Agilent EEsof EDA.

Size: px
Start display at page:

Download "Agilent EEsof EDA."

Transcription

1 Agilent EEsof EDA This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent s line of EEsof electronic design automation (EDA) products and services, please go to:

2

3 22 DEVIE MODEING 2 P2 P3 P 2 s2 P2 s2 P3 s3 s s P 2 2 s3 P3 P3 2 s2 P2 2 s2 P3 s s BSIM4_NMOS MOSFET s3 s P 2 s2 P2 2 s2 P3 TIN T Z=5 Ohm s s P s3 P3 P3 Figure 2: Open, Short, Through, and DUT physical and schematic representations niques will be presented in the device modelling flow section. Some F device models require special etensions to the intrinsic device model, and modifications to the parameter etraction methodology Devices operating at GHz frequencies begin to see the effects of parasitics that normally do not impact the D behaviour. While many standard models offer some general F parameters, they may not fully address the device non-linearities or high-frequency behaviour. Device modelling engineers often have to add F etensions in the form of sub-circuits as well as customise the etraction routines. Device non-linearities are not adequately modelled Nonlinear models are typically etracted and verified using only linear data such as S-parameters. This data only includes small-signal information about the device at the ecitation frequency. It does not include information about harmonics being generated by the device under large-signal conditions. This can lead to inaccurate results when using the model in a nonlinear frequency domain (harmonic balance) simulation. At a minimum, nonlinear models should be verified by comparing nonlinear simulations to nonlinear measurement data. There are also new methods being proposed to etract certain model parameters directly from nonlinear measurement data, which will be discussed later in the article. Device modelling flow Accurate modelling begins with accurate measurements Essential to obtaining a good F model is the accuracy of the measurements. The data must reflect the measurement of the intrinsic device without the effects of the surrounding measurement environment. Firstly, the measurement system must be well calibrated before any measurement can be made. Several advanced calibration techniques have been developed over the years to effectively correct the system losses and bring the measurement reference plane up to the tip of the probes. The measurement data include parasitic effects of device pads and interconnects and must be de-embedded to remove the embedded parasitics. The pre-requisite for proper de-embedding is the availability of the dummy test structures, which include: OPEN, SHOT, THOUGH and DUT (device under test) as illustrated with equivalent circuit diagrams in Figure 2. A commonly used technique is de-embedding from the OPEN and verifying with THOUGH. This method removes the parallel circuit elements, which are critical to the low frequencies. The S-parameters of the device and the OPEN test structure are transformed into Y- parameters. The removal of the parallel circuits are performed as follows: Y DUT = Y total - Y open onvert Y- to S-parameters: S DUT = S(Y DUT ) The Y DUT -parameters are converted into the S-Parameters, which represent the de-embedded S-Parameters of the intrinsic device. The advantage of this method is that only the OPEN test structure besides the DUT is required. However, the OPEN de-embedding is good for lower frequencies up to approimately 5-0GHz, depending on the layout and the size of the test structures. A more accurate de-embedding is OPEN-SHOT, which methodically removes both the parallel and series circuit elements. First, the parallel circuit elements are removed from both the SHOT and the device test structures as follows: De-embed from OPEN: Y DUT /OPEN = Y total - Y OPEN Y SHOT /OPEN = Y SHOT - Y OPEN In the second step, the partially de-embedded Y-parameters are converted to Z- Microwave Engineering Europe December/January

4 DEVIE MODEING 23 parameters, which are used to subtract the influence of the series circuit elements as illustrated below. onvert Y- to Z-parameters: Z DUT /OPEN = Z(Y DUT /OPEN) Z SHOT /OPEN = Z(Y SHOT /OPEN) De-embed from SHOT: Z DUT = Z DUT /OPEN - Z SHOT /OPEN onvert from Z- to S-parameters: S DUT = S(Z DUT ) The fully de-embedded Z-parameters can be converted into the S-parameters, which represent the S-parameters of the intrinsic device. The final step is to verify the de-embedding results for both de-embedding methods with a THOUGH. If the device is properly de-embedded, the S-parameters of the THOUGH should represent the behaviour of a transmission line. The S and S 22 of the THOUGH should represent a physical characteristic impedance. With the measured S-parameters properly de-embedded, the data is ready to be used for etracting the model parameters that affect the device high-frequency behaviour. Direct etraction methodologies yield highly physical, highly accurate results Direct etraction means that the model parameter values are etracted from the physical equations of the compact model. There are several advantages to direct etraction. Firstly the model is more realistic because the parameters are etracted directly from a small set of relevant measured data instead of globally fitted to the entire data set. Secondly, etraction routines enable the direct etraction of model parameters from the equations of the intrinsic model, resulting in more physical parameter values. A good eample is to look at the threshold voltage model of a typical 0.8µm MOS process as a function of gate length, using the BSIM4 model. Purely using optimisation, one can achieve an agreement between the measured and simulated data as depicted in Figure 3(a). In this case, the model parameters acted as fitting parameters, which sometimes have no physical meaning to the device model. However, when the parameters (i.e. PE0, DVTP0, PEB, DVT0, DVT & DVT2) were first etracted from the measured data and followed by optimisation, the result, in Figure 3(b) shows a much better fit and the parameter values were very different. Accurate F model starts with an accurate D model Having an accurate D model parameter set is essential to obtaining a good F model. For eample, the starting points of the S 2 -parameters of a BSIM4 model are determined by the D model parameters. Figure 4(d) shows the magnitude of S 2 at the lowest frequency for different gate biases. The very good fit between measured data (red) and simulated curves (blue) can be achieved with an ecellent fit of the D behaviour, mainly the output drain current and the output resistance out: see Figures 4(a) and 4(b). The good fit of the S-parameters cannot be achieved without the correct starting point at the lowest frequency. This eample shows the importance of physically etracted D model parameters for further F modelling. ustomise intrinsic model and etraction methodologies for F model As discussed earlier, one of the challenges for F device modelling engineers is to be able to use the intrinsic model and enhance its F accuracy by adding high-frequency parasitics in the form of sub-circuits. That requires an open software environment such as Agilent Technologies Integrated ircuit haracterisation and Analysis Program (I-AP), which provides engineers with a fleible platform to create sub-circuit models Figure 3: Threshold voltage as a function of gate length for 8µm MOS shows good agreement between simulated and measured parameters, (a) globally optimised, and (b) directly etracted and optimised Vth_.m Vth_.s [E-3} Plot BSIM4_D_V_Etract/ength_Scaling/Vth low_vd/vth_des (On) Vth = f (des, low Vd Vth_.m Vth_.s [E-3} Plot BSIM4_D_V_Etract/ength_Scaling/Vth low_vd/vth_des (On) Vth = f (des, low Vd des [OG] Vth-scaling vs. channel lenght des [OG] Vth-scaling vs. channel lenght Microwave Engineering Europe December/January

