Study of the Capacity of Ricean MIMO Channels

Size: px
Start display at page:

Download "Study of the Capacity of Ricean MIMO Channels"

Transcription

1 Study of the Capacity of Ricean MIMO Channels M.A. Khalighi, K. Raoof Laboratoire des Images et des Signaux (LIS), Grenoble, France Abstract It is well known that the use of antenna arrays at both sides of the communication link can result in high channel capacities provided that the propagation medium is rich scattering.in most previous works presented on MIMO wireless structures, Rayleigh fading conditions were considered.here we study the capacity of MIMO systems under Ricean fading conditions.it is shown that MIMO Rayleigh channels exhibit a larger capacity than the equivalent Ricean channels for high signal-to-noise ratios (SNR) and large number of antennas.for small number of antennas, however, the inverse works, especially for low SNRs. On the other hand, it is shown that if the line-of-sight component is not very significant, the increase in the capacity of Ricean MIMO channels by increasing the number of antenna elements is still considerable.flat (frequency non-selective) fading conditions are considered throughout the paper. Keywords : Antenna arrays, MIMO systems, Ricean fading, channel capacity, channel fading 1 Introduction The ever-growing demand for high data rate communication has favored the use of antenna arrays in wireless communication systems, in order to overcome the problem of limited bandwidth. Of particular interest is the use of antenna arrays at both sides of the radio link, which can result in very large channel capacities. Multipleinputs multiple-outputs (MIMO) systems, thus, have been an important subject of research during the past few years. When there is enough multipath, i.e., in a rich scattering propagation medium, the capacity of a MIMO channel can efficiently be multiplied, by adding antenna elements at both transmitter and receiver [1, 2, 3, 4]. MIMO systems are hence a promising solution for high bit rate applications that will provide a breakthrough in the future wireless communication. Analyses of MIMO channel capacity have mostly considered Rayleigh fading conditions. In fact, the large potential capacity of MIMO systems is for the case where the propagation medium is rich scattering. If there is not enough multipath, a MIMO system loses its advantage over other multi-antenna structures. At the worst case, when there is no multipath, the improvement in the capacity of a MIMO system over a single antenna structure (SISO for single-input single-output) reduces to a constant [2, 3]. When there is a dominant non-fading signal component present, such as a line-of-sight (LOS) propagation path between transmitter and receiver, Ricean fading conditions hold [5, 6]. It is also the case when fixed 1

2 scatteres/signal reflectors exist in addition to random main scatterers. In this case, the fading envelope is described by a Ricean probability density function. A priori, smaller capacities are expected for Ricean MIMO channels than for Rayleigh ones. Notice that at the limit of purely LOS propagation, we are in fact concerned with a no-multipath channel, where the use of the MIMO structure may be of no interest. The important question is, how the existence of a LOS component in signal propagation affects the MIMO capacity. Are MIMO structures still promising under Ricean fading conditions? The purpose of this paper is to study how the MIMO capacity is affected by the significance of the LOS component, and to see if the increase in the number of antenna elements can still result in a considerable increase in the system capacity. Meanwhile, we will also study single-input multiple-outputs (SIMO) structures and compare the capacity in two cases of Ricean and Rayleigh fading. The paper is organized as follows. Channel model and basic assumptions are given in Section 2. A model for Ricean propagation in relation to a MIMO structure is proposed in Section 3. Next, in Section 4, MIMO capacity expressions are provided when channel is known or not at transmitter. Section 5 considers the case of unknown channel at transmitter, where simulation results are provided comparing the information rate bounds of Ricean and Rayleigh channels. The case of known channel at transmitter is considered in Section 6, where the interest of an optimal power allotment on transmit antennas is studied for the case of Ricean MIMO channels. Discussion on the presented results and conclusions are given in Section 7. 2 Assumptions and channel model The global scheme of a MIMO communication structure is shown in Fig.1. The channel capacity is considered under constraints on signal bandwidth and the total transmit power. No beam forming is considered for the antenna arrays, and the antenna elements patterns are considered as omni-directional with unity gain. Also, the average signal attenuation corresponding to all transmit-receive antenna pairs is considered the same and equal to 1. A discrete-time baseband equivalent channel model is considered, and flat (non-dispersive) fading conditions are assumed. With M R antenna elements at receiver and M T elements at transmitter, the channel matrix H of dimension (M R M T ) will characterize the channel. Entries of H, h ij, which are normalized 1 circularlysymmetric complex random processes, represent the baseband equivalent channel impulse response between jth transmit and ith receive antennas. The statistics of h ij depend, in fact, on the fading conditions. Channel is assumed to be perfectly known at receiver. We will assume quasi-static (also called quasi-stationary) conditions, that is, H is assumed to be constant during one or more communication bursts. Bursts are assumed to be long enough, so that the definition of capacity for a given H is meaningful. In this way, the continuous channel fading process is approximated as piece-wise constant [7, 8]. It is assumed that the antenna elements at both sides of the link are sufficiently spaced apart, so that the mul- 1 In the sense that E{h ij h ij } =1. 2

