Research of localization algorithm based on weighted Voronoi diagrams for wireless sensor network

Size: px
Start display at page:

Download "Research of localization algorithm based on weighted Voronoi diagrams for wireless sensor network"

Transcription

1 Cai et al. EURAIP Journal on Wireless Communications and Networking 2014, 2014:50 REEARCH Research of localization algorithm based on weighted Voronoi agrams for wireless sensor network haobin Cai 1*, Hongqi Pan 1, Zhenguo Gao 2, Nianmin Yao 1 and Zhiqiang un 1 Open Access Abstract Wireless sensor network (WN) is formed by a large number of cheap sensors, which are communicated by an ad hoc wireless network to collect information of sensed objects of a certain area. The acquired information is useful only when the locations of sensors and objects are known. Therefore, localization is one of the most important technologies of WN. In this paper, weighted Voronoi agram-based localization scheme (W-VBL) is proposed to extend Voronoi agram-based localization scheme (VBL). In this scheme, firstly, a node estimates the stances accorng to the strength of its received signal strength incator (RI) from neighbor beacons and vides three beacons into groups, whose stances are similar. econdly, by a triangle, formed by the node and two beacons of a group, a weighted bisector can be calculated out. Thirdly, an estimated position of the node with the biggest RI value as weight can be calculated out by three bisectors of the same group. Finally, the position of the node is calculated out by the weighted average of all estimated positions. The simulation shows that compared with centroid and VBL, W-VBL has higher positioning accuracy and lower computation complexity. Keywords: WN; Voronoi; Weight; Bisector 1 Introduction Wireless sensor network (WN) is a self-organizing stributed network system inclung plenty of tiny sensor nodes with the ability to communicate and calculate in a specific monitoring area. In the wireless sensor network, the node position information plays a very important role in monitoring activity. The monitoring information without location message is meaningless. Therefore, the research of wireless sensor network positioning technology is the key technology of WN [1]. The existing location algorithm is vided into two major categories which are range-based and range-free. AP [2], AHLo algorithm [3], trilateration algorithm [4], lateration algorithm [5], and alternating combination trilateration (ACT) [6] are typical range-based algorithms. Centroid algorithm [7], DV-hop algorithm [8], APIT algorithm [9], and amorphous algorithm [10] are typical range-free algorithms. * Correspondence: shaobin.cai@gmail.com 1 College of Computer cience and Technology, Harbin Engineering University, Harbin , China Full list of author information is available at the end of the article Literature [11] used Voronoi agrams in wireless sensor node localization. In this algorithm, the midperpenculars between each beacon node and its neighbor beacon node composed the Voronoi region boundaries. Accorng to the properties of the Voronoi agrams, we can see that the node to be located is in its nearest beacon node Voronoi region. Therefore, in literature [11], the algorithm weighted all the nodes within this region firstly and obtained all the beacon nodes Voronoi regions in order, then added fferent weight values to the obtained regions, and finally obtained the centroid of the largest weight value region as the estimated coornate ofthenodetobelocated. However, algorithm [11] using the midperpencular of the beacon nodes as Voronoi agram region boundaries could not reflect the relationship between the RI signal strength and the stance among the nodes. Therefore, in order to improve localization accuracy and reduce complexity of the algorithm, we improved the localization algorithm based on Voronoi agrams. In the improved algorithm, we selected two beacon nodes' weighted bisector as the region boundaries, then calculated the two weighted bisector 2014 Cai et al.; licensee pringer. This is an Open Access article stributed under the terms of the Creative Commons Attribution License ( which permits unrestricted use, stribution, and reproduction in any meum, provided the original work is properly creted.

2 Cai et al. EURAIP Journal on Wireless Communications and Networking 2014, 2014:50 Page 2 of 5 intersection coornates as estimate coornates, and finally we regarded the weighted average values of all the estimate coornates as the final estimate coornates of the node to be located. 2 Positioning algorithm based on Voronoi Voronoi agram (Figure 1) refers to a point set in a given space, P ={P 1, P 2, P 3, P n }, 3 n <. The plane is vided by the Voronoi agram as follows: VðP i Þ ¼ x V ð P iþjdx; ð P i Þ d x; P j j ¼ 1; 2; n; j i: In the previous formula, let x be any point in the plane and d(x, P i ) be the Euclidean stance [11] between x and the certain point P i. In wireless sensor networks, because RI signal values between nodes are inversely proportional to the square of their stances, then accorng to this property and the definition of Voronoi agrams, we can describe WN node localization as follows. 1. Let P 1, P 2, P 3,,, P n be beacon nodes in wireless sensor network area and be node to be located. 2. We can suppose beacon nodes P 1, P 2, P 3,, P j communicate with the node, and the node receives RI signal strength of the beacon node accorng to size of RI P1 > RI P2 > ; >RI. 3. Accorng to the properties of the Voronoi agrams, we can see that the unknown node is in the Voronoi region of beacon node P 1. We compute P 1 s Voronoi regions and add the weight values RI P1 to all the nodes within this area. 4. Remove the node P 1, compute the Voronoi region of P 2, and assign node weight value RI P2. In this way, eventually, we can obtain all beacon nodes of the Voronoi regions. 5. We can find the region with a maximum weight value and get the gravity coornate as the calculation coornate of the unknown node. 3 Positioning algorithm based on weighted Voronoi In Voronoi agram algorithm, the Voronoi region of beacon node P i is made of midperpenculars of this beacon node and the beacon nodes around it. However, in fact, if the nodes have the same centroid and the greater the intensity of the RI signal the node received, the smaller the stance between nodes will be. Therefore, we can appropriately aust the Voronoi region of this node through the signal value. Thus, we can improve the localization accuracy and reduce computational complexity. 3.1 Algorithm basic ideas We presume the node to be located can receive the signal from beacon nodes P 1, P 2, P 3,, P n. When has the stance of d i, d j (suppose d i > d j ) to any two beacon nodes P i, P j, the node to be located and P i, P j will form a triangle P i P j. Let node be in the line of P i P j s weight bisector; we can select this line as the region boundaries of beacon nodes P i and P j. Then, we can select beacons P m, P n and repeat the above method. We will get a more accurate Voronoi region at last. Because of the assumption d i > d j, we know P i P j > P j P i in the triangle P i P j. For calculating the straight line equation L of weight bisector, we need to get the slope k of L and the intersection coornates P between P i P j and L. With the properties of the straight slope, the slope of L is the opposite to the reciprocal slope of bottom edge P i P j,thatisk L ¼ x j x i y j y i. We use the following three cases to seek the intersection coornate P(x 0, y 0 ): 1. P i P j is an acute angle (Figure 2). We calculate the next formula first. ( s 1 ¼ d 2 i d2 j þ d 2 i;j s 2 ¼ d 2 j d 2 i þ d 2 i;j ð1þ We know s 1 and s 2 are both greater than zero from the cosine law. Then, we can choose proportionality coefficient l ¼ s 2 s1 as the specific value of j P i and j PP jj,that,is l ¼ s 2 ¼ jp i s ð2þ 1 jpp j j Figure 1 Voronoi. Because we have calculated the positions of s 1 and s 2 and the positions of P 1 and P 2 have been known, we can get the coornate P(x 0, y 0 ).

