable to control the impedance match between feed and antenna, polarization, mode of operation and excitation frequency. Table1 shows the important parameters for the geometrical configuration of the patch antenna. Table II: Geometrical configuration of the patch antenna. Antenna part Parameter value Patch lenght 17.75mm Wide 26.7 mm Patch substrates Dielectric constant 10 TaconicCER10(tm) Height 3.125mm Loss tagent D-EBG structure Radius 18.5mm Lattice constant 38.54mm Before proposing the EBG patch antenna we should determine the needed number of periods of our photonic crystal, Translight software is used to calculate the TM polarization transmission and reflection coefficients for different periods of extension. The results are depicted in Figure

3 (a) Figure.4: Proposed EBG patch antenna Simulation results and discussion It is a common practice to evaluate the system performances through computer simulation before the real time implementation. A simulator Ansoft HFSS based on finite element method (FEM) has been used to calculate return loss, radiation pattern and gains. Figure 5 shows the simulated results of the return loss of the conventional antenna with and without EBG structures. (b) Figure.3: TM polarization photonic crystal responses for different periods of extension (a)transmission response (b) Reflection response. We note that for a number of periods less than 5 periods, there is a transmission or reflection response. To obtain a transmission response about 0% (or reflection response about 100%) the crystal structure must extend at least five periods (5a ) (5a). Figure 3 shows the proposed EBG patch antenna. Figure 5: Return losses of the patch antenna with and without EBG It is seen from the Figure 4, the return loss for the conventional patch antenna is 27.2dB at 2.4GHz and for the proposed patch antenna is -32.2dB at 2.405GHz. From simulation results we have observed that the minimum loss get at 2.4 GHz for conventional antenna and 2.405GHz for the proposed antenna. Thus the return loss of the proposed microstrip patch antenna is 15.6% less compared to the conventional microstrip patch antenna. 7474

4 The simulated results for gain that are obtained from conventional antenna and the proposed antenna on EBG substrates are shown in Figure 6-a and Figure 7-b. Figure 7: Array of two patches in dielectric substrate including a 2D-EBG (a) The computed results by using HFSS TM are shown in (Figure 8). The EBG structures of vacuum holes resonate at 2.4 GHz with return loss is 26 db. The mutual coupling of the antennas without the EBG structure is 38.4 db. In comparison, the mutual coupling of the patches with the EBG structure is only db. An approximately 2 db reduction of mutual coupling is achieved. (b) Figure 6: (a) Gain of the conventional rectangular patch antenna (b) Gain of the rectangular patch antenna with EBG. From the simulated results, it is shown that the gain of the proposed patch antenna on EBG substrates is 8% more than the conventional patch antenna. Mutual coupling reduction Now, to evaluate mutual coupling, a two-element array in the Taconic CER-10(tm) dielectric substrate is studied, (Figure 6). The separation between edges has been chosen to be 67.05mm and the total separation between elements is 75mm which is 0.75λ 0. Ground plane size is (200*250)mm 2. With these dimensions only two periods of the 2D- EBG(a=38.541mm,r=18.5mm) can be placed in E-plane. Figure 8: Computed results of microstrip antennas with and without the EBG structure. In table II, we studied mutual coupling bandgap with respect to the filling factor. Results show that BGL increases since of the surface wave suppression gets stronger by increasing the filling factor. The computed results by using HFSS TM are shown in table 2. It is observed that all EBG structures with different filling factors (Rc/a) inserted between the patch antennas reduce the mutual coupling. When BGL >700 MHz, mutual coupling is 40.4 db implies that mutual coupling reduction is linked with wide band gap. 7475

5 Table II: Obtained S21 results with by using HFSS TM a (mm) Rc(mm) BGL (GHz) S21 (db) To decrease the coupling between two patches, it is suggested to modify the designed EBG antenna by replacing its ground plane with a suitable well-designed metallodielectric EBG structure and study the resultant novel EBG antenna, informing that the Sievenpiper mushroom structure. The operation mechanism of this EBG structure can be explained by an LC filter array [9]: the inductor L results from the current flowing through the vias, and the capacitor C due to the gap effect between the adjacent patches. One unusual but important feature of mushroom-like EBG structures is the inphase reflection characteristics. The frequency where reflection phase is zero is the resonance frequency of the structure. At this frequency, the structure behaves like an artificial magnetic conductor which does not exist in nature. With the reflection phase ranging from +90 degrees to -90 degrees, the reflected wave interferes with the incident wave in-phase rather than out of phase. Using HFSS simulation tools, EBG structures are designed to include in-phase reflection for a normally incident plane wave on their surfaces. The Fig.9 shows the unit cell model and simulation setup of these EBG structures. The Reflection phase characteristic of the EBG structure is show in figure 10. (a) (b) Figure 9: Mushroom like EBG (a) simulated model, (b)ebg structures dimensions g m=0.5mm, w m=11mm Figure 11: Simulated results of reflection phase for EBG structure 7476