3 Figure 1: Block diagram of a MIMO communication structure tipath components of the received signals can be considered to fade independently over the receiver antennas. For a randomly time-varying channel, the mutual information (and the capacity) can be regarded as a random quantity, giving rise to capacity-versus-outage considerations. In fact, if the instant channel capacity is less than the pre-assumed value, a channel outage is said to be occurred. In this paper we always consider capacity-versus-outage with P out =0.01 (outage probability). So, the presented capacity values correspond to 99% percentage point of CCDF (Complementary Cumulative Distribution Function) of capacity. 3 Ricean channels Modeling For Ricean channels, the received signal can be considered to be composed of two components, one from LOS and the other from multipath reflections. The former component is deterministic and constant, since it is not subjected to fading, whereas the latter is a randomly time-varying component. So, we can consider the channel matrix as, H Rice = H const + H random (1) Notice that for (1) to hold (concerning H const ), the transmitter and receiver should be almost fixed, which is usually the case in current MIMO structures implementations. We can write the above equation as follows [9]. H Rice = ae jϕ0 H LOS + b H Rayleigh (2) Elements of H Rayleigh are independent normalized (unit-variance) complex circularly symmetric Gaussian random variables. To respect the normalization on the entries of H Rice, we should impose a 2 + b 2 = 1. In this way, the ratio of the averaged received power from LOS and multipath reflections is equal to a 2 /b 2,whichis usually regarded as Ricean K-factor. Instead of K-factor, we will use in our analyses the Ricean Factor defined as RF=a 2 /(a 2 + b 2 )=a 2. The interest of RF for us is that it indicates directly the significance (or in other words, the contribution) of the LOS component in signal transmission. Consider linear arrays broadside to each other and with equal antenna spacings at each side, as shown on Fig.2. In fact, ϕ 0 in (2) takes into account the absolute phase shift between antenna elements #1 at the transmitter and receiver. Consider the first column of H LOS as follows, [ ] T H LOS,1 = 1 e jθ. e j(m R 1)θ = H LOS(:, 1) (3) where. T indicates the transpose operation. Under the condition of R D, that is, large distance between antenna arrays as compared to the antenna spacings, the LOS component of signal propagation can be considered 3