3 Cai et al. EURAIP Journal on Wireless Communications and Networking 2014, 2014:50 Page 3 of 5 j P Figure 2 P i P j is an acute angle. x 0 ¼ x i þ lx j ; y 1 þ l 0 ¼ y i þ ly j ð3þ 1 þ l Taking k L that we have obtained and P(x 0, y 0 ) into the equation y y 0 = k(x x 0 ), we can receive the equation as follows: y i k L x i þ l y j k L x j y ¼ k L x þ ð4þ 1 þ l 2. P i P j is a right angle (Figure 3). traight line L is P i in the triangle, so straight line L s slope k L is still k L ¼ x j x i y j y ; the intersection of L i and bottom edge P i P j is P i (x i, y i ). Then, we can get the equation of straight line L: y ¼ k L x þ y i k L x i 3. P i P j is an obtuse angle (Figure 4). We still calculate ( s 1 ¼ d 2 i d2 j þ d 2 i;j ð5þ (P) j Figure 3 P i P j is a right angle. 3.2 Algorithmic process Localization algorithm based on weighted Voronoi agrams worksasfollows: 1. The node to be located broadcasts around the information Request with requesting location. 2. All beacon nodes that received the Request return the information Reply which contains its own location. 3. After node receives all the information, we sort the beacon nodes from big to small accorng to the signal intensity. We assume that the sorted order of beacon nodes is P 1, P 2, P 3,,P k. 4. The bottom edge heights of P 1 P 2, P 2 P 3,, P k 1 P k form the equations L 1, L 2,,, L k Next, we can get the intersection Q 1 of L 1 and L 2, Q 2 of L 2 and L 3,, and Q k 2 of L k 2 and L k 1. s 2 ¼ d 2 j d 2 i þ d 2 i;j At this time, s 1 >0,s 2 < 0; then, the proportionality coefficient is l ¼ s 2 s1. In a similar way, we can get the coornates P(x 0, y 0 ). ð6þ x 0 ¼ x i lx j ; y 1 l 0 ¼ y i ly j 1 l ð7þ Then, get the equation of L. l y j k L x j y i k L x i y ¼ k L x þ l 1 ð8þ P Figure 4 P i P j is an obtuse angle. j

4 Cai et al. EURAIP Journal on Wireless Communications and Networking 2014, 2014:50 Page 4 of 5 Then, we attach the RI signal values of P 1, P 2, P k 2 to the nodes Q 1, Q 2,,Q k 2 as weighted values. 6. Calculate the weighted average coornates from node Q 1 to node Q k 2. 4 Experiment and performance analysis of the positioning algorithm In this section, we make the simulation analysis on performance comparison among the new algorithm, weighted centroid algorithm (W-Centroid) and Voronoi agrambased localization scheme (VBL) algorithm by MATLAB 7.0 (The MathWorks, Inc., Natick, MA, UA). There are 25 beacon nodes stributed randomly in the region of 100 m 100 m, among which hadowing model is adopted to realize the communication. P r ðdþ ¼ 10β log d þ X db P r ðd 0 Þ db d 0 ð9þ In the previous equation, P r (d 0 )andd 0 represent reference energy and reference stance, respectively. β represents path loss coefficient (general value is 2 ~ 4), and X db is a Gaussian variable that has an average value of zero. Figure 5 describes the relation between localization accuracy of the three algorithms and communication raus. From Figure 5, we can see that weighted Voronoi agram-based localization scheme (W-VBL) algorithm s relative errors decrease gradually with the increase of communication raus. When the communication raus is greater than 45 m, it is essentially flat with VBL errors. As communication raus increases, the beacon nodes involved in the localization increases, the unknown node can gain more location information, and localization errors decrease. Figure 6 The relationship between positioning accuracy and the number of beacon nodes. Figure 6 depicts the relation between localization accuracy of the three algorithms and the number of nodes. As can be seen from Figure 6, with the number of beacon nodes increasing, the localization accuracy improves gradually. When beacon node increases to 25, localization accuracy has few changes. In order to locate, the VBL localization algorithm must have at least four nodes, while the W-VBL algorithm only needs three beacon nodes. Therefore, in case the beacon nodes are sparse, W-VBL significantly has higher positioning accuracy than the other two algorithms. Figure 7 depicts the relationship between the positioning accuracy of the three algorithms and noise. W-Centrold adopts the connectivity among nodes to positioning, while VBL and W-VBL positioning base on the size of the RI signal. In case the noise increases, W-Centrold positioning algorithm only has small fluctuations, while VBL and W-VBL will have fluctuations with noise increasing. Figure 5 The relationship between positioning accuracy and communication raus. Figure 7 The relationship between accuracy and noise.