6 The simulated center frequency and bandwidth of EBG structures show that the center frequency is the frequency point with a reflection phase of 0 is 2.4 GHz and bandwidth is defined as ±90 crossings for the reflection phase is 87.4 MHz. Differents columns of these mushroom-like patches are inserted between the antennas and were originally designed to have a gap at approximately 2.4 GHz figure 11. The computed results by using HFSSTM are shown in Figure 12 CONCLUSION In the paper, the EBG concept was applied to the design of a simple patch antenna with operating frequency 2.4 GHz to suppress the surface wave propagation in the dielectric substrate and enhance the gain, the proposed patch antenna on EBG substrates is 8% more than the conventional patch antenna. In the second part, the EBG structures were inserted into two patch antenna to reduce the mutual coupling; an approximately 2 db reduction of mutual coupling is achieved. When the filling factor gets higher than 0.40, more significant band gaps appear. The EBG structure can be utilized to reduce the antenna mutual coupling between array elements. The lowest mutual coupling is obtained in the mushroom-like patches structure case as a 5 db reduction is achieved.. REFERENCES Figure 11: Array of two patches in dielectric substrate including a 2D-EBG. Figure12: Computed results of microstrip antennas with and without the EBG structure. It is observed that for the antennas without the EBG structure, the mutual coupling is 38.4 db. In comparison, the mutual coupling of the antennas with the EBG structure (1 coln.) is db while the EBG structure (2 coln.) only db and the EBG structure (3 coln.) only db. From this computed demonstration, it can be concluded that the EBG structure can be utilized to reduce the antenna mutual coupling between array elements. The reduction of mutual coupling improved by increasing number of columns of mushroom-like patches structure. [1] Ittipiboon, A., Garg, R., Bahl, I., Bhartia, P. Microstrip antenna Design Handbook. Norwood: Artech House, 2000 [2] Jing Liang, and Hung-Yu David Yang, Radiation Characteristics of a Microstrip Patch over an Electromagnetic Bandgap Surface, IEEE Transactions on Antennas and Propagation, Vol. 55, June 2007, pp [3] K.L. Wong, Compact and Broadband Microstrip Antennas. New York: Wiley, [4] D. Sievenpiper, L. Zhang, R. F. J Broas, N. G. Alexopolus and E.Yablonovich, "High-impedance electromagnetic surface with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., vol. 47, pp , Nov [5] Yang, L., Fan, M., Chen, F., She, J., Feng, Z. A novel compact electromagnetic-bandgap (EBG) structure and its applicationsfor microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 1, p [6] Y. D. Yang, N. G. Alexopoulos, E. Yablonovitch. «Photonic band gap materials for high-gain printed circuit antennas.» IEEE Trans. on Antennas and Prop., 45(1),, [7] Rumsey, I., M. Piket May, and P. K. Kelly, Photonic bandgap structures used as filters in microstrip circuits, IEEE Microwave and Guided Wave Letters, Vol. 8, , [8] Lin, Q., Zhu, F., He, S. A new photonic bandgap cover for a patch antenna with a photonic bandgap substrates. Journal of Zhejiang University, 2004, no. 5, p [9] Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microwave Theory Tech., Vol. 47, , Nov

Mutual Coupling Reduction in Patch Antenna Arrays Using EBG Structure

Mutual Coupling Reduction in Patch Antenna Arrays Using EBG Structure www.ijcsi.org 265 Mutual Coupling Reduction in Patch Antenna Arrays Using EBG Structure F.BENIKHLEF, N. BOUKLI-HACENE Telecommunications Laboratory, Technologies Faculty, Abou-Bekr Belkaïd University Tlemcen,

More information

A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application

A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application Progress In Electromagnetics Research Letters, Vol. 51, 15 2, 215 A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application Xiaoyan Zhang 1, 2, *, Xinxing Zhong 1,BinchengLi 3, and Yiqiang Yu

More information

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE J. of Electromagn. Waves and Appl., Vol. 2, No. 8, 993 16, 26 ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE F. Yang, V. Demir, D. A. Elsherbeni, and A. Z. Elsherbeni

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 May 11(7):pages 104-110 Open Access Journal Surface Wave Bandgap

More information

BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES

BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES Progress In Electromagnetics Research Letters, Vol. 6, 123 130, 2009 BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES E. Rajo-Iglesias, L. Inclán-Sánchez, and Ó. Quevedo-Teruel Department

More information

INVESTIGATED NEW EMBEDDED SHAPES OF ELEC- TROMAGNETIC BANDGAP STRUCTURES AND VIA EFFECT FOR IMPROVED MICROSTRIP PATCH AN- TENNA PERFORMANCE

INVESTIGATED NEW EMBEDDED SHAPES OF ELEC- TROMAGNETIC BANDGAP STRUCTURES AND VIA EFFECT FOR IMPROVED MICROSTRIP PATCH AN- TENNA PERFORMANCE Progress In Electromagnetics Research B, Vol. 2, 91 17, 21 INVESTIGATED NEW EMBEDDED SHAPES OF ELEC- TROMAGNETIC BANDGAP STRUCTURES AND VIA EFFECT FOR IMPROVED MICROSTRIP PATCH AN- TENNA PERFORMANCE D.