5 24 DEVIE MODEING id.m id.s [E-3] 3.0 tout.m rout.s [E-3] vd [E+] vd [E+] S_deemb.M.2 S_deemb.S2 IMAG E EA [E+] mag (S_deemb.M.22 mag(s_deemb.s22) [E+e] Starting points of the S-parameter curve vd [E+] Figure 4: A good fit of the S-parameters (c), above, at the lowest frequency can be achieved with ecellent fit on the D drain current (a) and output resistance (b) and customised etraction routines using Parameter Etraction anguage (PE). PE is a BASI-like language that provides engineers the power to create everything from a single etraction routine to a full etraction methodology within I-AP. A sub-circuit model has been created in the I-AP BSIM3 modelling package by Advanced Modelling Solution to address the lack of an adequate F model in the intrinsic model. Important F parameters such as the gate resistance, the substrate resistance network, the overlap capacitance, and other eternal inductors, which are not incorporated in the intrinsic model, must be addressed for F model accuracy. For eample, the gate resistance significantly affects the input reflection coefficient, S. Similarly, the substrate resistance network has a significant contribution to the output reflection coefficient, S 22. The macro circuit model is added to the BSIM3 model as depicted in Figure 5. A good fit between the measured S and S 22 results were obtained as the result of the macro model implementation and the quality of the model using direct etraction methodology. It is also important to note that the eternal capacitors, the fringing capacitance between the gate and the drain/source, were necessary to achieve the good results for the forward and reverse transmission coefficients, S 2 and S 2. Etracted parameters to be optimised for better fit The first etraction of model parameters is usually followed by tuning and optimisation to give better fitting. Manual tuning of parameters enables the engineers to visualise the effects of certain parameters. Optimisation can also be in- Microwave Engineering Europe December/January

6 26 DEVIE MODEING S_deemb.M.22 S_deemb.S freq - - S_deemb.M.2 S_deemb.S.2 IMAG E EA [E-3] S_deemb.M. S_deemb.S freq - - S_deemb.M.2 S_deemb.S.2 IMAG E EA [E+] Saturated Power egion Output Power [dbm] Output Power [dbm] Output Power ompression region Input Power [dbm] Input Power [dbm] inear region (slope = small-signal gain) Amplitude Amplitude Input Power Harmonics Harmonics Figure 6: Gain compression and the generation of higher-order harmonics Microwave Engineering Europe December/January

7 Figure 5: BSIM3 subcircuit modelling of F parameters (shown on facing page) and plots of S-parameters (right) showing good model fit with measured data DEVIE MODEING 27 Port Drain drain fischersealed connectors IP68: Hermetically and pressure tight worldwide known speciality of fischer gd_et Diode Djsb_perim Diode Djsb_area sub2 Port Gate gate 4 gs_et MOSFET_NMOS BSIM3 sub3 sub Port Bulk Diode Djdb_perim Diode Djdb_area source Port Source voked to further fine-tuning of the etracted parameters. Using an optimisation tool such as the I-AP Plot Optimiser, the engineers can quickly select an optimiser from the very robust optimisation algorithms, the model parameters, and the region(s) of optimisation. For eample, if one would like to optimise certain critical regions on the plot, the plot optimiser allows the selection of multiple regions and automatically configures it in the optimisation strategy. Advanced nonlinear device modelling with harmonic balance simulation The real-world device characteristics are non-linear, meaning that the device will generate harmonics in addition to the stimulus signal. The contribution of the higher-order harmonics becomes important when the input power is significant, such as in high-power amplifier designs. Higher harmonics become apparent at signal compression level, i.e. db compression point, as illustrated in Figure 6. To model such device non-linearities, it requires accurate measurements of the amplitude and phase of the fundamental and harmonics of the incident and reflected waves or voltages and currents. This can be achieved with the use of a arge Signal Network Analyser (SNA) that can accurately measures the voltages and currents of a component under realistic conditions. Such a SNA was originally developed by Agilent Technologies and is now commercially available from Maury Microwave. The system can measure D, V, S-parameters and large signal characteristics of the DUT. The measured data can be converted in to I-AP data format and imported into the software, which can directly use Harmonic Balance simulation for advanced non-linear device modelling. Using Harmonic Balance simulation within I-AP, the model etracted from the S-parameters can be tuned and optimised toward the large signal measurements, as illustrated in Figure 7. The result presented here was realised by Agilent Technologies and NMDG Engineering. In this eample, the BSIM3 model parameters, N off and V offcv, were optimised. After optimising N off and V offcv, which have direct influence on the gate capacitance model, there is much better agreement between the measured and simulated output versus input power results for the fist, second and third harmonics. This demonstrates the real advantage of having a simulator working together with a device-modelling system to ensure that the etracted model is accurate in more advanced high-frequency circuit simulations. Modelling package The new version, I-AP 2004, builds on the highly open and fleible software architecture for advanced F device modelling with direct etraction methodologies for most industry models. I- AP users can take advantage of its open A sealed version of almost any standard connector Hermetically sealed (0-8 mbar l / s) and pressure tight for etreme environments and safety Meets and eceeds highest protection levels of IE60529, BS5490, DIN40050 Shell protecting sleeves and IP68 covers for mating faces available High performance O-ring seals made of VITON as standard Insulator-contacts sealed by 3 component glass epoy mail@ fischerconnectors.ch Swiss Headquarters Fischer onnectors SA H -43 Apples Tel Fa International Subsidiaries Asia Tel France Tel Germany Tel Italy Tel UK Tel USA Tel Infoard: Enter No: Online:

8 For more information about Agilent EEsof EDA, visit: Agilent Updates Get the latest information on the products and applications you select. Agilent Direct Quickly choose and use your test equipment solutions with confidence. For more information on Agilent Technologies products, applications or services, please contact your local Agilent office. The complete list is available at: Americas anada (877) atin America United States (800) Asia Pacific Australia hina Hong Kong India Japan 020 (42) 345 Korea Malaysia Singapore Taiwan Thailand Europe & Middle East Austria Belgium 32 (0) Denmark Finland 358 (0) France * *0.25 /minute Germany ** **0.4 /minute Ireland Israel /544 Italy Netherlands 3 (0) Spain 34 (9) Sweden Switzerland United Kingdom 44 (0) Other European ountries: evised: March 27, 2008 Product specifications and descriptions in this document subject to change without notice. Agilent Technologies, Inc. 2008

Agilent EEsof EDA.

Agilent EEsof EDA. Agilent EEsof EDA This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest

More information

Agilent EEsof EDA.

Agilent EEsof EDA. Agilent EEsof EDA This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest

More information

MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs

MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs Application Note Recently, various devices using MEMS technology such as pressure sensors, accelerometers,

More information

EM Insights Series. Episode #1: QFN Package. Agilent EEsof EDA September 2008

EM Insights Series. Episode #1: QFN Package. Agilent EEsof EDA September 2008 EM Insights Series Episode #1: QFN Package Agilent EEsof EDA September 2008 Application Overview Typical situation IC design is not finished until it is packaged. It is now very important for IC designers

More information

Agilent N8480 Series Thermocouple Power Sensors. Technical Overview

Agilent N8480 Series Thermocouple Power Sensors. Technical Overview Agilent N8480 Series Thermocouple Power Sensors Technical Overview Introduction The new N8480 Series power sensors replace and surpass the legacy 8480 Series power sensors (excluding the D-model power

More information

Solutions for Solar Cell and Module Testing

Solutions for Solar Cell and Module Testing Solutions for Solar Cell and Module Testing Agilent 663XB Power Supplies Connected in Anti-Series to Achieve Four-Quadrant Operation for Solar Cell and Module Testing Application Note Overview To fully

More information

Using a Network and Impedance Analyzer to Evaluate 13.56 MHz RFID Tags and Readers/Writers Silicon Investigations Repair Information - Contact Us 920-955-3693 www.siliconinvestigations.com Application

More information

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples Application Note Introduction Both the magnitude and phase behavior of a component are critical to the performance of

More information

UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer

UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer Application Note Minimize cost of test with the 20 GHz ENA s high performance and fast measurement speed Quickly leverage your current

More information

Making a S11 and S21 Measurement Using the Agilent N9340A

Making a S11 and S21 Measurement Using the Agilent N9340A Making a S11 and S21 Measurement Using the Agilent N9340A Application Note Introduction Spectrum characteristics are important in wireless communication system maintenance. Network and spectrum analyzers

More information

Agilent 87405B. Preamplifier 10 MHz to 4 GHz. Technical Overview. Features. Benchtop/General Purpose Use

Agilent 87405B. Preamplifier 10 MHz to 4 GHz. Technical Overview. Features. Benchtop/General Purpose Use Agilent 8705B Preamplifier 10 MHz to GHz Technical Overview Features db Gain 5 db Noise Figure Probe-power bias connection via probe port from Agilent s spectrum analyzers Compact Size Benchtop/General

More information

Process Control Calibration Made Easy with Agilent U1401A

Process Control Calibration Made Easy with Agilent U1401A Process Control Calibration Made Easy with Agilent U1401A Application Note This application note explains how the Agilent U1401A with simultaneous source and measure functions eases technicians calibration

More information

Agilent Correlation between TDR oscilloscope and VNA generated time domain waveform

Agilent Correlation between TDR oscilloscope and VNA generated time domain waveform Agilent Correlation between TDR oscilloscope and VNA generated time domain waveform Application Note Introduction Time domain analysis (TDA) is a common method for evaluating transmission lines and has

More information

Keysight TC950 DC 75 GHz SPDT GaAs MMIC Switch

Keysight TC950 DC 75 GHz SPDT GaAs MMIC Switch Keysight TC950 DC 75 GHz SPDT GaAs MMIC Switch 1GG6-8054 Data Sheet Features Frequency Range: DC-75 GHz Insertion Loss: 2.6 db typical @ 50 GHz Isolation: 29 db typical @ 50 GHz Return Loss: >10 db (Both

More information

Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet

Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers Data Sheet Specifications Specifications are only valid for the stated operating frequency, and apply over 0 C to +55 C unless otherwise

More information

Agilent EEsof EDA.