5 Cai et al. EURAIP Journal on Wireless Communications and Networking 2014, 2014:50 Page 5 of 5 When the noise reaches 0.5, positioning errors of the two algorithms are basically the same. 5 Conclusion Based on the research of Voronoi agram range-free localization algorithm, we propose a Voronoi agram weighted localization algorithm. The algorithm uses the relationship between the stances among the nodes, and the RI signal intensity corrects the Voronoi agram boundaries. At the same time, it reduces the number of minimum required localization beacon nodes and the complexity of the algorithm and improves the positioning accuracy. Competing interests The authors declare that they have no competing interests. Acknowledgements The paper is supported by the National cience Foundation of China ( , ), supported by the Program for New Century Excellent Talents in University (NCET ), pecialized Research Fund for the Doctoral Program of Higher Education ( ), and the Fundamental Research Funds for the Central Universities (HEUCFT1202). Author details 1 College of Computer cience and Technology, Harbin Engineering University, Harbin , China. 2 College of Automation, Harbin Engineering University, Harbin , China. Received: 22 eptember 2013 Accepted: 17 March 2014 Published: 31 March 2014 References 1. L un, J Li, Y Chen, H Zhu, Wireless ensor Network (Tsinghua University Press, Beijing, 2005), pp K Langendoen, N Reijers, Distributed localization in wireless sensor networks: a quantitative comparison. Comp. Netw. 42(4), (2003) 3. A avvides, CC Han, MB trivastava, Dynamic fine-grained localization in Ad-hoc networks of sensors (Paper presented at the 7th annual international conference on mobile computing and networking, Rome, Italy, 2001), pp D Nicolescu, B Nath, Ad-hoc positioning systems (AP) using AOA (Paper presented at the 22nd annual joint conference of the IEEE computer and communications, New York, 2003), pp D Niculescu, B Nath, Position and orientation in ad hoc networks. Ad Hoc Netw. 2(2), (2004) 6. Y Yu, ensor Network Positioning Algorithm and Related Technology Research (Chongqing University, Chongqing, 2006) 7. N Bulusu, J Heidemann, D Estrin, GP-less low cost outdoor localization for very small devices. IEEE Wirel. Commun. 7(5), (2000) 8. D Niculescu, B Nath, DV-based positioning in ad hoc networks. Telecommun. yst. 22(1 4), (2003) 9. T He, C Huang, BM Blum, JA tankovic, T Abdelzaher, Range-free localization schemes for large scale sensor networks (Paper presented at the 9th annual international conference on mobile computing and networking, an Diego, CA, UA, 2003), pp R Nagpal, H hrobe, J Bachrach, Organizing a global coornate system from local information on an ad-hoc sensor network (Paper presented at the second international conference on information processing in sensor networks, Palo Alto, CA, UA, 2003) 11. J Wang, L Huang, H Xu, B Xu, Li, Based on Voronoi agram without ranging wireless sensor network node positioning algorithm. Comput. Res. Dev. 45(1), (2008) doi: / Cite this article as: Cai et al.: Research of localization algorithm based on weighted Voronoi agrams for wireless sensor network. EURAIP Journal on Wireless Communications and Networking :50. ubmit your manuscript to a journal and benefit from: 7 Convenient online submission 7 Rigorous peer review 7 Immeate publication on acceptance 7 Open access: articles freely available online 7 High visibility within the field 7 Retaining the copyright to your article ubmit your next manuscript at 7 springeropen.com

Locali ation z For For Wireless S ensor Sensor Networks Univ of Alabama F, all Fall

Locali ation z For For Wireless S ensor Sensor Networks Univ of Alabama F, all Fall Localization ation For Wireless Sensor Networks Univ of Alabama, Fall 2011 1 Introduction - Wireless Sensor Network Power Management WSN Challenges Positioning of Sensors and Events (Localization) Coverage

More information

Localization in WSN. Marco Avvenuti. University of Pisa. Pervasive Computing & Networking Lab. (PerLab) Dept. of Information Engineering

Localization in WSN. Marco Avvenuti. University of Pisa. Pervasive Computing & Networking Lab. (PerLab) Dept. of Information Engineering Localization in WSN Marco Avvenuti Pervasive Computing & Networking Lab. () Dept. of Information Engineering University of Pisa m.avvenuti@iet.unipi.it Introduction Location systems provide a new layer

More information

An Improved DV-Hop Localization Algorithm Based on Hop Distance and Hops Correction

An Improved DV-Hop Localization Algorithm Based on Hop Distance and Hops Correction , pp.319-328 http://dx.doi.org/10.14257/ijmue.2016.11.6.28 An Improved DV-Hop Localization Algorithm Based on Hop Distance and Hops Correction Xiaoying Yang* and Wanli Zhang College of Information Engineering,

More information

Open Access AOA and TDOA-Based a Novel Three Dimensional Location Algorithm in Wireless Sensor Network

Open Access AOA and TDOA-Based a Novel Three Dimensional Location Algorithm in Wireless Sensor Network Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 2015, 7, 1611-1615 1611 Open Access AOA and TDOA-Based a Novel Three Dimensional Location Algorithm

More information

Performance Analysis of DV-Hop Localization Using Voronoi Approach

Performance Analysis of DV-Hop Localization Using Voronoi Approach Vol.3, Issue.4, Jul - Aug. 2013 pp-1958-1964 ISSN: 2249-6645 Performance Analysis of DV-Hop Localization Using Voronoi Approach Mrs. P. D.Patil 1, Dr. (Smt). R. S. Patil 2 *(Department of Electronics and

More information

An improved distance vector-hop localization algorithm based on coordinate correction

An improved distance vector-hop localization algorithm based on coordinate correction Research Article An improved distance vector-hop localization algorithm based on coordinate correction International Journal of Distributed Sensor Networks 2017, Vol. 13(11) Ó The Author(s) 2017 DOI: 10.1177/1550147717741836

More information

A NOVEL RANGE-FREE LOCALIZATION SCHEME FOR WIRELESS SENSOR NETWORKS

A NOVEL RANGE-FREE LOCALIZATION SCHEME FOR WIRELESS SENSOR NETWORKS A NOVEL RANGE-FREE LOCALIZATION SCHEME FOR WIRELESS SENSOR NETWORKS Chi-Chang Chen 1, Yan-Nong Li 2 and Chi-Yu Chang 3 Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan 1 ccchen@isu.edu.tw

More information

DV-HOP LOCALIZATION ALGORITHM IMPROVEMENT OF WIRELESS SENSOR NETWORK

DV-HOP LOCALIZATION ALGORITHM IMPROVEMENT OF WIRELESS SENSOR NETWORK DV-HOP LOCALIZATION ALGORITHM IMPROVEMENT OF WIRELESS SENSOR NETWORK CHUAN CAI, LIANG YUAN School of Information Engineering, Chongqing City Management College, Chongqing, China E-mail: 1 caichuan75@163.com,

More information

Selected RSSI-based DV-Hop Localization for Wireless Sensor Networks

Selected RSSI-based DV-Hop Localization for Wireless Sensor Networks Article Selected RSSI-based DV-Hop Localization for Wireless Sensor Networks Mongkol Wongkhan and Soamsiri Chantaraskul* The Sirindhorn International Thai-German Graduate School of Engineering (TGGS),

More information

Research on an Economic Localization Approach

Research on an Economic Localization Approach Computer and Information Science; Vol. 12, No. 1; 2019 ISSN 1913-8989 E-ISSN 1913-8997 Published by Canadian Center of Science and Education Research on an Economic Localization Approach 1 Yancheng Teachers

More information

Evaluation of Localization Services Preliminary Report

Evaluation of Localization Services Preliminary Report Evaluation of Localization Services Preliminary Report University of Illinois at Urbana-Champaign PI: Gul Agha 1 Introduction As wireless sensor networks (WSNs) scale up, an application s self configurability

More information

Performance Analysis of Different Localization Schemes in Wireless Sensor Networks Sanju Choudhary 1, Deepak Sethi 2 and P. P.