More information

Mutual Coupling between Two Patches using Ideal High Impedance Surface

Mutual Coupling between Two Patches using Ideal High Impedance Surface International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 4, Number 3 (2011), pp. 287-293 International Research Publication House http://www.irphouse.com Mutual Coupling

More information

A VARACTOR-TUNABLE HIGH IMPEDANCE SURFACE FOR ACTIVE METAMATERIAL ABSORBER

A VARACTOR-TUNABLE HIGH IMPEDANCE SURFACE FOR ACTIVE METAMATERIAL ABSORBER Progress In Electromagnetics Research C, Vol. 43, 247 254, 2013 A VARACTOR-TUNABLE HIGH IMPEDANCE SURFACE FOR ACTIVE METAMATERIAL ABSORBER Bao-Qin Lin *, Shao-Hong Zhao, Qiu-Rong Zheng, Meng Zhu, Fan Li,

More information

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate Progress In Electromagnetics Research Letters, Vol. 58, 23 28, 2016 GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate Encheng Wang * and Qiuping Liu Abstract In this

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures

Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures A.Rajasekhar 1, K.Vara prasad 2 1M.tech student, Dept. of electronics and communication engineering,

More information

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR Progress In Electromagnetics Research Letters, Vol. 25, 67 75, 211 DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR X. Mu *, W. Jiang, S.-X. Gong, and F.-W. Wang Science

More information

Progress In Electromagnetics Research C, Vol. 12, , 2010

Progress In Electromagnetics Research C, Vol. 12, , 2010 Progress In Electromagnetics Research C, Vol. 12, 23 213, 21 MICROSTRIP ARRAY ANTENNA WITH NEW 2D-EECTROMAGNETIC BAND GAP STRUCTURE SHAPES TO REDUCE HARMONICS AND MUTUA COUPING D. N. Elsheakh and M. F.

More information

DESIGN AND SIMULATION OF CIRCULAR DISK ANTENNA WITH DEFECTED GROUND STRUCTURE

DESIGN AND SIMULATION OF CIRCULAR DISK ANTENNA WITH DEFECTED GROUND STRUCTURE DESIGN AND SIMULATION OF CIRCULAR DISK ANTENNA WITH DEFECTED GROUND STRUCTURE Ms. Dhanashri S. Salgare 1, Mrs. Shamala R. Mahadik 2 1 Electronics and Telecommunication Engineering, Sanjay Bhokare Group

More information

Analysis and Design of a Multi-Frequency Microstrip Antenna Based on a PBG Substrate

Analysis and Design of a Multi-Frequency Microstrip Antenna Based on a PBG Substrate Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Analysis and Design of a Multi-Frequency Microstrip Antenna Based on a PBG Substrate YANG Hong, WANG Zhi Peng, SHAO Jian

More information

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground Progress In Electromagnetics Research Letters, Vol. 61, 25 30, 2016 Broadband and Gain Enhanced Bowtie Antenna with AMC Ground Xue-Yan Song *, Chuang Yang, Tian-Ling Zhang, Ze-Hong Yan, and Rui-Na Lian

More information

DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE

DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE Karim A. Hamad Department of Electronics and Communications, College of Engineering, Al- Nahrain University,

More information

A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication

A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication M. Karami, M. Nofersti, M.S. Abrishamian, R.A. Sadeghzadeh Faculty of Electrical and Computer Engineering K. N. Toosi University

More information

Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application

Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application Journal of Communication and Computer 13 (2016) 261-265 doi:10.17265/1548-7709/2016.05.006 D DAVID PUBLISHING Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application Swarnaprava

More information

Series Micro Strip Patch Antenna Array For Wireless Communication

Series Micro Strip Patch Antenna Array For Wireless Communication Series Micro Strip Patch Antenna Array For Wireless Communication Ashish Kumar 1, Ridhi Gupta 2 1,2 Electronics & Communication Engg, Abstract- The concept of Microstrip Antenna Array with high efficiency

More information

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS Progress In Electromagnetics Research C, Vol. 10, 87 99, 2009 COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS A. Danideh Department of Electrical Engineering Islamic Azad University (IAU),

More information

6464(Print), ISSN (Online) ENGINEERING Volume & 3, Issue TECHNOLOGY 3, October- December (IJECET) (2012), IAEME

6464(Print), ISSN (Online) ENGINEERING Volume & 3, Issue TECHNOLOGY 3, October- December (IJECET) (2012), IAEME International INTERNATIONAL Journal of Electronics JOURNAL and Communication OF ELECTRONICS Engineering AND & Technology COMMUNICATION (IJECET), ISSN 0976 6464(Print), ISSN 0976 6472(Online) ENGINEERING

More information

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL Mohammed K. Abu Foul 1, Mohamed Ouda 2 1: Master Student, Electrical Eng. Dept., IUG, Palestine, mabufoul@hotmail.com

More information

RECONFIGURABLE PATCH AND GROUND PLANE MICROSTRIP ANTENNA TO ENHANCING BANDWIDTH

RECONFIGURABLE PATCH AND GROUND PLANE MICROSTRIP ANTENNA TO ENHANCING BANDWIDTH RECONFIGURABLE PATCH AND GROUND PLANE MICROSTRIP ANTENNA TO ENHANCING BANDWIDTH Ahmad H. Abood Al-Shaheen Physics Department, College of Science, Misan University, Iraq E-Mail: prof.dr.ahmad@uomisan.edu.iq

More information

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements Progress In Electromagnetics Research C, Vol. 53, 27 34, 2014 Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements Qi-Chun Zhang, Jin-Dong Zhang, and Wen Wu * Abstract Maintaining mutual