Agilent EEsof EDA. Agilent EEsof EDA This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest

More information

Radar System Design and Interference Analysis Using Agilent SystemVue

Radar System Design and Interference Analysis Using Agilent SystemVue Radar System Design and Interference Analysis Using Agilent SystemVue Introduction Application Note By David Leiss, Sr. Consultant EEsof EDA Anurag Bhargava, Application Engineer EEsof EDA Agilent Technologies

More information

Agilent 2-Port and 4-Port PNA-X Network Analyzer

Agilent 2-Port and 4-Port PNA-X Network Analyzer Agilent 2-Port and 4-Port PNA-X Network Analyzer N5244A - MHz to 43.5 GHz N5245A - MHz to 5. GHz with Option H29 Data Sheet and Technical Specifications Documentation Warranty THE MATERIAL CONTAINED IN

More information

ADS-SystemVue Linkages

ADS-SystemVue Linkages ADS-SystemVue Linkages Uniting System, Baseband, and RF design flows for leading-edge designs Superior RF models and simulators Convenient, polymorphic algorithmic modeling, debug, and test May 2010 Page

More information

Agilent 87075C Multiport Test Set

Agilent 87075C Multiport Test Set Agilent 87075C Multiport Test Set Technical Overview A complete 75 Ω system for cable TV device manufacturers Now, focus on testing, not reconnecting! For use with the Agilent 8711 C-Series of network

More information

Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz

Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz Application Note Infiniium s 32 GHz of bandwidth versus techniques other vendors use to achieve greater than 16 GHz Banner specifications

More information

Agilent 87222C/D/E Coaxial Transfer Switches dc to 26.5, 40, 50 GHz

Agilent 87222C/D/E Coaxial Transfer Switches dc to 26.5, 40, 50 GHz Agilent 87C/D/E Coaxial Transfer Switches dc to 6.5, 0, 50 GHz Technical Overview High Performance Transfer Switches for Micro wave and RF Instrumentation and Systems Exceptional repeatability for more

More information

N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes

N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes Data Sheet Oscilloscope users often need to make floating measurements where neither point of the measurement is at earth

More information

Agilent AN Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer Application Note

Agilent AN Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer Application Note Agilent AN 346-2 Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer Application Note Introduction How a balanced circuit differs from an unbalanced circuit A balanced circuit

More information

Agilent U9397A/C FET Solid State Switches (SPDT)

Agilent U9397A/C FET Solid State Switches (SPDT) Agilent U9397A/C FET Solid State Switches (SPDT) U9397A 300 khz to 8 GHz U9397C 300 khz to 18 GHz Technical Overview Key Features Prevent damage to sensitive components with low video leakage < 10 mvpp

More information

Agilent 8761A/B Microwave Switches

Agilent 8761A/B Microwave Switches Agilent 8761A/B Microwave Switches Technical Overview Product Description The Agilent Technologies 8761A and 8761B are single-pole, double-throw coaxial switches with excellent electrical and mechanical

More information

7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes.

7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Achieving maximized measurement dynamic range 1) Use averaging to increase measurement resolution 2) Use high-resolution

More information

Agilent N4000A, N4001A, N4002A SNS Series Noise Sources 10 MHz to 26.5 GHz

Agilent N4000A, N4001A, N4002A SNS Series Noise Sources 10 MHz to 26.5 GHz Agilent N4000A, N4001A, N4002A SNS Series Noise Sources 10 MHz to 26.5 GHz Technical Overview Advances in Noise Figure Accuracy N4000A Used for low noise figure devices or devices sensitive to mismatch

More information

Agilent NFA Noise Figure Analyzer

Agilent NFA Noise Figure Analyzer Agilent NFA Noise Figure Analyzer Configuration Guide Dedicated Noise Figure Analyzer Hard specifications to 26.5 GHz Works with N4000A SNS or 346 Series noise sources Noise figure measurements to 110

More information

Keysight Technologies HMMC GHz High-Gain Amplifier

Keysight Technologies HMMC GHz High-Gain Amplifier Keysight Technologies HMMC-5620 6-20 GHz High-Gain Amplifier Data Sheet Features Wide-frequency range: 6-20 GHz High gain: 17 db Gain flatness: ± 1.0 db Return loss: Input 15 db Output 15 db Single bias

More information

MMIC/RFIC Packaging Challenges Webcast (July 28, AM PST 12PM EST)

MMIC/RFIC Packaging Challenges Webcast (July 28, AM PST 12PM EST) MMIC/RFIC Packaging Challenges Webcast ( 9AM PST 12PM EST) Board Package Chip HEESOO LEE Agilent EEsof 3DEM Technical Lead 1 Agenda 1. MMIC/RFIC packaging challenges 2. Design techniques and solutions

More information

Agilent PN 4395-1 Agilent 4395A Network/Spectrum/ Impedance Analyzer Silicon Investigations Repair Information - Contact Us 920-955-3693 www.siliconinvestigations.com ADSL Copper Loop Measurements Product

More information

Keysight Technologies Using a Network and Impedance Analyzer to Evaluate MHz RFID Tags and Readers/Writers

Keysight Technologies Using a Network and Impedance Analyzer to Evaluate MHz RFID Tags and Readers/Writers Keysight Technologies Using a Network and Impedance Analyzer to Evaluate 13.56 MHz RFID Tags and Readers/Writers Application Note L C R f 0 = 2 1 π L C Introduction RFIDs, also called non-contact IC cards

More information

Agilent 8762F Coaxial Switch 75 ohm

Agilent 8762F Coaxial Switch 75 ohm Agilent 8762F Coaxial Switch 75 ohm Technical Overview DC to 4 GHz Exceptional repeatability over 1 million cycle life Excellent isolation The 8762F brings a new standard of performance to 75 ohm coaxial