Performance Analysis of Different Localization Schemes in Wireless Sensor Networks Sanju Choudhary 1, Deepak Sethi 2 and P. P. Performance Analysis of Different Localization Schemes in Wireless Sensor Networks Sanju Choudhary 1, Deepak Sethi 2 and P. P. Bhattacharya 3 Abstract: Wireless Sensor Networks have attracted worldwide

More information

Optimized threshold calculation for blanking nonlinearity at OFDM receivers based on impulsive noise estimation

Optimized threshold calculation for blanking nonlinearity at OFDM receivers based on impulsive noise estimation Ali et al. EURASIP Journal on Wireless Communications and Networking (2015) 2015:191 DOI 10.1186/s13638-015-0416-0 RESEARCH Optimized threshold calculation for blanking nonlinearity at OFDM receivers based

More information

Performance Evaluation of DV-Hop and NDV-Hop Localization Methods in Wireless Sensor Networks

Performance Evaluation of DV-Hop and NDV-Hop Localization Methods in Wireless Sensor Networks Performance Evaluation of DV-Hop and NDV-Hop Localization Methods in Wireless Sensor Networks Manijeh Keshtgary Dept. of Computer Eng. & IT ShirazUniversity of technology Shiraz,Iran, Keshtgari@sutech.ac.ir

More information

The Personnel Positioning Method of Underground Coal Mine

The Personnel Positioning Method of Underground Coal Mine International Journal of Oil, Gas and Coal Engineering 018; 6(): 4-8 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.018060.11 ISSN: 76-7669(Print); ISSN: 76-7677(Online) The Personnel

More information

Cross Layer Design for Localization in Large-Scale Underwater Sensor Networks

Cross Layer Design for Localization in Large-Scale Underwater Sensor Networks Sensors & Transducers, Vol. 64, Issue 2, February 204, pp. 49-54 Sensors & Transducers 204 by IFSA Publishing, S. L. http://www.sensorsportal.com Cross Layer Design for Localization in Large-Scale Underwater

More information

Indoor Positioning Technology Based on Multipath Effect Analysis Bing Xu1, a, Feng Hong2,b, Xingyuan Chen 3,c, Jin Zhang2,d, Shikai Shen1, e

Indoor Positioning Technology Based on Multipath Effect Analysis Bing Xu1, a, Feng Hong2,b, Xingyuan Chen 3,c, Jin Zhang2,d, Shikai Shen1, e 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 06) Indoor Positioning Technology Based on Multipath Effect Analysis Bing Xu, a, Feng Hong,b, Xingyuan

More information

A Fuzzy Set-Based Approach to Range-Free Localization in Wireless Sensor Networks 1

A Fuzzy Set-Based Approach to Range-Free Localization in Wireless Sensor Networks 1 A Fuzzy Set-Based Approach to Range-Free Localization in Wireless Sensor Networks 1 Andrija S. Velimirović, Goran Lj. Djordjević, Maja M. Velimirović, Milica D. Jovanović Faculty of Electronic Engineering,

More information

AN IOT APPLICATION BASED SEARCHING TECHNIQUE - WSN LOCALIZATION ALGORITHM

AN IOT APPLICATION BASED SEARCHING TECHNIQUE - WSN LOCALIZATION ALGORITHM AN IOT APPLICATION BASED SEARCHING TECHNIQUE - WSN LOCALIZATION ALGORITHM Abstract For IOT wireless sensor networks, there is large positioning error in APIT positioning algorithm, an improved APIT positioning

More information

A novel algorithm for graded precision localization in wireless sensor networks

A novel algorithm for graded precision localization in wireless sensor networks A novel algorithm for graded precision localization in wireless sensor networks S. Sarangi Bharti School of Telecom Technology Management, IIT Delhi, Hauz Khas, New Delhi 110016 INDIA sanat.sarangi@gmail.com

More information

Proceedings Statistical Evaluation of the Positioning Error in Sequential Localization Techniques for Sensor Networks

Proceedings Statistical Evaluation of the Positioning Error in Sequential Localization Techniques for Sensor Networks Proceedings Statistical Evaluation of the Positioning Error in Sequential Localization Techniques for Sensor Networks Cesar Vargas-Rosales *, Yasuo Maidana, Rafaela Villalpando-Hernandez and Leyre Azpilicueta

More information

Investigation of a novel structure for 6PolSK-QPSK modulation

Investigation of a novel structure for 6PolSK-QPSK modulation Li et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:66 DOI 10.1186/s13638-017-0860-0 RESEARCH Investigation of a novel structure for 6PolSK-QPSK modulation Yupeng Li 1,2*, Ming

More information

Self-Organizing Localization for Wireless Sensor Networks Based on Neighbor Topology

Self-Organizing Localization for Wireless Sensor Networks Based on Neighbor Topology Self-Organizing Localization for Wireless Sensor Networks Based on Neighbor Topology Range-free localization with low dependence on anchor node Yasuhisa Takizawa Yuto Takashima Naotoshi Adachi Faculty

More information

Research on Mine Tunnel Positioning Technology based on the Oblique Triangle Layout Strategy

Research on Mine Tunnel Positioning Technology based on the Oblique Triangle Layout Strategy Appl. Math. Inf. Sci. 8, No. 1, 181-186 (2014) 181 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/080122 Research on Mine Tunnel Positioning Technology

More information

Node Localization using 3D coordinates in Wireless Sensor Networks

Node Localization using 3D coordinates in Wireless Sensor Networks Node Localization using 3D coordinates in Wireless Sensor Networks Shayon Samanta Prof. Punesh U. Tembhare Prof. Charan R. Pote Computer technology Computer technology Computer technology Nagpur University

More information

Analysis on Privacy and Reliability of Ad Hoc Network-Based in Protecting Agricultural Data

Analysis on Privacy and Reliability of Ad Hoc Network-Based in Protecting Agricultural Data Send Orders for Reprints to reprints@benthamscience.ae The Open Electrical & Electronic Engineering Journal, 2014, 8, 777-781 777 Open Access Analysis on Privacy and Reliability of Ad Hoc Network-Based

More information

Range Free Localization of Wireless Sensor Networks Based on Sugeno Fuzzy Inference

Range Free Localization of Wireless Sensor Networks Based on Sugeno Fuzzy Inference Range Free Localization of Wireless Sensor Networks Based on Sugeno Fuzzy Inference Mostafa Arbabi Monfared Department of Electrical & Electronic Engineering Eastern Mediterranean University Famagusta,

More information

Cramer-Rao Bound Analysis of Quantized RSSI Based Localization in Wireless Sensor Networks

Cramer-Rao Bound Analysis of Quantized RSSI Based Localization in Wireless Sensor Networks Cramer-Rao Bound Analysis of Quantized RSSI Based Localization in Wireless Sensor Networks Hongchi Shi, Xiaoli Li, and Yi Shang Department of Computer Science University of Missouri-Columbia Columbia,