More information

Modified Triangular Patch Microstrip Antenna with Enhanced Radiation Properties

Modified Triangular Patch Microstrip Antenna with Enhanced Radiation Properties Research Journal of Applied Sciences, Engineering and Technology 3(3): 140-144, 2011 ISSN: 2040-7467 Maxwell Scientific Organization, 2011 Received: March 01, 2010 Accepted: April 07, 2010 Published: March

More information

Performance Improvement of a Wire Dipole using Novel Resonant EBG Reflector

Performance Improvement of a Wire Dipole using Novel Resonant EBG Reflector Performance Improvement of a Wire Dipole using Novel Resonant EBG Reflector C. Yotnuan, P. Krachodnok, and R. Wongsan Abstract Electromagnetic band-gap (EBG) structure exhibits unique electromagnetism

More information

Bandwidth Enhancement of Microstrip Patch Antenna Using Metamaterials

Bandwidth Enhancement of Microstrip Patch Antenna Using Metamaterials IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 8, Issue 4 (Nov. - Dec. 2013), PP 05-10 Bandwidth Enhancement of Microstrip Patch Antenna

More information

Evaluating the Electromagnetic Surface Wave of High Impedance Structures by Monopole Antenna and Application for Patch Antennas at Q Band

Evaluating the Electromagnetic Surface Wave of High Impedance Structures by Monopole Antenna and Application for Patch Antennas at Q Band International Journal of Electromagnetics and Applications 2016, 6(1): 1-6 DOI: 10.5923/j.ijea.20160601.01 Evaluating the Electromagnetic Surface Wave of High Impedance Structures by Monopole Antenna and

More information

Periodic EBG Structure based UWB Band Pass Filter Sridhar Raja.D

Periodic EBG Structure based UWB Band Pass Filter Sridhar Raja.D Periodic EBG Structure based UWB Band Pass Filter Sridhar Raja.D Asst. Professor, Bharath University, Chennai-600073, India ABSTRACT: In this paper microstrip bandpass filter as been proposed for UWB application

More information

Gain Enhancement of Pyramidal Horn Antenna using EBG Technique

Gain Enhancement of Pyramidal Horn Antenna using EBG Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sheelu

More information

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China Progress In Electromagnetics Research C, Vol. 6, 93 102, 2009 A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION E. Wang Information Engineering College of NCUT China J. Zheng Beijing Electro-mechanical

More information

Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure

Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure Progress In Electromagnetics Research Letters, Vol. 65, 103 108, 2017 Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure Yang

More information

High gain W-shaped microstrip patch antenna

High gain W-shaped microstrip patch antenna High gain W-shaped microstrip patch antenna M. N. Shakib 1a),M.TariqulIslam 2, and N. Misran 1 1 Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia (UKM), UKM

More information

HIGH IMPEDANCE SURFACES BASED ANTENNAS FOR HIGH DATA RATE COMMUNICATIONS AT 40 GHz

HIGH IMPEDANCE SURFACES BASED ANTENNAS FOR HIGH DATA RATE COMMUNICATIONS AT 40 GHz Progress In Electromagnetics Research C, Vol. 13, 217 229, 2010 HIGH IMPEDANCE SURFACES BASED ANTENNAS FOR HIGH DATA RATE COMMUNICATIONS AT 40 GHz C. M. Tran, H. Hafdallah Ouslimani, L. Zhou and A. C.

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 May 11(7):pages 52-56 Open Access Journal Design and Modeling of

More information

Micro-strip patch antennas became very popular because of

Micro-strip patch antennas became very popular because of Electro-Magnetic Bandgap of Microstrip Antenna Arpit Nagar, Aditya Singh Mandloi, Vishnu Narayan Saxena nagar.arpit101@gmail.com Abstract Micro-strip patch antennas became very popular because of planer

More information

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 23, 147 155, 2011 A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Z.-N. Song, Y. Ding, and K. Huang National Key Laboratory of Antennas

More information

V.Ratna Bhargavi,P.Poorna Priya,K.Pavan Kumar,Dr.Habibulla Khan Department of ECE, K L University, Guntur DT, AP, India

V.Ratna Bhargavi,P.Poorna Priya,K.Pavan Kumar,Dr.Habibulla Khan Department of ECE, K L University, Guntur DT, AP, India GAIN ENHANCEMENT OF V-SLOTTED TRIANGULAR SHAPE MICROSTRIP PATCH ANTENNA FOR WIMAX APPLICATIONS V.Ratna Bhargavi,P.Poorna Priya,K.Pavan Kumar,Dr.Habibulla Khan Department of ECE, K L University, Guntur

More information

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers Antennas and Propagation, Article ID 9812, 6 pages http://dx.doi.org/1.1155/214/9812 Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers Yuanyuan Zhang, 1,2 Juhua Liu, 1,2

More information

Miniature Folded Printed Quadrifilar Helical Antenna with Integrated Compact Feeding Network

Miniature Folded Printed Quadrifilar Helical Antenna with Integrated Compact Feeding Network Progress In Electromagnetics Research Letters, Vol. 45, 13 18, 14 Miniature Folded Printed Quadrifilar Helical Antenna with Integrated Compact Feeding Network Ping Xu *, Zehong Yan, Xiaoqiang Yang, Tianling