More information

Two-Way Radio Testing with Agilent U8903A Audio Analyzer

Two-Way Radio Testing with Agilent U8903A Audio Analyzer Two-Way Radio Testing with Agilent U8903A Audio Analyzer Application Note Introduction As the two-way radio band gets deregulated, there is a noticeable increase in product offerings in this area. What

More information

Keysight Technologies Solid State Switches. Application Note

Keysight Technologies Solid State Switches. Application Note Keysight Technologies Solid State Switches Application Note Introduction Selecting the right switch technology for your application RF and microwave switches are used extensively in microwave systems for

More information

Keysight Technologies MEMS On-wafer Evaluation in Mass Production

Keysight Technologies MEMS On-wafer Evaluation in Mass Production Keysight Technologies MEMS On-wafer Evaluation in Mass Production Testing at the Earliest Stage is the Key to Lowering Costs Application Note Introduction Recently, various devices using MEMS technology

More information

Keysight TC GHz High Power Output Amplifier

Keysight TC GHz High Power Output Amplifier Keysight TC724 2-26.5 GHz High Power Output Amplifier 1GG7-8045 Data Sheet Features Wide Frequency Range: 2 26.5 GHz Moderate Gain: 7.5 db Gain Flatness: ± 1 db Return Loss: Input: 17 db Output: 14 db

More information

Advanced Measurement Techniques for RF Amplifiers Using Unique Functions of the Agilent E5071C ENA. Application Note

Advanced Measurement Techniques for RF Amplifiers Using Unique Functions of the Agilent E5071C ENA. Application Note Advanced Measurement Techniques for RF Amplifiers Using Unique Functions of the Agilent E5071C ENA Application Note Introduction The RF amplifier is a key component used in a wide variety of industries

More information

A Time-Saving Method for Analyzing Signal Integrity in DDR Memory Buses

A Time-Saving Method for Analyzing Signal Integrity in DDR Memory Buses A Time-Saving Method for Analyzing Signal Integrity in DDR Memory Buses Application Note 1591 This application note covers new tools and measurement techniques for characterizing and validating signal

More information

Keysight Measuring High Impedance Sources Using the U8903B Audio Analyzer. Application Note

Keysight Measuring High Impedance Sources Using the U8903B Audio Analyzer. Application Note Keysight Measuring High Impedance Sources Using the U8903B Audio Analyzer Application Note Introduction This note details the input impedance of the U8903B Audio Analyzer, and shows that this needs to

More information

Agilent NFA Noise Figure Analyzer

Agilent NFA Noise Figure Analyzer Agilent NFA Noise Figure Analyzer Configuration Guide Dedicated Noise Figure Analyzer Hard specifications to 26.5 GHz Works with N4000A SNS or 346 Series noise sources Noise figure measurements to 110

More information

Agilent InfiniiMax III probing system

Agilent InfiniiMax III probing system Agilent InfiniiMax III probing system Data Sheet World s highest speed and highest performing probe system Full 30 GHz bandwidth to the probe tip Industry s lowest probe and scope system noise Industry

More information

Multipurpose Lab Station by Agilent Technologies

Multipurpose Lab Station by Agilent Technologies Multipurpose Lab Station by Agilent Technologies The Agilent Multipurpose Lab Station is an integrated system comprised of a: 1 2 3 4 5 6 7 8 Mixed signal oscilloscope (MSO) or digital signal oscilloscope

More information

Agilent E5061B Network Analyzer. 100 khz to 1.5 GHz/3 GHz 5 Hz to 3 GHz

Agilent E5061B Network Analyzer. 100 khz to 1.5 GHz/3 GHz 5 Hz to 3 GHz Agilent E5061B Network Analyzer 100 khz to 1.5 GHz/3 GHz 5 Hz to 3 GHz E5061B responds to various measurement needs, - from LF to RF The Agilent E5061B is a member of the industry standard ENA Series network

More information

Keysight TC GHz Frequency Doubler

Keysight TC GHz Frequency Doubler Keysight TC221 50 GHz Frequency Doubler 1GC1-8038 Data Sheet Features Conversion Efficiency: 12 db Typical 1/2 and 3/2 spurs: 15 dbc Typical Broad Bandwidth, 20 50 GHz Output Frequency Introduction The

More information

Keysight Technologies Understanding the SystemVue To ADS Simulation Bridge. Application Note

Keysight Technologies Understanding the SystemVue To ADS Simulation Bridge. Application Note Keysight Technologies Understanding the To Simulation Bridge Application Note Introduction The Keysight Technologies, Inc. is a new system-level design environment that enables a top-down, model-based

More information

Agilent U9391C/F/G Comb Generators

Agilent U9391C/F/G Comb Generators Agilent U9391C/F/G Comb Generators U9391C (10 MHz to 26.5 GHz) U9391F (10 MHz to 50 GHz) U9391G (10 MHz to 67 GHz) Technical Overview Key Features Excellent amplitude and phase flatness enable it to be

More information

Agilent Maximizing Measurement Speed Using P-Series Power Meters

Agilent Maximizing Measurement Speed Using P-Series Power Meters Agilent Maximizing Measurement Speed Using P-Series Power Meters Application Note A winning solution in the combination of bandwidth and performance 30 MHz video bandwidth Single-shot real time and repetitive

More information

Agilent U1881A and U1882A Power Measurement Application for Agilent InfiniiVision and Infiniium Oscilloscopes

Agilent U1881A and U1882A Power Measurement Application for Agilent InfiniiVision and Infiniium Oscilloscopes Agilent U1881A and U1882A Power Measurement Application for Agilent InfiniiVision and Infiniium Oscilloscopes Data Sheet Fast, automatic and reliable characterization of switching mode power devices Today