More information

Localization for Large-Scale Underwater Sensor Networks

Localization for Large-Scale Underwater Sensor Networks Localization for Large-Scale Underwater Sensor Networks Zhong Zhou 1, Jun-Hong Cui 1, and Shengli Zhou 2 1 Computer Science& Engineering Dept, University of Connecticut, Storrs, CT, USA,06269 2 Electrical

More information

Localization of Sensor Nodes using Mobile Anchor Nodes

Localization of Sensor Nodes using Mobile Anchor Nodes Localization of Sensor Nodes using Mobile Anchor Nodes 1 Indrajith T B, 2 E.T Sivadasan 1 M.Tech Student, 2 Associate Professor 1 Department of Computer Science, Vidya Academy of Science and Technology,

More information

Estimation of Distributed Fermat-Point Location for Wireless Sensor Networking

Estimation of Distributed Fermat-Point Location for Wireless Sensor Networking Sensors 2011, 11, 4358-4371; doi:10.3390/s110404358 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Estimation of Distributed Fermat-Point Location for Wireless Sensor Networking

More information

Indoor Localization in Wireless Sensor Networks

Indoor Localization in Wireless Sensor Networks International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 4, Issue 03 (August 2014) PP: 39-44 Indoor Localization in Wireless Sensor Networks Farhat M. A. Zargoun 1, Nesreen

More information

Modelling the Localization Scheme Integrated with a MAC Protocol in a Wireless Sensor Network

Modelling the Localization Scheme Integrated with a MAC Protocol in a Wireless Sensor Network Modelling the Localization Scheme Integrated with a MAC Protocol in a Wireless Sensor Network Suman Pandey Assistant Professor KNIT Sultanpur Sultanpur ABSTRACT Node localization is one of the major issues

More information

Keywords Localization, Mobility, Sensor Networks, Beacon node, Trilateration, Multilateration

Keywords Localization, Mobility, Sensor Networks, Beacon node, Trilateration, Multilateration Volume 5, Issue 1, January 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Localization

More information

Removing Heavily Curved Path: Improved DV-Hop Localization in Anisotropic Sensor Networks

Removing Heavily Curved Path: Improved DV-Hop Localization in Anisotropic Sensor Networks 2011 Seventh International Conference on Mobile Ad-hoc and Sensor Networks Removing Heavily Curved Path: Improved DV-Hop Localization in Anisotropic Sensor Networks Ziqi Fan 1, Yuanfang Chen 1, Lei Wang

More information

A New RSS-based Wireless Geolocation Technique Utilizing Joint Voronoi and Factor Graph

A New RSS-based Wireless Geolocation Technique Utilizing Joint Voronoi and Factor Graph A New RSS-based Wireless Geolocation Technique Utilizing Joint Voronoi and Factor Graph Muhammad Reza Kahar Aziz 1,2, Yuto Lim 1, and Tad Matsumoto 1,3 1 School of Information Science, Japan Advanced Institute

More information

Range-Free Localization in Wireless Sensor Networks with Neural Network Ensembles

Range-Free Localization in Wireless Sensor Networks with Neural Network Ensembles J. Sens. Actuator Netw. 2012, 1, 254-271; doi:10.3390/jsan1030254 Article OPEN ACCESS Journal of Sensor and Actuator Networks ISSN 2224-2708 www.mdpi.com/journal/jsan Range-Free Localization in Wireless

More information

DESIGN AND IMPLEMETATION OF NETWORK LOCALIZATION SERVICE USING ANGLE-INDEXED SIGNAL STRENGTH MEASUREMENTS. An Honor Thesis

DESIGN AND IMPLEMETATION OF NETWORK LOCALIZATION SERVICE USING ANGLE-INDEXED SIGNAL STRENGTH MEASUREMENTS. An Honor Thesis DESIGN AND IMPLEMETATION OF NETWORK LOCALIZATION SERVICE USING ANGLE-INDEXED SIGNAL STRENGTH MEASUREMENTS An Honor Thesis Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of

More information

PLACE: Protocol for Location And Coordinates Estimation --A Wireless Sensor Network Approach

PLACE: Protocol for Location And Coordinates Estimation --A Wireless Sensor Network Approach PLACE: Protocol for Location And Coordinates Estimation --A Wireless Sensor Network Approach Yuecheng Zhang 1 and Liang Cheng 2 Laboratory Of Networking Group (LONGLAB, http://long.cse.lehigh.edu) 1 Department

More information

Superior Reference Selection Based Positioning System for Wireless Sensor Network

Superior Reference Selection Based Positioning System for Wireless Sensor Network International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 1 Superior Reference Selection Based Positioning System for Wireless Sensor Network Manish Chand Sahu, Prof.

More information

Performance Analysis of Energy Consumption of AFECA in Wireless Sensor Networks

Performance Analysis of Energy Consumption of AFECA in Wireless Sensor Networks Proceedings of the World Congress on Engineering 2 Vol II WCE 2, July 6-8, 2, London, U.K. Performance Analysis of Energy Consumption of AFECA in Wireless Sensor Networks Yun Won Chung Abstract Energy

More information

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems Antennas and Propagation Volume 1, Article ID 8975, 6 pages doi:1.1155/1/8975 Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems Yuan Yao, Xing Wang, and Junsheng Yu School of Electronic

More information

Performance Analysis of Range Free Localization Schemes in WSN-a Survey

Performance Analysis of Range Free Localization Schemes in WSN-a Survey I J C T A, 9(13) 2016, pp. 5921-5925 International Science Press Performance Analysis of Range Free Localization Schemes in WSN-a Survey Hari Balakrishnan B. 1 and Radhika N. 2 ABSTRACT In order to design

More information

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure Antennas and Propagation Volume 215, Article ID 57693, 5 pages http://dx.doi.org/1.1155/215/57693 Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

More information

An improved localization scheme based on IMDV-hop for large-scale wireless mobile sensor aquaculture networks

An improved localization scheme based on IMDV-hop for large-scale wireless mobile sensor aquaculture networks Zhu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:174 https://doi.org/10.1186/s13638-018-1190-6 RESEARCH An improved localization scheme based on IMDV-hop for large-scale

More information

Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion

Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion Rafiullah Khan, Francesco Sottile, and Maurizio A. Spirito Abstract In wireless sensor networks (WSNs), hybrid algorithms are

More information

Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error

Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error Sensors 2011, 11, 9989-10009; doi:10.3390/s111009989 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced

More information

Open Access Research of Dielectric Loss Measurement with Sparse Representation

Open Access Research of Dielectric Loss Measurement with Sparse Representation Send Orders for Reprints to reprints@benthamscience.ae 698 The Open Automation and Control Systems Journal, 2, 7, 698-73 Open Access Research of Dielectric Loss Measurement with Sparse Representation Zheng