More information

International Journal of Modern Trends in Engineering And Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering And Research   e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering And Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 Effect of Defected Ground Structure On Radiation Pattern of Ultra- Wideband

More information

E-SHAPED STACKED BROADBAND PATCH ANTENNA

E-SHAPED STACKED BROADBAND PATCH ANTENNA International Journal of Electronics and Computer Science Engineering 278 Available Online at www.ijecse.org ISSN- 2277-1956 E-SHAPED STACKED BROADBAND PATCH ANTENNA Bharat Rochani 1, Rajesh Kumar Raj

More information

Microstrip Patch Antenna Design for WiMAX

Microstrip Patch Antenna Design for WiMAX Microstrip Patch Antenna Design for WiMAX Ramya Radhakrishnan Asst Professor, Department of Electronics & Communication Engineering, Avanthi Institute of Engineering & Technology, Visakhapatnam Email :

More information

Radial EBG Cell Layout for GPS Patch Antennas

Radial EBG Cell Layout for GPS Patch Antennas Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2009-06-18 Radial EBG Cell Layout for GPS Patch Antennas Giuseppe Ruvio Dublin Institute of Technology,

More information

National Severe Storm Laboratory, NOAA Paper ID:

National Severe Storm Laboratory, NOAA    Paper ID: Dual-Polarized Radiating Elements Based on Electromagnetic Dipole Concept Ridhwan Khalid Mirza 1, Yan (Rockee) Zhang 1, Dusan Zrnic 2 and Richard Doviak 2 1 Intelligent Aerospace Radar Team, Advanced Radar

More information

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran Progress In Electromagnetics Research Letters, Vol. 14, 31 40, 2010 DESIGN OF MODIFIED MICROSTRIP COMBLINE ARRAY ANTENNA FOR AVIONIC APPLICATION A. Pirhadi Faculty of Electrical and Computer Engineering

More information

Design of 2 1 Square Microstrip Antenna Array

Design of 2 1 Square Microstrip Antenna Array International Journal of Engineering and Manufacturing Science. ISSN 2249-3115 Volume 8, Number 1 (2018) pp. 89-94 Research India Publications http://www.ripublication.com Design of 2 1 Square Microstrip

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 Compact UWB Antenna for USB Dongle Application Durgesh Katre 1, Rekha Labade

More information

Tri-Band Microstrip Patch Antenna for Wireless Application. HALILU Adamu Jabire, Hong-xing Zheng *

Tri-Band Microstrip Patch Antenna for Wireless Application. HALILU Adamu Jabire, Hong-xing Zheng * 3rd International Conference on Management, Education, Information and Control (MEICI 2015) Tri-Band Microstrip Patch Antenna for Wireless Application HALILU Adamu Jabire, Hong-xing Zheng * Institute of

More information

EFFECT ON PERFORMANCE CHARACTERISTICS OF RECTANGULAR PATCH ANTENNA WITH VARYING HEIGHT OF DIELECTRIC COVER

EFFECT ON PERFORMANCE CHARACTERISTICS OF RECTANGULAR PATCH ANTENNA WITH VARYING HEIGHT OF DIELECTRIC COVER International Journal of Power Control Signal and Computation (IJPCSC) Vol. 2 No. 1 ISSN : 0976-268X EFFECT ON PERFORMANCE CHARACTERISTICS OF RECTANGULAR PATCH ANTENNA WITH VARYING HEIGHT OF DIELECTRIC

More information

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 10 (2013), pp. 1015-1024 International Research Publications House http://www. irphouse.com /ijict.htm CPW-

More information

Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure

Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure PIERS ONLINE, VOL. 2, NO. 6, 26 71 Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure Bian Wu, Bin Li, Tao Su, and Chang-Hong Liang National Key Laboratory of Antennas

More information

A Wideband Stacked Microstrip Patch Antenna for Telemetry Applications

A Wideband Stacked Microstrip Patch Antenna for Telemetry Applications A Wideband Stacked Microstrip Patch Antenna for Telemetry Applications Item Type text; Proceedings Authors Hategekimana, Bayezi Publisher International Foundation for Telemetering Journal International

More information

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System Wireless Engineering and Technology, 2013, 4, 59-63 http://dx.doi.org/10.4236/wet.2013.41009 Published Online January 2013 (http://www.scirp.org/journal/wet) 59 Design and Development of a 2 1 Array of

More information

H And U-Slotted Rectangular Microstrip Patch Antenna

H And U-Slotted Rectangular Microstrip Patch Antenna H And U-Slotted Rectangular Microstrip Patch Antenna Bharat Rochani 1, Sanjay Gurjar 2 1 Department of Electronics and Communication Engineering, Engineering College Ajmer 2 Department of Electronics and

More information

Design of Narrow Slotted Rectangular Microstrip Antenna

Design of Narrow Slotted Rectangular Microstrip Antenna Original Article Design of Narrow Slotted Rectangular Microstrip Antenna Ashok Kajla and Sunita Gawria* Electronics & Communication Department ARYA Institute of Engineering and Technology, Jaipur, Rajasthan,

More information

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER Progress In Electromagnetics Research Letters, Vol. 31, 189 198, 2012 A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER X.-Q. Li *, Q.-X. Liu, and J.-Q. Zhang School of Physical Science and