More information

Keysight Technologies Direct Power MOSFET Capacitance Measurement at 3000 V

Keysight Technologies Direct Power MOSFET Capacitance Measurement at 3000 V Keysight Technologies Direct Power MOSFET Capacitance Measurement at 3000 V B1505A Power Device Analyzer/Curve Tracer Application Note Introduction The input, output and reverse transfer capacitance of

More information

Evaluating Oscilloscope Bandwidths for your Application

Evaluating Oscilloscope Bandwidths for your Application Evaluating Oscilloscope Bandwidths for your Application Application Note 1588 Table of Contents Introduction....................... 1 Defining Oscilloscope Bandwidth..... 2 Required Bandwidth for Digital

More information

Keysight Technologies Differences in Application Between Power Dividers and Power Splitters. Application Note

Keysight Technologies Differences in Application Between Power Dividers and Power Splitters. Application Note Keysight Technologies Differences in Application Between Dividers and Splitters Application Note 02 Keysight Differences in Application Between Dividers and Splitters Application Note Introduction dividers

More information

Agilent 4294A Precision Impedance Analyzer, 40 Hz to 110 MHz. Configuration Guide

Agilent 4294A Precision Impedance Analyzer, 40 Hz to 110 MHz. Configuration Guide Agilent 4294A Precision Impedance Analyzer, 40 Hz to 110 MHz Configuration Guide Ordering Guide The following steps will guide you through configuring your 4294A. Standard Furnished Item CD-ROM Manual

More information

Keysight Technologies 87405C 100 MHz to 18 GHz Preamplifier. Technical Overview

Keysight Technologies 87405C 100 MHz to 18 GHz Preamplifier. Technical Overview Keysight Technologies 8745C 1 MHz to 18 GHz Preamplifier Technical Overview 2 Keysight 8745C 1 MHz to 18 GHz Preamplifier Technical Overview Introduction The Keysight Technologies, Inc. 8745C preamplifier

More information

Agilent HMMC-3124 DC-12 GHz Packaged High Efficiency Divide-by-4 Prescaler 1GC TR1-7" diameter reel/500 each 1GC BLK-bubble strip/10 each

Agilent HMMC-3124 DC-12 GHz Packaged High Efficiency Divide-by-4 Prescaler 1GC TR1-7 diameter reel/500 each 1GC BLK-bubble strip/10 each Agilent HMMC-3124 DC-12 GHz Packaged High Efficiency Divide-by-4 Prescaler 1GC1-8207-TR1-7" diameter reel/500 each 1GC1-8207-BLK-bubble strip/10 each Data Sheet Features Wide Frequency Range: 0.2-12 GHz

More information

IEEE Standard Boundary Scan Testing on Agilent Medalist i3070 In Circuit Systems

IEEE Standard Boundary Scan Testing on Agilent Medalist i3070 In Circuit Systems IEEE 1149.6 Standard Boundary Scan Testing on Agilent Medalist i3070 In Circuit Systems White Paper By Jun Balangue, Technical Marketing Engineer, Agilent Technologies, Inc. Abtract: This paper outlines

More information

Practical Digital Pre-Distortion Techniques for PA Linearization in 3GPP LTE

Practical Digital Pre-Distortion Techniques for PA Linearization in 3GPP LTE Practical Digital Pre-Distortion Techniques for PA Linearization in 3GPP LTE Jinbiao Xu Agilent Technologies Master System Engineer 1 Agenda Digital PreDistortion----Principle Crest Factor Reduction Digital

More information

Agilent N9310A RF Signal Generator. All the capability and reliability of an Agilent instrument you need at a price you ve always wanted

Agilent N9310A RF Signal Generator. All the capability and reliability of an Agilent instrument you need at a price you ve always wanted Agilent N9310A RF Signal Generator All the capability and reliability of an Agilent instrument you need at a price you ve always wanted Reliable Performance. Essential Test Capability The N9310A RF signal

More information

Simplifying FET Testing with 2600B System SourceMeter SMU Instruments APPLICATION NOTE

Simplifying FET Testing with 2600B System SourceMeter SMU Instruments APPLICATION NOTE Simplifying FET Testing with 2600B System SourceMeter SMU Instruments Introduction Field effect transistors (FETs) are important semiconductor devices with many applications because they are fundamental

More information

Measuring Vgs on Wide Bandgap Semiconductors APPLICATION NOTE

Measuring Vgs on Wide Bandgap Semiconductors APPLICATION NOTE Measuring Vgs on Wide Bandgap Semiconductors This application note focuses on accurate high-side V GS measurements using the IsoVu measurement system. The measurements described in this application note

More information

Measuring Power Supply Switching Loss with an Oscilloscope

Measuring Power Supply Switching Loss with an Oscilloscope Measuring Power Supply Switching Loss with an Oscilloscope Application Note Introduction With the demand for improving power efficiency and extending the operating time of battery-powered devices, the

More information

Agilent Introduction to the Fixture Simulator Function of the ENA Series RF Network Analyzers: Network De-embedding/Embedding and Balanced Measurement

Agilent Introduction to the Fixture Simulator Function of the ENA Series RF Network Analyzers: Network De-embedding/Embedding and Balanced Measurement Agilent Introduction to the Fixture Simulator Function of the ENA Series RF Network Analyzers: Network De-embedding/Embedding and Balanced Measurement Product Note E5070/71-1 Introduction In modern RF

More information

Keysight HMMC-1002 DC 50 GHz Variable Attenuator

Keysight HMMC-1002 DC 50 GHz Variable Attenuator Keysight HMMC-1002 DC 50 GHz Variable Attenuator 1GG7-8001 Data Sheet Features Specified frequency range: DC to 26.5 GHz Return loss: 10 db Minimum attenuation: 2.0 db Maximum attenuation: 30.0 db 02 Keysight