More information

Generation of Klobuchar Coefficients for Ionospheric Error Simulation

Generation of Klobuchar Coefficients for Ionospheric Error Simulation Research Paper J. Astron. Space Sci. 27(2), 11722 () DOI:.14/JASS..27.2.117 Generation of Klobuchar Coefficients for Ionospheric Error Simulation Chang-Moon Lee 1, Kwan-Dong Park 1, Jihyun Ha 2, and Sanguk

More information

Adaptive DV-HOP Location Algorithm Using Anchor-Density-based Clustering for Wireless Sensor Networks

Adaptive DV-HOP Location Algorithm Using Anchor-Density-based Clustering for Wireless Sensor Networks Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Adaptive DV-HOP Location Algorithm Using Anchor-Density-based Clustering for Wireless Sensor Networks Zhang Ming College of Electronic Engineering,

More information

Open Access The Research on Energy-saving Technology of the Set Covering Base Station in Cellular Networks

Open Access The Research on Energy-saving Technology of the Set Covering Base Station in Cellular Networks Send Orders for Reprints to reprints@benthamscience.ae 1022 The Open Automation and Control Systems Journal, 2014, 6, 1022-1028 Open Access The Research on Energy-saving Technology of the Set Covering

More information

Ad hoc and Sensor Networks Chapter 9: Localization & positioning

Ad hoc and Sensor Networks Chapter 9: Localization & positioning Ad hoc and Sensor Networks Chapter 9: Localization & positioning Holger Karl Computer Networks Group Universität Paderborn Goals of this chapter Means for a node to determine its physical position (with

More information

Open Access Design of Diesel Engine Adaptive Active Disturbance Rejection Speed Controller

Open Access Design of Diesel Engine Adaptive Active Disturbance Rejection Speed Controller Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 05, 7, 49-433 49 Open Access Design of Diesel Engine Adaptive Active Disturbance Rejection Speed

More information

Average Localization Accuracy in Mobile Wireless Sensor Networks

Average Localization Accuracy in Mobile Wireless Sensor Networks American Journal of Mobile Systems, Applications and Services Vol. 1, No. 2, 2015, pp. 77-81 http://www.aiscience.org/journal/ajmsas Average Localization Accuracy in Mobile Wireless Sensor Networks Preeti

More information

Sensor Technology and Industry Development Trend in China and Betterment Approaches

Sensor Technology and Industry Development Trend in China and Betterment Approaches Sensor Technology and Industry Development Trend in China and Betterment Approaches Abstract Zhengqing Li University of Sanya, Sanya 572022, China Sensor technology is one of the most rapidly developing

More information

Non-Line-Of-Sight Environment based Localization in Wireless Sensor Networks

Non-Line-Of-Sight Environment based Localization in Wireless Sensor Networks Non-Line-Of-Sight Environment based Localization in Wireless Sensor Networks Divya.R PG Scholar, Electronics and communication Engineering, Pondicherry Engineering College, Puducherry, India Gunasundari.R

More information

SIGNIFICANT advances in hardware technology have led

SIGNIFICANT advances in hardware technology have led IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 5, SEPTEMBER 2007 2733 Concentric Anchor Beacon Localization Algorithm for Wireless Sensor Networks Vijayanth Vivekanandan and Vincent W. S. Wong,

More information

Intelligent Centroid Localization Based on Fuzzy Logic and Genetic Algorithm

Intelligent Centroid Localization Based on Fuzzy Logic and Genetic Algorithm Intelligent Centroid Localization Based on Fuzzy Logic and Genetic Algorithm Taner Tuncer Firat University, Department of Computer Engineering, 29 Elazig, Turkey E-mail: ttuncer@firat.edu.tr Received 28

More information

A Hop Based Distance Estimation Approach for Localization of Nodes in Tree Structured Wireless Adhoc Sensor Networks

A Hop Based Distance Estimation Approach for Localization of Nodes in Tree Structured Wireless Adhoc Sensor Networks Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 4 (2017) pp. 481-500 Research India Publications http://www.ripublication.com A Based Estimation Approach for Localization

More information

Improved MDS-based Algorithm for Nodes Localization in Wireless Sensor Networks

Improved MDS-based Algorithm for Nodes Localization in Wireless Sensor Networks Improved MDS-based Algorithm for Nodes Localization in Wireless Sensor Networks Biljana Risteska Stojkoska, Vesna Kirandziska Faculty of Computer Science and Engineering University "Ss. Cyril and Methodius"

More information

A Study for Finding Location of Nodes in Wireless Sensor Networks

A Study for Finding Location of Nodes in Wireless Sensor Networks A Study for Finding Location of Nodes in Wireless Sensor Networks Shikha Department of Computer Science, Maharishi Markandeshwar University, Sadopur, Ambala. Shikha.vrgo@gmail.com Abstract The popularity

More information

Open Access Research on RSSI Based Localization System in the Wireless Sensor Network

Open Access Research on RSSI Based Localization System in the Wireless Sensor Network Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 2014, 6, 1139-1146 1139 Open Access Research on RSSI Based Localization System in the Wireless Sensor

More information

Ordinal MDS-based Localization for Wireless Sensor Networks

Ordinal MDS-based Localization for Wireless Sensor Networks Ordinal MDS-based Localization for Wireless Sensor Networks Vayanth Vivekanandan and Vincent W.S. Wong Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver,

More information

Using Linear Intersection for Node Location Computation in Wireless Sensor Networks 1)

Using Linear Intersection for Node Location Computation in Wireless Sensor Networks 1) Vol3, No6 ACTA AUTOMATICA SINICA November, 006 Using Linear Intersection for Node Location Computation in Wireless Sensor Networks 1) SHI Qin-Qin 1 HUO Hong 1 FANG Tao 1 LI De-Ren 1, 1 (Institute of Image

More information

RSSI based Node Localization using Trilateration in Wireless Sensor Network

RSSI based Node Localization using Trilateration in Wireless Sensor Network RSSI based Node Localization using Trilateration in Wireless Sensor Network Rukaiya Javaid, Rehan Qureshi, and Rabia Noor Enam Abstract Wireless Sensor Network (WSN) is an ad-hoc network generally used

More information

Cooperative Localization with Pre-Knowledge Using Bayesian Network for Wireless Sensor Networks

Cooperative Localization with Pre-Knowledge Using Bayesian Network for Wireless Sensor Networks Cooperative Localization with Pre-Knowledge Using Bayesian Network for Wireless Sensor Networks Shih-Hsiang Lo and Chun-Hsien Wu Department of Computer Science, NTHU {albert, chwu}@sslab.cs.nthu.edu.tw

More information

Open Access Pulse-Width Modulated Amplifier for DC Servo System and Its Matlab Simulation