4 Figure 2: Array geometry considering linear arrays a plane wave in the scenario of Fig.2. So, as the arrays are considered to be broadside to each other, the phase shift θ between signals received on neighbor antennas will be negligible [10] (for a detailed discussion, see the appendix). Neglecting θ, wehave, H LOS,1 (i) 1, i =1,..., M R (4) The same argument is valid for other columns of H LOS under the condition of R D. So, we can write [9] H Rice = ae jϕ0 1 + b H Rayleigh (5) 1 is the unity matrix (with all entries equal to 1). Notice that with the assumptions made above, we have rank(h LOS )=1. 2 To impose equally the effect of LOS (constant) component on real and imaginary parts of the multipath (Rayleigh) component, we will take ϕ 0 = ±π/4, so by e jϕ0 = j 1 2, will have equal average power of LOS component in real and imaginary parts of H Rice entries. In general, however, the capacity of channel depends on the value of ϕ 0, but the general results of this paper are valid for any ϕ 0. Note that the special geometry of Fig.2 and the assumption of R D were considered just to simplify the analysis and to make it possible to get rid of the array-dependent parameters of the LOS propagation component. We will later discuss these assumptions in Section 7, and will explain that the general results to be presented, are valid in the general case. 4 Capacity expressions Let x be the vector of transmitted symbols on M T antennas at one sample time. The vector of corresponding received symbols on the receiver array, z, will be z = Hx + n = y + n (6) where n is the equivalent baseband noise whose elements are considered as zero-mean circularly-symmetric complex additive white Gaussian noise (AWGN) samples with the variance σ 2. We consider the condition that the total transmit power at each sample time is constrained to P T. 2 Here we considered the case of the presence of a LOS in signal propagation. If the Ricean propagation model is due to the existence of fixed dominant reflectors, the same expressions are valid assuming far field conditions to hold. 4

5 4.1 Channel known at transmitter If channel state information (CSI) is available at transmitter, the available power can be distributed optimally over the transmit antenna, the solution known as water filling (WF). The WF capacity is given by [2, 4, 11, 12], C WF = M i=1 log 2 ( 1+ λ X,i σ 2 λ 2 H,i ) bps/hz (7) ( ) + λ X,i = ψ σ2 λ 2 H,i (8) where, (s) + = s for s>0and zero otherwise. λ H,i are singular values of the matrix H, andm = min(m T,M R ). Also, λ X,i are the eigenvalues of the transmit-symbols autocorrelation matrix, R X. ψ is determined so as to satisfy the constraint on the total transmit power, M T λ X,i = P T (9) i=1 For details on implementation aspects, as well as the transmitter and receiver structures see [10, 13]. 4.2 Channel unknown at transmitter If the CSI is not available at transmitter, P T is distributed uniformly over the transmit antennas. In this case, the MIMO channel capacity is given by [1, 4] C no-wf = M i=1 ( log 2 1+ P ) T M T σ 2 λ2 H,i bps/hz (10) In this paper, unless otherwise mentioned, channel is assumed unknown at transmitter, and the channel capacity is considered according to (10). Under the same condition, for a single-input multiple-outputs (SIMO) channel, the capacity expression is as follows [1, 4]. ( ) C SIMO = log 2 1+ P M R T σ 2 H i 2 bps/hz (11) i=1 Considering the assumptions of the previous section and the model considered for the arrays, if the channel is completely LOS and there is no multipath, we have rank(h) = 1. In this case, H=H LOS = 1 and assuming M R = M T = M, wehaveλ H,1 = M and λ H,i =0; i =2,..., M. Therefore, the capacity will be, ( C LOS = log 2 1+M P ) T σ 2 bps/hz (12) Here the capacity is a deterministic value, and the use of antenna arrays has only the effect of a gain in SNR at receiver. In other words, we gain nothing in channel capacity by employing multiple antennas at transmitter. It can be easily seen that the same expression holds for a SIMO structure (with M R = M) for a purely LOS channel under the conditions explained in Section 3. 5