More information

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding Progress In Electromagnetics Research Letters, Vol. 48, 21 26, 2014 Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding Yang-Tao Wan *, Fu-Shun Zhang, Dan Yu, Wen-Feng Chen,

More information

Investigation on Octagonal Microstrip Antenna for RADAR & Space-Craft applications

Investigation on Octagonal Microstrip Antenna for RADAR & Space-Craft applications International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 1 Investigation on Octagonal Microstrip Antenna for RADAR & Space-Craft applications Krishan Kumar, Er. Sukhdeep

More information

CPW FED SLOT COUPLED WIDEBAND AND MULTIBAND ANTENNAS FOR WIRELESS APPLICATIONS

CPW FED SLOT COUPLED WIDEBAND AND MULTIBAND ANTENNAS FOR WIRELESS APPLICATIONS International Journal of Advances in Engineering & Technology, Nov. 212. CPW FED SLOT COUPLED WIDEBAND AND MULTIBAND ANTENNAS FOR WIRELESS APPLICATIONS Mahesh A. Maindarkar and Veeresh G. Kasabegoudar

More information

Microstrip Antennas Loaded with Shorting Post

Microstrip Antennas Loaded with Shorting Post Engineering, 2009, 1, 1-54 Published Online June 2009 in SciRes (http://www.scirp.org/journal/eng/). Microstrip Antennas Pradeep Kumar, G. Singh Department of Electronics and Communication Engineering,

More information

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

Jae-Hyun Kim Boo-Gyoun Kim * Abstract JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 18, NO. 2, 101~107, APR. 2018 https://doi.org/10.26866/jees.2018.18.2.101 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) Effect of Feed Substrate

More information

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS Progress In Electromagnetics Research C, Vol. 23, 1 14, 2011 QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS C. A. Zhang, Y. J. Cheng *, and Y. Fan

More information

Loss Reduction in Microstrip Antenna Using Different Methods

Loss Reduction in Microstrip Antenna Using Different Methods Loss Reduction in Microstrip Antenna Using Different Methods Alpesh Nema 1#, D.K. Raghuvanshi 2#, Priyanka Raghuvanshi 3* # Department of Electronics & Communication Engineering MANIT-Bhopal, India. *

More information

Research Article A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate

Research Article A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate Antennas and Propagation Volume 21, Article ID 8171, 8 pages http://dx.doi.org/1.11/21/8171 Research Article A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate iaoyan Zhang, 1 Zhaopeng

More information

Reducing Mutual Coupling in Microstrip Array Antenna Using Metamaterial Spiral Resonator

Reducing Mutual Coupling in Microstrip Array Antenna Using Metamaterial Spiral Resonator www.ijcsi.org 51 Reducing Mutual Coupling in Microstrip Array Antenna Using Metamaterial Spiral Resonator Hamideh Kondori 1, Mohammad Ali Mansouri-Birjandi 2, Saeed Tavakoli 3 1,2,3 Faculty of Electrical

More information

Miniaturization of Multiple-Layer Folded Patch Antennas

Miniaturization of Multiple-Layer Folded Patch Antennas Miniaturization of Multiple-Layer Folded Patch Antennas Jiaying Zhang # and Olav Breinbjerg #2 # Department of Electrical Engineering, Electromagnetic Systems, Technical University of Denmark Ørsted Plads,

More information

Proximity Coupled Equilateral Triangular Microstrip Antenna with Diamond Shape Slot for Dual Band Operation

Proximity Coupled Equilateral Triangular Microstrip Antenna with Diamond Shape Slot for Dual Band Operation Proximity Coupled Equilateral Triangular Microstrip Antenna with Diamond Shape Slot for Dual Band Operation Mahesh C. P 1, P. M. Hadalgi 2 Research Scholar, Department of P.G. Studies and Research in Applied

More information

Stacked Configuration of Rectangular and Hexagonal Patches with Shorting Pin for Circularly Polarized Wideband Performance

Stacked Configuration of Rectangular and Hexagonal Patches with Shorting Pin for Circularly Polarized Wideband Performance Cent. Eur. J. Eng. 4(1) 2014 20-26 DOI: 10.2478/s13531-013-0136-3 Central European Journal of Engineering Stacked Configuration of Rectangular and Hexagonal Patches with Shorting Pin for Circularly Polarized

More information

Electromagnetic Band Gap Structures in Antenna Engineering

Electromagnetic Band Gap Structures in Antenna Engineering Electromagnetic Band Gap Structures in Antenna Engineering FAN YANG University of Mississippi YAHYA RAHMAT-SAMII University of California at Los Angeles Hfl CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface

More information

DESIGN OF A MODIFIED W-SHAPED PATCH ANTENNA ON AL 2 O 3 CERAMIC MATERIAL SUBSTRATE FOR KU-BAND

DESIGN OF A MODIFIED W-SHAPED PATCH ANTENNA ON AL 2 O 3 CERAMIC MATERIAL SUBSTRATE FOR KU-BAND Chalcogenide Letters Vol. 9, No. 2, February 2012, p. 61-66 DESIGN OF A MODIFIED W-SHAPED PATCH ANTENNA ON AL 2 O 3 CERAMIC MATERIAL SUBSTRATE FOR KU-BAND M. HABIB ULLAH a,b, M. T. ISLAM b a Dept. of Electrical,