Open Access Pulse-Width Modulated Amplifier for DC Servo System and Its Matlab Simulation Send Orders for Reprints to reprints@benthamscience.ae The Open Electrical & Electronic Engineering Journal, 25, 9, 625-63 625 Open Access Pulse-Width Modulated Amplifier for DC Servo System and Its Matlab

More information

Enhancement of wireless positioning in outdoor suburban NLOS environment using hybridnetwork-gps

Enhancement of wireless positioning in outdoor suburban NLOS environment using hybridnetwork-gps Al-Jazzar EURASIP Journal on Wireless Communications and Networking 212, 212:1 http://jwcn.eurasipjournals.com/content/212/1/1 RESEARCH Open Access Enhancement of wireless positioning in outdoor suburban

More information

Research on MPPT Control Algorithm of Flexible Amorphous Silicon. Photovoltaic Power Generation System Based on BP Neural Network

Research on MPPT Control Algorithm of Flexible Amorphous Silicon. Photovoltaic Power Generation System Based on BP Neural Network 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Research on MPPT Control Algorithm of Flexible Amorphous Silicon Photovoltaic Power Generation System Based

More information

Mobile Base Stations Placement and Energy Aware Routing in Wireless Sensor Networks

Mobile Base Stations Placement and Energy Aware Routing in Wireless Sensor Networks Mobile Base Stations Placement and Energy Aware Routing in Wireless Sensor Networks A. P. Azad and A. Chockalingam Department of ECE, Indian Institute of Science, Bangalore 5612, India Abstract Increasing

More information

Novel Localization of Sensor Nodes in Wireless Sensor Networks using Co-Ordinate Signal Strength Database

Novel Localization of Sensor Nodes in Wireless Sensor Networks using Co-Ordinate Signal Strength Database Available online at www.sciencedirect.com Procedia Engineering 30 (2012) 662 668 International Conference on Communication Technology and System Design 2011 Novel Localization of Sensor Nodes in Wireless

More information

Locating Sensors in the Forest: A Case Study in GreenOrbs

Locating Sensors in the Forest: A Case Study in GreenOrbs Locating Sensors in the Forest: A Case Study in GreenOrbs Cheng Bo, Danping Ren, Shaojie Tang, Xiang-Yang Li, Xufei Mao, Qiuyuan Huang,Lufeng Mo, Zhiping Jiang, Yongmei Sun, Yunhao Liu Illinois Institute

More information

Adaptive selection of antenna grouping and beamforming for MIMO systems

Adaptive selection of antenna grouping and beamforming for MIMO systems RESEARCH Open Access Adaptive selection of antenna grouping and beamforming for MIMO systems Kyungchul Kim, Kyungjun Ko and Jungwoo Lee * Abstract Antenna grouping algorithms are hybrids of transmit beamforming

More information

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide Antennas and Propagation Volume 1, Article ID 3979, pages http://dx.doi.org/1.11/1/3979 Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide Chong

More information

LOCALIZATION SCHEME FOR THREE DIMENSIONAL WIRELESS SENSOR NETWORKS USING GPS ENABLED MOBILE SENSOR NODES

LOCALIZATION SCHEME FOR THREE DIMENSIONAL WIRELESS SENSOR NETWORKS USING GPS ENABLED MOBILE SENSOR NODES LOCALIZATION SCHEME FOR THREE DIMENSIONAL WIRELESS SENSOR NETWORKS USING GPS ENABLED MOBILE SENSOR NODES Vibha Yadav, Manas Kumar Mishra, A.K. Sngh and M. M. Gore Department of Computer Science & Engineering,

More information

A Survey on Localization Error Minimization Based on Positioning Techniques in Wireless Sensor Network

A Survey on Localization Error Minimization Based on Positioning Techniques in Wireless Sensor Network A Survey on Localization Error Minimization Based on Positioning Techniques in Wireless Sensor Network Meenakshi Parashar M. Tech. Scholar, Department of EC, BTIRT, Sagar (M.P), India. Megha Soni Asst.

More information

2-D RSSI-Based Localization in Wireless Sensor Networks

2-D RSSI-Based Localization in Wireless Sensor Networks 2-D RSSI-Based Localization in Wireless Sensor Networks Wa el S. Belkasim Kaidi Xu Computer Science Georgia State University wbelkasim1@student.gsu.edu Abstract Abstract in large and sparse wireless sensor

More information

Homeostasis Lighting Control System Using a Sensor Agent Robot

Homeostasis Lighting Control System Using a Sensor Agent Robot Intelligent Control and Automation, 2013, 4, 138-153 http://dx.doi.org/10.4236/ica.2013.42019 Published Online May 2013 (http://www.scirp.org/journal/ica) Homeostasis Lighting Control System Using a Sensor

More information

Performance Evaluation of an Improved APIT Localization Algorithm for Underwater Acoustic Sensor Networks

Performance Evaluation of an Improved APIT Localization Algorithm for Underwater Acoustic Sensor Networks Journal of omputers Vol. 9 No., 8, pp. 3-4 doi:.3966/9959989 Performance Evaluation of an Improved PIT Localization lgorithm for Underwater coustic Sensor Networks Keyu hen,*, Jiahui Xu, Yuxuan Fu,, En

More information

Research Article Improving Localization in Wireless Sensor Network Using Fixed and Mobile Guide Nodes

Research Article Improving Localization in Wireless Sensor Network Using Fixed and Mobile Guide Nodes Sensors Volume 216, Article ID 638538, 5 pages http://dx.doi.org/1.1155/216/638538 Research Article Improving Localization in Wireless Sensor Network Using Fixed and Mobile Guide Nodes R. Ahmadi, 1 G.

More information

sensors ISSN Article

sensors ISSN Article Sensors 2009, 9, 2836-2850; doi:10.3390/s90402836 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Anchor-Free Localization Method for Mobile argets in Coal Mine Wireless Sensor

More information

Distributed Localization for Anisotropic Sensor Networks

Distributed Localization for Anisotropic Sensor Networks Distributed Localization for Anisotropic Sensor Networks Hyuk Lim and Jennifer C. Hou Department of Computer Science University of Illinois at Urbana-Champaign E-mail: {hyuklim, jhou}@cs.uiuc.edu Abstract

More information

Research Article TDMA-Based Control Channel Access for IEEE p in VANETs

Research Article TDMA-Based Control Channel Access for IEEE p in VANETs Distributed Sensor Networks, Article ID 579791, 9 pages http://dx.doi.org/1.1155/214/579791 Research Article TDMA-Based Control Channel Access for IEEE 82.11p in VANETs Weidong Yang, 1,2 Wei Liu, 3 Pan