6 Figure 3: Comparing capacity of Rayleigh and Ricean MIMO channels; M=M T =M R, P out=0.01 for RF 1, SNR=10dB 5 Unknown-CSI at transmitter 5.1 Comparing Ricean and Rayleigh MIMO capacities Using the capacity expressions given in Subsection 4.2, simulations are made to study the capacity of Ricean channels and to compare it with the Rayleigh channel capacity. The results to be presented are obtained using at least 10 5 channel realizations. We expect that with an increase in RF, smaller capacity be achieved for MIMO channels. Let us first consider a moderate signal-to-noise ratio, SNR= PT σ =10dB. Fig.3 shows curves of capacity of Ricean channels (at 2 P out =0.01) versus M T =M R =M (the number of antennas at both sides), for different cases of RF =0, 30, 70, 90, and 100%. RF=0% represents the pure Rayleigh fading, while RF=100% represents the purely LOS channel. Remember that for a purely LOS channel, the capacity is a deterministic value. It is seen that with an increase in RF, smaller capacities are obtained, but is is not the case for small M (here M = 2). On the other hand, the increase in the MIMO capacity with increase in M is still considerable even for RFs about less than 70%. To see better the effect of RF, curves of MIMO channel capacity versus RF are shown on Fig.4 for SNR=10dB and M=M T =M R =1,2,4,6 (M = 1 represents the SISO channel case). It is seen that for M=4,6, the capacity decreases with increase in RF, however, it is not the case for M=2. CCDF curves of the capacity are given on Fig.5 for SNR=10dB, several values of RF, and two cases of M=M T =M R =2,6. Similar results as in Fig3 are shown in Fig.6 for the case of SNR=0dB, a relatively low-snr. It is seen that for M<5, the capacity increases with increase in RF. 6

7 Figure 4: Capacity of Ricean MIMO channels versus Ricean Factor; P out=0.01 for RF 1, SNR=10dB 5.2 Discussion In fact, the gain in the capacity of a MIMO structure compared to a SISO one, can be considered to be composed of two components [14]; the array gain at receiver which corresponds to the gain in the average power of the signal combination on M R antennas, and the diversity gain which corresponds to the gain from increasing the system dimensionality (rank of H) and depends highly on the correlation between h ij. The array gain is obviously the same for any RF, but the diversity gain decreases with an increase in RF, because the correlation between h ij increases. It is similar to the concept of correlated fading discussed in [15, 16, 17]. On the other hand, a greater RF corresponds to less signal fading at receiver. We know that the fading is more destructive at low SNR. The results of Fig.3 and Fig.6 show that for low SNR and relatively small number of antennas, a greater RF (and so, less fading) is better that a small RF (and hence a greater diversity gain). As a matter of fact, concerning the Ricean MIMO channel capacity, there is a compromise between the diversity gain and reduced fading. For large number of antennas, the dominant factor is the diversity gain, and the capacity increases with decrease in RF. Results of Fig.3,6 are not indeed contradictory with the previous statements on MIMO systems. MIMO systems are known to be promising in a rich-scattering propagation medium, and the capacity increases almost linearly with the number of antennas at both sides, in high-snr [2, 3]. From the results presented here, it is expected that the limit of high-snr condition depends on the number of antennas. Fig.7 confirms this, showing the curves of capacity versus SNR for M=M T =M R =2,3,4 for Rayleigh and purely LOS MIMO channels. Notice that the corresponding curves for Ricean channels lay between the curves of Rayleigh and LOS. It is seen that for M =2, for example, the MIMO capacity does not rely on multipath propagation under the limit of SNR<26dB. This limit is much lower for greater M, such as M=4 (about 1.7dB). Indeed, our choice of SNR=0,10dB was just to reveal this dependency on SNR of the difference between Rayleigh and Ricean capacities. 7

8 Figure 5: Comparing CCDF curves of capacity for Rayleigh channels and Ricean channels with different Ricean Factors; SNR=10 db; (a) M=M T =M R=2, (b) M=M T =M R=6 8

9 Figure 6: Comparing capacities of Rayleigh and Ricean MIMO channels; M=M T =M R, P out=0.01 for RF 1, SNR=0dB C (bps/hz) Rayleigh M=4 Rayleigh M=3 LOS, M=4 M=3 M=2 5 Rayleigh M= SNR (db) Figure 7: Comparing capacities of Rayleigh and LOS MIMO channels as a function of SNR; M=M T =M R, P out=0.01 for Rayleigh case 9