More information

Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series

Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series Data Sheet Oscilloscope training tools created specifically for electrical engineering and physics undergraduate students

More information

Keysight Technologies 87405C 100 MHz to 18 GHz Preamplifier. Technical Overview

Keysight Technologies 87405C 100 MHz to 18 GHz Preamplifier. Technical Overview Keysight Technologies 8745C 1 MHz to 18 GHz Preamplifier Technical Overview 2 Keysight 8745C 1 MHz to 18 GHz Preamplifier Technical Overview Introduction The Keysight Technologies, Inc. 8745C preamplifier

More information

Keysight Technologies Electronic Calibration (ECal) Modules for Vector Network Analyzers

Keysight Technologies Electronic Calibration (ECal) Modules for Vector Network Analyzers Keysight Technologies Electronic Calibration (ECal) Modules for Vector Network Analyzers N4690 Series, 2-port Microwave ECal 85090 Series, 2-port RF ECal N4430 Series, 4-port ECal N7550 Series, 2-port

More information

Keysight Technologies E4727A Advanced Low-Frequency Noise Analyzer. Data Sheet

Keysight Technologies E4727A Advanced Low-Frequency Noise Analyzer. Data Sheet Keysight Technologies E4727A Advanced Low-Frequency Noise Analyzer Data Sheet 02 Keysight E4727A Advanced Low-Frequency Noise Analyzer Data Sheet Introduction The Keysight E4727A Advanced Low-Frequency

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Agilent 8491A/B, 8493A/B/C, 11581A, 11582A and 11583C Coaxial Attenuators Technical Overview High accuracy Low SWR Broadband

More information

6 Tips for Successful Logic Analyzer Probing

6 Tips for Successful Logic Analyzer Probing 6 Tips for Successful Logic Analyzer Probing Application Note 1501 By Brock J. LaMeres and Kenneth Johnson, Agilent Technologies Tip1 Tip2 Tip3 Tip4 Tip5 Probing form factor Probe loading Signal quality

More information

Keysight Technologies N4985A System Amplifiers

Keysight Technologies N4985A System Amplifiers Keysight Technologies N4985A System Amplifiers Data Sheet N4985A-P15 10 MHz to 50 GHz N4985A-P25 2 to 50 GHz N4985A-S30 100 khz to 30 GHz N4985A-S50 100 khz to 50 GHz Exceptional gain and power performance

More information

Keysight TC231P 0-20 GHz Integrated Diode Limiter

Keysight TC231P 0-20 GHz Integrated Diode Limiter Keysight TC231P 0-20 GHz Integrated Diode Limiter 1GC1-8235 Data Sheet Features Two Independent Limiters for Single ended or Differential Signals Can be Biased for Adjustable Limit Level and Signal Detection

More information

Agilent NFA Noise Figure Analyzer

Agilent NFA Noise Figure Analyzer Agilent NFA Noise Figure Analyzer Configuration Guide Dedicated Noise Figure Analyzer Hard specifications to 26.5 GHz Works with N4000A SNS or 346 Series noise sources Noise figure measurements to 110

More information

Comparing Contact Performance on PCBA using Conventional Testpads and Bead Probes

Comparing Contact Performance on PCBA using Conventional Testpads and Bead Probes Comparing Contact Performance on PCBA using Conventional Testpads and Bead Probes White Paper Andrew Tek, Agilent Technologies Introduction This white paper captures the details of an evaluation performed

More information

Keysight Technologies P9400A/C Solid State PIN Diode Transfer Switches

Keysight Technologies P9400A/C Solid State PIN Diode Transfer Switches Keysight Technologies P9400A/C Solid State PIN Diode Transfer Switches P9400A 100 MHz to 8 GHz PIN transfer switch P9400C 100 MHz to 18 GHz PIN transfer switch Technical Overview Key Features Minimize

More information

When is it Time to Transition to a Higher Bandwidth Oscilloscope?

When is it Time to Transition to a Higher Bandwidth Oscilloscope? When is it Time to Transition to a Higher Bandwidth Oscilloscope? Application Note When purchasing an oscilloscope to test new designs, the primary performance specification that most engineers consider

More information

Agilent U1700 Series Handheld LCR Meters

Agilent U1700 Series Handheld LCR Meters Agilent U1700 Series Handheld LCR Meters Data Sheet Test passive components conveniently, affordably and reliably with the Agilent U1700 Series LCR meters extending the tradition of industryleading benchtop

More information

Keysight Technologies High Frequency Probing Solutions for Time and Frequency Domain Applications. Application Note

Keysight Technologies High Frequency Probing Solutions for Time and Frequency Domain Applications. Application Note Keysight Technologies High Frequency Probing Solutions for Time and Frequency Domain Applications Application Note Introduction Increasing consumer and business demand for cellular, wireless connectivity,

More information

Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Application Note

Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Application Note Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes Application Note Seven Hints for Making Power Measurements with Oscilloscopes Achieving maximized

More information

N2820A/21A High-Sensitivity, High Dynamic Range Current Probes

N2820A/21A High-Sensitivity, High Dynamic Range Current Probes N2820A/21A High-Sensitivity, High Dynamic Range Current Probes Data Sheet See the details without losing sight of the big picture Key features and specifications Measure currents as low as 50 µa Measure

More information

Agilent N9342C Handheld Spectrum Analyzer (HSA)

Agilent N9342C Handheld Spectrum Analyzer (HSA) Agilent N9342C Handheld Spectrum Analyzer (HSA) Data Sheet Field testing just got easier The Agilent N9342C handheld spectrum analyzer (HSA) is more than easy-to-use its measurement performance gives you