More information

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China Progress In Electromagnetics Research Letters, Vol. 37, 47 54, 2013 DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS Shoutao Fan 1, *, Shufeng Zheng 1, Yuanming Cai 1, Yingzeng Yin 1,

More information

Metamaterial Inspired CPW Fed Compact Low-Pass Filter

Metamaterial Inspired CPW Fed Compact Low-Pass Filter Progress In Electromagnetics Research C, Vol. 57, 173 180, 2015 Metamaterial Inspired CPW Fed Compact Low-Pass Filter BasilJ.Paul 1, *, Shanta Mridula 1,BinuPaul 1, and Pezholil Mohanan 2 Abstract A metamaterial

More information

Proximity fed gap-coupled half E-shaped microstrip antenna array

Proximity fed gap-coupled half E-shaped microstrip antenna array Sādhanā Vol. 40, Part 1, February 2015, pp. 75 87. c Indian Academy of Sciences Proximity fed gap-coupled half E-shaped microstrip antenna array AMIT A DESHMUKH 1, and K P RAY 2 1 Department of Electronics

More information

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications , pp.34-41 http://dx.doi.org/10.14257/astl.2017.147.05 High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications Dr.K.Srinivasa Naik 1, Darimisetti Sai

More information

Susceptibility of an Electromagnetic Band-gap Filter

Susceptibility of an Electromagnetic Band-gap Filter 1 Susceptibility of an Electromagnetic Band-gap Filter Shao Ying Huang, Student Member, IEEE and Yee Hui Lee, Member, IEEE, Abstract In a compact dual planar electromagnetic band-gap (EBG) microstrip structure,

More information

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed 44 Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed Mukesh R. Solanki, Usha Kiran K., and K. J. Vinoy * Microwave Laboratory, ECE Dept., Indian Institute of Science, Bangalore,

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY Prerna Saxena,, 2013; Volume 1(8): 46-53 INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK STUDY OF PATCH ANTENNA ARRAY USING SINGLE

More information

Optimized Circularly Polarized Bandwidth for Microstrip Antenna

Optimized Circularly Polarized Bandwidth for Microstrip Antenna International Journal of Computing Academic Research (IJCAR) ISSN 2305-9184 Volume 1, Number 1 (October 2012), pp. 1-9 MEACSE Publications http://www.meacse.org/ijcar Optimized Circularly Polarized Bandwidth

More information

HIGH GAIN AND LOW CROSS-POLAR COMPACT PRINTED ELLIPTICAL MONOPOLE UWB ANTENNA LOADED WITH PARTIAL GROUND AND PARASITIC PATCHES

HIGH GAIN AND LOW CROSS-POLAR COMPACT PRINTED ELLIPTICAL MONOPOLE UWB ANTENNA LOADED WITH PARTIAL GROUND AND PARASITIC PATCHES Progress In Electromagnetics Research B, Vol. 43, 151 167, 2012 HIGH GAIN AND LOW CROSS-POLAR COMPACT PRINTED ELLIPTICAL MONOPOLE UWB ANTENNA LOADED WITH PARTIAL GROUND AND PARASITIC PATCHES G. Shrikanth

More information

Broadband Circular Polarized Antenna Loaded with AMC Structure

Broadband Circular Polarized Antenna Loaded with AMC Structure Progress In Electromagnetics Research Letters, Vol. 76, 113 119, 2018 Broadband Circular Polarized Antenna Loaded with AMC Structure Yi Ren, Xiaofei Guo *,andchaoyili Abstract In this paper, a novel broadband

More information

Design of Log Periodic Dipole Array Antenna Using Two Sides with Comparision of Two Dielectric Material Result

Design of Log Periodic Dipole Array Antenna Using Two Sides with Comparision of Two Dielectric Material Result Design of Log Periodic Dipole Array Antenna Using Two Sides with Comparision of Two Dielectric Material Result 1 Mrs.Hetal.M. Pathak 2 Chaudhary Pankaj prabhubhai 3 Prof.Yagnesh.B.Shukla 1 CMJ UNIVERSITY,Medhalaya

More information

Design of Micro Strip Patch Antenna Array

Design of Micro Strip Patch Antenna Array Design of Micro Strip Patch Antenna Array Lakshmi Prasanna 1, Shambhawi Priya 2, Sadhana R.H. 3, Jayanth C 4 Department of Telecommunication Engineering (DSCE), Bangalore-560078, India Abstract: Recently

More information

Dual Band Dielectric Resonator Filter (DBDRF) with Defected Ground Structure (DGS)

Dual Band Dielectric Resonator Filter (DBDRF) with Defected Ground Structure (DGS) World Applied Sciences Journal 32 (4): 582-586, 2014 ISSN 1818-4952 IDOSI Publications, 2014 DOI: 10.5829/idosi.wasj.2014.32.04.114 Dual Band Dielectric Resonator Filter (DBDRF) with Defected Ground Structure

More information

CREATING THREE DUAL ISOSCELES TRIANGULAR SLOTS ON THE PATCH AND BANDWIDTH ENHANCEMENT FOR SLOTTED METAMATERIAL MICROSTRIP PATCH ANTENNA