10 Figure 8: Capacity of Ricean SIMO channels versus Ricean Factor; P out=0.01 for RF 1, SNR=10dB 5.3 SIMO Ricean capacity To see how the capacity of SIMO channels is affected by the presence of a LOS, simulation results are performed for this case too. Fig.8 shows the capacity curves versus RF for M R =1,2,4,6 and SNR=10dB. As expected, the capacity increases with an increase in RF. In fact, for SIMO channels, the purpose of using multiple antennas at receiver is to combat signal fading, and to gain in average received SNR. Evidently, for greater RF values, fading is less significant, and so, greater capacities are resulted. 6 Known-CSI at transmitter 6.1 Comparing Ricean and Rayleigh MIMO capacities In the previous sections, we considered the unknown-csi channel capacity. It is also interesting to study the WF capacity of Ricean channels and to compare it with the case of Rayleigh fading. For the case of Rayleigh fading and for equal number of antennas at receiver and transmitter (M R =M T ), it is known that the optimal WF solution is of interest for low SNR and relatively small number of antennas [13, 18]. The case is somehow different for Ricean channels, depending on RF. Fig.9 shows curves of MIMO channel capacity, with and without WF as a function of RF. Also, Fig.10 shows the increase in capacity (called WF-gain) as a function of RF. Two cases of M=M T =M R =2 and M=4 are considered. Remember from the results of Fig.3,4 that for M=4, it is the diversity gain which has the dominant effect, whereas for M=2, the fading reduction has the major role. We have also chosen SNR=10dB, so as to be able to make a comparison with the case of Rayleigh fading. It is seen that the WF-gain is very important, regardless of M. Even, for great RF, the obtained gain is more important for a greater M. 10

11 9 8 7 WF, M=4 no WF, M=4 C(bps/Hz) WF, M=2 no WF, M= RF(%) Figure 9: WF solution for a Ricean MIMO channel with M T =M R=M, SNR=10dB, P out= WF gain (bps/hz) M= M= RF(%) Figure 10: WF-gain in capacity, same conditions as in Fig.9 11

12 6.2 Discussion To explain these results, we remember that the MIMO channel can be regarded as to be composed of a set of equivalent parallel independent subchannels, whose gain is given by the singular values of the channel matrix H, and their number is equal to the rank of H. The capacity of (10) is indeed the sum of the capacities of these subchannels. WF solution, in fact, consists of distributing the power optimally on these subchannels, as given by (8) [13, 18]. By WF, more power is assigned to better subchannels, those with greater gain (corresponding to greater λ H,i ), and less or probably no power to worse subchannels, the noisiers (corresponding to smaller λ H,i ). For a Ricean channel, for increased RF, one of the singular values of H becomes dominant, and the others approach to zero. By uniformly distributing the available power P T on the equivalent parallel subchannels (i.e., λ X,i = P T /M ), we lose power by assigning it to bad ones, i.e. subchannels corresponding to small singular values of H. Consequently, the WF gain is more important for a greater RF. Notice that for a LOS channel, H has only one non-zero singular value, and the optimal solution is to distribute the total power on the corresponding subchannel. 7 Discussion and conclusions We studied in this paper the capacity of Ricean MIMO channels. The presented results were particularly based on the assumption of using linear arrays which are far from and broadside to each other. Our results revealed that the effect of LOS component contribution on the MIMO channel capacity depends on SNR and the number of antennas. For high SNR values (usually the case in indoor applications), the dominant factor which affects the channel capacity is the diversity gain. Here, an increase in RF increases the correlation between the channel coefficients, and as a consequence, the capacity decreases as a result of decreased diversity gain. Our results correspond well with those of [19]. We also showed that the increase in capacity by increase in the number of antennas is still considerable for RF< 70%. For low SNR values (usually the case in outdoor applications) and relatively small number of antennas, it is not the diversity gain which has the dominant effect. For low SNR, fading is more destructive, and so, an increase in RF may result in an increase in the MIMO channel capacity. In other words, fading reduction affects more the channel capacity than the diversity gain. Meanwhile, for large number of antennas, there is potentially a large diversity gain which dominates the effect of fading reduction on capacity. In this case, the capacity again increases with decrease in RF. In fact, here we can speak of a compromise between fading reduction at receiver and the diversity gain given by the MIMO structure. For a SISO or a SIMO channel, the diversity gain equals 1, and the only factor affecting the capacity is fading reduction. So, the capacity increases with an increase in RF. In particular, the considerable increase in the capacity of SIMO channels for RF> 70% was shown in Fig.8. 12