More information

Solar Array Simulation System Integration

Solar Array Simulation System Integration Solar Array Simulation System Integration Technical Overview When laying out the design of an E4360A solar array simulator (SAS) system, steps can be taken up front to ensure proper and reliable system

More information

Keysight Technologies Accurate Capacitance Characterization at the Wafer Level

Keysight Technologies Accurate Capacitance Characterization at the Wafer Level Keysight Technologies Accurate Capacitance Characterization at the Wafer Level 4080 Series Parametric Test Systems Application Note Introduction The continuing trend of decreasing device geometries of

More information

Keysight E5063A ENA Series Network Analyzer

Keysight E5063A ENA Series Network Analyzer Keysight E5063A ENA Series Network Analyzer 100 khz to 500 M/1.5 G/3 G/4.5 G/6.5 G/8.5 G/14 G/18 GHz Configuration Guide 02 Keysight E5063A ENA Series Network Analyzer - Configuration Guide Ordering Guide

More information

Agilent Nonlinear Vector Network Analyzer (NVNA)

Agilent Nonlinear Vector Network Analyzer (NVNA) Agilent Nonlinear Vector Network Analyzer (NVNA) Breakthrough technology for nonlinear vector network analysis from 1 MHz to 67 GHz I know my amplifier gain is changing with output match, but Hot S22 measurements

More information

Isolation Addresses Common Sources of Differential Measurement Error

Isolation Addresses Common Sources of Differential Measurement Error By Tom Neville A typical measurement system includes an oscilloscope and an oscilloscope probe that provides the connection between the device under test (DUT) and the oscilloscope. Probe selection is

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note 02 Keysight Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note 1. Introduction

More information

Introduction. Part 1. Introduction...2

Introduction. Part 1. Introduction...2 Keysight Technologies Simple Scalar Network Analysis of Frequency Converter Devices using the U2000 USB Power Sensor Series with the ENA Network Analyzer Application Note Introduction This application

More information

Using the 4200A-CVIV Multi-Switch to Make High Voltage and High Current C-V Measurements APPLICATION NOTE

Using the 4200A-CVIV Multi-Switch to Make High Voltage and High Current C-V Measurements APPLICATION NOTE Using the 4200A-CVIV Multi-Switch to Make High Voltage and High Current C-V Measurements Introduction Traditional capacitance-voltage (C-V) testing of semiconductor materials is typically limited to about

More information

Agilent Spectrum Visualizer (ASV) Software. Data Sheet

Agilent Spectrum Visualizer (ASV) Software. Data Sheet Agilent Spectrum Visualizer (ASV) Software Data Sheet Technical Overview The Agilent spectrum visualizer (ASV) software provides advanced FFT frequency domain analysis for the InfiniiVision and Infiniium

More information

Accelerated Deployment of SCA-compliant SDR Waveforms 20 JANUARY 2010

Accelerated Deployment of SCA-compliant SDR Waveforms 20 JANUARY 2010 Accelerated Deployment of SCA-compliant SDR Waveforms 20 JANUARY 2010 1 Today s panelists Steve Jennis PrismTech, SVP, Corporate Development José Luis Pino Agilent Technologies, Principal Engineer Tim

More information

Data Sheet. Agilent M9185A PXI Isolated D/A Converter. DISCOVER the Alternatives... Agilent MODULAR Products. 8/16-Channel 16-bit, ±16 V

Data Sheet. Agilent M9185A PXI Isolated D/A Converter. DISCOVER the Alternatives... Agilent MODULAR Products. 8/16-Channel 16-bit, ±16 V Agilent M9185A PXI Isolated D/A Converter Data Sheet 8/16-Channel 16-bit, ±16 V DISCOVER the Alternatives...... Agilent MODULAR Products Overview Introduction The Agilent M9185A is a digital/analog converter

More information

Low Capacitance Probes Minimize Impact on Circuit Operation

Low Capacitance Probes Minimize Impact on Circuit Operation Presented by TestEquity - www.testequity.com Low Capacitance Probes Minimize Impact on Circuit Operation Application Note Application Note Traditional Passive Probe Advantages Wide dynamic range Inexpensive

More information

Keysight Technologies How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer.

Keysight Technologies How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer. Keysight Technologies How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer Application Note Introduction RF IN RF OUT Waveform Generator Pulse Power Amplifier

More information

Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Understanding the Fundamental Principles of Vector Network Analysis. Application Note Understanding the Fundamental Principles of Vector Network Analysis Application Note Table of Contents Introduction... 3 Measurements in Communications Systems... 3 Importance of Vector Measurements...

More information

InfiniiMax III probing system

InfiniiMax III probing system InfiniiMax III probing system Data Sheet World s highest speed and highest performing probe system Full 30 GHz bandwidth to the probe tip Industry s lowest probe and scope system noise Industry s highest

More information

Discovering New Techniques of Creating, Editing, and Transferring Arbitrary Waveforms

Discovering New Techniques of Creating, Editing, and Transferring Arbitrary Waveforms Discovering New Techniques of Creating, Editing, and Transferring Arbitrary Waveforms Introduction Today, during the designing of electronic components and circuits for computers, peripherals, and consumer

More information

Essential Capabilities of EMI Receivers. Application Note

Essential Capabilities of EMI Receivers. Application Note Essential Capabilities of EMI Receivers Application Note Contents Introduction... 3 CISPR 16-1-1 Compliance... 3 MIL-STD-461 Compliance... 4 Important features not required by CISPR 16-1-1 or MIL-STD-461...

More information

Introduction. Part 1. Introduction...2

Introduction. Part 1. Introduction...2 Keysight Technologies Simple Scalar Network Analysis of Frequency Converter Devices using the U2000 USB Power Sensor Series with the ENA Network Analyzer Application Note Introduction This application

More information