CREATING THREE DUAL ISOSCELES TRIANGULAR SLOTS ON THE PATCH AND BANDWIDTH ENHANCEMENT FOR SLOTTED METAMATERIAL MICROSTRIP PATCH ANTENNA CREATING THREE DUAL ISOSCELES TRIANGULAR SLOTS ON THE PATCH AND BANDWIDTH ENHANCEMENT FOR SLOTTED METAMATERIAL MICROSTRIP PATCH ANTENNA BUDIPUTI ANITHA PRAVALLI, M. Tech, ASSISTANT PROFESSOR SRK INSTITUTE

More information

A New Compact Printed Triple Band-Notched UWB Antenna

A New Compact Printed Triple Band-Notched UWB Antenna Progress In Electromagnetics Research etters, Vol. 58, 67 7, 016 A New Compact Printed Triple Band-Notched UWB Antenna Shicheng Wang * Abstract A novel planar ultra-wideband (UWB) antenna with triple-notched

More information

Comparison of Performance Characterization in 2X2, 3X3 and 4X4 Array Antennas

Comparison of Performance Characterization in 2X2, 3X3 and 4X4 Array Antennas Comparison of Performance Characterization in 2X2, 3X3 and 4X4 Array Antennas 1 E.Suneel, 2 B.Prabhakararao, 3* B.T.P.Madhav, 4 S.A.R.Teja, 4 V.V.Vamsi Krishna, 4 Shankar Acharya 1 Associate professor,

More information

On the Design of Slot Cut Circularly Polarized Circular Microstrip Antennas

On the Design of Slot Cut Circularly Polarized Circular Microstrip Antennas Wireless Engineering and Technology, 2016, 7, 46-57 Published Online January 2016 in SciRes. http://www.scirp.org/journal/wet http://dx.doi.org/10.4236/wet.2016.71005 On the Design of Slot Cut Circularly

More information

Highly Directive Rectangular Patch Antenna Arrays

Highly Directive Rectangular Patch Antenna Arrays Highly Directive Rectangular Patch Antenna Arrays G.Jeevagan Navukarasu Lenin 1, J.Anis Noora 2, D.Packiyalakshmi3, S.Priyatharshini4,T.Thanapriya5 1 Assistant Professor & Head, 2,3,4,5 UG students University

More information

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK Progress In Electromagnetics Research M, Vol. 5, 153 160, 2008 DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK G. Yang, R. Jin, J. Geng, and S. Ye Shanghai Jiao Tong University

More information

Slot Antennas For Dual And Wideband Operation In Wireless Communication Systems

Slot Antennas For Dual And Wideband Operation In Wireless Communication Systems Slot Antennas For Dual And Wideband Operation In Wireless Communication Systems Abdelnasser A. Eldek, Cuthbert M. Allen, Atef Z. Elsherbeni, Charles E. Smith and Kai-Fong Lee Department of Electrical Engineering,

More information

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS Journal of Engineering Science and Technology Vol. 11, No. 2 (2016) 267-277 School of Engineering, Taylor s University CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND

More information

COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS

COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS 1 M V GIRIDHAR, 2 T V RAMAKRISHNA, 2 B T P MADHAV, 3 K V L BHAVANI 1 M V REDDIAH BABU, 1 V SAI KRISHNA, 1 G V

More information

C Band Microstrip Patch Antenna with EBG & Superstrate Structure

C Band Microstrip Patch Antenna with EBG & Superstrate Structure Volume: 2 Issue: 8 216 211 C Band Microstrip Patch Antenna with EBG & Superstrate Structure Raju Verma M.Tech (Student) Dept. of ET&T, RCET Bhilai,CG,India raju.rrr.arg.cit@gmail.com Namrata Dewangan Asst.Professor

More information

New Broadband Optimal Directional Gain Microstrip Antenna for Pervasive Wireless Communication by Hybrid Modeling

New Broadband Optimal Directional Gain Microstrip Antenna for Pervasive Wireless Communication by Hybrid Modeling New Broadband Optimal Directional Gain Microstrip Antenna for Pervasive Wireless Communication by Hybrid Modeling Dr Anubhuti khare Prof UIT RGPV Bhopal Rajesh Nema PHD Scholar s UIT RGPV BHOPAL ABSTRACT

More information

METAMATERIAL BASED NOVEL DUAL BAND ANTENNA

METAMATERIAL BASED NOVEL DUAL BAND ANTENNA METAMATERIAL BASED NOVEL DUAL BAND ANTENNA Er.Maninder Singh 1, Er.Ravinder Kumar 2, Er.Neeraj Kumar Sharma 3 1, 2 & 3 Assistant Professor at Department of ECE, Saint Soldier Institute of Engineering &

More information

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points Progress In Electromagnetics Research Letters, Vol. 67, 97 102, 2017 Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points Xinyao Luo *, Jiade Yuan, and Kan Chen Abstract A compact directional

More information

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore Progress In Electromagnetics Research Letters, Vol. 1, 85 92, 2008 ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

More information

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS Jeyasingh Nithianandam Electrical and Computer Engineering Department Morgan State University, 500 Perring Parkway, Baltimore, Maryland 5 ABSTRACT

More information