13 Concerning MIMO structures, with the presented model, where no multipath exists and the channel is completely LOS, employing multiple antennas at transmitter is of no use and the capacity is equal to that of a SIMO structure, as given in (12). If the LOS component is very significant, special antenna arrangements may be employed (if there is such a freedom for the system designer) to obtain large capacities. The idea is to arrange the antenna elements in order to produce special phase shifts between the signals received on different antennas, in a way that we obtain M = rank(h LOS ) orthogonal SISO subchannels. Some examples of such antenna arrangements are presented in [19] where, in general, large antenna spacings are required for most of them. With such structures, a considerable increase in capacity can be achieved by increase in M. On the other hand, if there is a limitation on adopting such an antenna geometry, channel capacity can be increased by adding some reflectors in the propagation medium, so as to weaken the LOS contribution. Although the results presented in these papers were for a special and simple channel model, they are valid in general case. Notice that the decrease in diversity gain is because of the increased correlation between the channel coefficients. This correlation comes form the LOS component, and is independent of the parameters such as the angle-of-departure, angle-of-arrival, or the distance between the arrays. So, we expect that the same general results are valid for a different scenario than that in Fig.2 (such a particular situation can be the case in indoor applications where notably, the distance between the arrays may not be very great). For example, we can speak of the results presented in [20] which are for a particular angle-of-arrival at the receiver array. Notice also that we assumed that the LOS component is constant and deterministic. Hence, our case differs a little from the concept of correlated fading, studied in [15, 16, 17] for example. In the latter case, multipath signals arrive at the receiver from a given direction. In other words, it may be regarded as a randomly varying LOS contribution. References [1] G.J. Foschini and M.J. Gans, On limits of wireless communications in a fading environment when using multiple antennas, Wireless Personal Communications, vol.6, 1998, pp [2] G.G. Raleigh and J.M. Cioffi, Spatio-temporal coding for wireless communication, IEEE Transactions on Communications, vol. COM-46, No.3, Mar. 1998, pp [3] G.G. Raleigh and V.K. Jones, Multivariate modulation and coding for wireless communication, IEEE Journal on Selected Areas in Communications, vol. SAC-17, No.5, May 1999, pp [4] M.A. Khalighi, K. Raoof, and G. Jourdain, Capacity of wireless communication systems employing antenna arrays, a tutorial study, Journal of Wireless Personal Communications, accepted for publication, June 2002 [5] B. Sklar, Rayleigh fading channels in mobile digital communication systems; Part I: Characterization; Part II: Mitigation, IEEE Communication Magazine, vol.35, No.7, 1997, pp