More information

Modeling Study on Dynamic Spectrum Sharing System Under Interference Temperature Constraints in Underground Coal Mines

Modeling Study on Dynamic Spectrum Sharing System Under Interference Temperature Constraints in Underground Coal Mines Send Orders for Reprints to reprints@benthamscienceae 140 The Open Fuels & Energy Science Journal, 2015, 8, 140-148 Open Access Modeling Study on Dynamic Spectrum Sharing System Under Interference Temperature

More information

ADAPTIVE ESTIMATION AND PI LEARNING SPRING- RELAXATION TECHNIQUE FOR LOCATION ESTIMATION IN WIRELESS SENSOR NETWORKS

ADAPTIVE ESTIMATION AND PI LEARNING SPRING- RELAXATION TECHNIQUE FOR LOCATION ESTIMATION IN WIRELESS SENSOR NETWORKS INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 6, NO. 1, FEBRUARY 013 ADAPTIVE ESTIMATION AND PI LEARNING SPRING- RELAXATION TECHNIQUE FOR LOCATION ESTIMATION IN WIRELESS SENSOR NETWORKS

More information

HETEROGENEOUS LINK ASYMMETRY IN TDD MODE CELLULAR SYSTEMS

HETEROGENEOUS LINK ASYMMETRY IN TDD MODE CELLULAR SYSTEMS HETEROGENEOUS LINK ASYMMETRY IN TDD MODE CELLULAR SYSTEMS Magnus Lindström Radio Communication Systems Department of Signals, Sensors and Systems Royal Institute of Technology (KTH) SE- 44, STOCKHOLM,

More information

Research Article Localization Techniques in Wireless Sensor Networks

Research Article Localization Techniques in Wireless Sensor Networks Hindawi Publishing Corporation International Journal of Distributed Sensor Networks Volume 2013, Article ID 304628, 9 pages http://dx.doi.org/10.1155/2013/304628 Research Article Localization Techniques

More information

Finite Element Analysis and Test of an Ultrasonic Compound Horn

Finite Element Analysis and Test of an Ultrasonic Compound Horn World Journal of Engineering and Technology, 2017, 5, 351-357 http://www.scirp.org/journal/wjet ISSN Online: 2331-4249 ISSN Print: 2331-4222 Finite Element Analysis and Test of an Ultrasonic Compound Horn

More information

Multi-Band Spectrum Allocation Algorithm Based on First-Price Sealed Auction

Multi-Band Spectrum Allocation Algorithm Based on First-Price Sealed Auction BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 17, No 1 Sofia 2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2017-0008 Multi-Band Spectrum Allocation

More information

Performance of OFDM-Based WiMAX System Using Cyclic Prefix

Performance of OFDM-Based WiMAX System Using Cyclic Prefix ICoSE Conference on Instrumentation, Environment and Renewable Energy (2015), Volume 2016 Conference Paper Performance of OFDM-Based WiMAX System Using Cyclic Prefix Benriwati Maharmi Electrical Engineering

More information

Path planning of mobile landmarks for localization in wireless sensor networks

Path planning of mobile landmarks for localization in wireless sensor networks Computer Communications 3 (27) 2577 2592 www.elsevier.com/locate/comcom Path planning of mobile landmarks for localization in wireless sensor networks Dimitrios Koutsonikolas, Saumitra M. Das, Y. Charlie

More information

Introduction. Introduction ROBUST SENSOR POSITIONING IN WIRELESS AD HOC SENSOR NETWORKS. Smart Wireless Sensor Systems 1

Introduction. Introduction ROBUST SENSOR POSITIONING IN WIRELESS AD HOC SENSOR NETWORKS. Smart Wireless Sensor Systems 1 ROBUST SENSOR POSITIONING IN WIRELESS AD HOC SENSOR NETWORKS Xiang Ji and Hongyuan Zha Material taken from Sensor Network Operations by Shashi Phoa, Thomas La Porta and Christopher Griffin, John Wiley,

More information

An RSSI Based Localization Scheme for Wireless Sensor Networks to Mitigate Shadowing Effects

An RSSI Based Localization Scheme for Wireless Sensor Networks to Mitigate Shadowing Effects An RSSI Based Localization Scheme for Wireless Sensor Networks to Mitigate Shadowing Effects Ndubueze Chuku, Amitangshu Pal and Asis Nasipuri Electrical & Computer Engineering, The University of North

More information

Open Access Structural Parameters Optimum Design of the New Type of Optical Aiming

Open Access Structural Parameters Optimum Design of the New Type of Optical Aiming Send Orders for Reprints to reprints@benthamscience.ae 208 The Open Electrical & Electronic Engineering Journal, 2014, 8, 208-212 Open Access Structural Parameters Optimum Design of the New Type of Optical

More information

Adaptive filter and noise cancellation*

Adaptive filter and noise cancellation* Advances in Engineering Research, volume 5 2nd Annual International Conference on Energy, Environmental & Sustainable Ecosystem Development (EESED 26) Adaptive filter and noise cancellation* Xing-Tuan

More information

Mobile Positioning in Wireless Mobile Networks

Mobile Positioning in Wireless Mobile Networks Mobile Positioning in Wireless Mobile Networks Peter Brída Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina SLOVAKIA Outline Why Mobile Positioning?

More information

Application of Adaptive Coded Modulation Technology in UAV Data Link

Application of Adaptive Coded Modulation Technology in UAV Data Link Int. J. Communications, Network and System Sciences, 017, 10, 181-190 http://www.scirp.org/journal/ijcns ISSN Online: 1913-373 ISSN Print: 1913-3715 Application of Adaptive Coded Modulation Technology

More information

Three-dimensional positioning system using Bluetooth low-energy beacons

Three-dimensional positioning system using Bluetooth low-energy beacons Special Issue Three-dimensional positioning system using Bluetooth low-energy beacons International Journal of Distributed Sensor Networks 016, Vol. 1(10) Ó The Author(s) 016 DOI: 10.1177/155014771667170

More information

Study of WLAN Fingerprinting Indoor Positioning Technology based on Smart Phone Ye Yuan a, Daihong Chao, Lailiang Song

Study of WLAN Fingerprinting Indoor Positioning Technology based on Smart Phone Ye Yuan a, Daihong Chao, Lailiang Song International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) Study of WLAN Fingerprinting Indoor Positioning Technology based on Smart Phone Ye Yuan a, Daihong Chao,

More information

A Survey on Localization in Wireless Sensor Networks

A Survey on Localization in Wireless Sensor Networks A Survey on Localization in Networks Somkumar Varema 1, Prof. Dharmendra Kumar Singh 2 Department of EC, SVCST, Bhopal, India 1verma.sonkumar4@gmail.com, 2 singhdharmendra04@gmail.com Abstract-Wireless

More information