14 [6] G.J. Proakis, Digital Communications, McGraw Hill, second edition, 1989 [7] G.J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell Labs Technical Journal, vol.1, No.2, Autumn 1996, pp [8] T.L. Marzetta and B.M. Hochwald, Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading, IEEE Transactions on Information Theory, vol. IT-45, No.1, Jan. 1999, pp [9] M.A. Khalighi, J.M. Brossier, G. Jourdain, and K. Raoof, On capacity of Ricean MIMO channels, in Proceedings of PIMRC 2001, 30 Sept. - 3 Oct. 2001, San Diego, CA, vol.a, pp [10] M.A. Khalighi, Study of Multiple Antenna Communication Systems ; Channel Capacity and Iterative Detection, Ph.D. Thesis, Oct. 2002, INPG University, Grenoble, France [11] E. Telater, Capacity of multi-antenna Gaussian channel, AT&T Bell Labs, Tech. Memo., June 1995 [12] E. Telatar, Capacity of multi-antenna Gaussian channels, invited paper, European Transactions on Telecommunications, vol. ETT-10, No.6, Nov.-Dec. 1999, pp [13] M.A. Khalighi, K. Raoof, and G. Jourdain, Increase in the capacity of transmit diversity systems by optimal power allotment at transmitter, EURASIP Journal on Signal Processing, submitted [14] J.B. Anderson, Array gain and capacity for known random channels with multiple element arrays at both ends, IEEE Journal on Selected Areas in Communications, vol. SAC-18, No.11, Nov. 2000, pp [15] W.C. Jakes, Microwave Mobile Communications, IEEE Press, [16] J. Salz and J.H. Winters, Effect of fading correlation on adaptive arrays in digital mobile radio, IEEE Transactions on Vehicular Technology, vol. VT-43, No.4, Nov.1994, pp [17] D. Shiu, G.J. Foschini, M.J. Gans, and J.M. Kahn, Fading correlation and its effect on the capacity of multi-element antenna systems, IEEE Transactions on Communications, vol. COM-48, No.3, Mar. 2000, pp [18] M.A. Khalighi, J.M. Brossier, G. Jourdain, and K. Raoof, Water Filling Capacity of Rayleigh MIMO channels, in Proceedings of PIMRC 2001, 30 Sept. - 3 Oct. 2001, San Diego, CA, vol.a, pp [19] D.F. Driessen and G.J. Foschini, On the capacity formula for multiple input-multiple output wireless channels: a geometric interpretation, IEEE Transactions on Communications, vol. COM-47, No.2, Feb. 1999, pp [20] F.R. Farrokhi, G.J. Foschini, A. Lozano, and R.A. Valenzuela, Link-optimal space-time processing with multiple transmit and receive antennas, IEEE Communications Letters, vol.5, No.3, Mar. 2001, pp

15 Appendix: Hypothesis of plane wave at receiver array of LOS component In this appendix we explain the rationality of neglecting θ in (3) when considering Fig.2, we assumed that the arrays are linear and broadside to each other. Since equal antenna spacings are assumed, the phase shifts between signals received on neighbor antenna elements are equal. We also assumed that R D, with D the distance between the antenna elements at the receiver, usually greater than λ/2. That is, it is assumed that the transmitter and the receiver are positioned far from each other. This assumption is well satisfied in many applications. we have, θ = R R 2π (13) λ λ is the wavelength. If antenna arrays are positioned broadside to each other, θ can be negligible. For example, for the special configuration considered on Fig.2, we can write, θ = 4πD sin2 δ/2 λ sin δ (14) δ is the angle between two lines from the transmit antenna #1 to the receive antennas #1, 2. For R D, δ is a very small angle and we can write (sin δ = D R δ), θ πdδ λ πd2 λr 1 (15) 15

MIMO CHANNEL OPTIMIZATION IN INDOOR LINE-OF-SIGHT (LOS) ENVIRONMENT

MIMO CHANNEL OPTIMIZATION IN INDOOR LINE-OF-SIGHT (LOS) ENVIRONMENT MIMO CHANNEL OPTIMIZATION IN INDOOR LINE-OF-SIGHT (LOS) ENVIRONMENT 1 PHYU PHYU THIN, 2 AUNG MYINT AYE 1,2 Department of Information Technology, Mandalay Technological University, The Republic of the Union

More information

Correlation and Calibration Effects on MIMO Capacity Performance

Correlation and Calibration Effects on MIMO Capacity Performance Correlation and Calibration Effects on MIMO Capacity Performance D. ZARBOUTI, G. TSOULOS, D. I. KAKLAMANI Departement of Electrical and Computer Engineering National Technical University of Athens 9, Iroon

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

Effects of Antenna Mutual Coupling on the Performance of MIMO Systems

Effects of Antenna Mutual Coupling on the Performance of MIMO Systems 9th Symposium on Information Theory in the Benelux, May 8 Effects of Antenna Mutual Coupling on the Performance of MIMO Systems Yan Wu Eindhoven University of Technology y.w.wu@tue.nl J.W.M. Bergmans Eindhoven

More information

MIMO Channel Capacity in Co-Channel Interference

MIMO Channel Capacity in Co-Channel Interference MIMO Channel Capacity in Co-Channel Interference Yi Song and Steven D. Blostein Department of Electrical and Computer Engineering Queen s University Kingston, Ontario, Canada, K7L 3N6 E-mail: {songy, sdb}@ee.queensu.ca

More information

Capacity of Multi-Antenna Array Systems for HVAC ducts

Capacity of Multi-Antenna Array Systems for HVAC ducts Capacity of Multi-Antenna Array Systems for HVAC ducts A.G. Cepni, D.D. Stancil, A.E. Xhafa, B. Henty, P.V. Nikitin, O.K. Tonguz, and D. Brodtkorb Carnegie Mellon University, Department of Electrical and

More information

THE EFFECT of multipath fading in wireless systems can

THE EFFECT of multipath fading in wireless systems can IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 1, FEBRUARY 1998 119 The Diversity Gain of Transmit Diversity in Wireless Systems with Rayleigh Fading Jack H. Winters, Fellow, IEEE Abstract In

More information

Amplitude and Phase Distortions in MIMO and Diversity Systems

Amplitude and Phase Distortions in MIMO and Diversity Systems Amplitude and Phase Distortions in MIMO and Diversity Systems Christiane Kuhnert, Gerd Saala, Christian Waldschmidt, Werner Wiesbeck Institut für Höchstfrequenztechnik und Elektronik (IHE) Universität

More information

BER PERFORMANCE AND OPTIMUM TRAINING STRATEGY FOR UNCODED SIMO AND ALAMOUTI SPACE-TIME BLOCK CODES WITH MMSE CHANNEL ESTIMATION

BER PERFORMANCE AND OPTIMUM TRAINING STRATEGY FOR UNCODED SIMO AND ALAMOUTI SPACE-TIME BLOCK CODES WITH MMSE CHANNEL ESTIMATION BER PERFORMANCE AND OPTIMUM TRAINING STRATEGY FOR UNCODED SIMO AND ALAMOUTI SPACE-TIME BLOC CODES WITH MMSE CHANNEL ESTIMATION Lennert Jacobs, Frederik Van Cauter, Frederik Simoens and Marc Moeneclaey

More information

Comparative Channel Capacity Analysis of a MIMO Rayleigh Fading Channel with Different Antenna Spacing and Number of Nodes

Comparative Channel Capacity Analysis of a MIMO Rayleigh Fading Channel with Different Antenna Spacing and Number of Nodes Comparative Channel Capacity Analysis of a MIMO Rayleigh Fading Channel with Different Antenna Spacing and Number of Nodes Anand Jain 1, Kapil Kumawat, Harish Maheshwari 3 1 Scholar, M. Tech., Digital

More information

IN RECENT years, wireless multiple-input multiple-output

IN RECENT years, wireless multiple-input multiple-output 1936 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004 On Strategies of Multiuser MIMO Transmit Signal Processing Ruly Lai-U Choi, Michel T. Ivrlač, Ross D. Murch, and Wolfgang

More information

On limits of Wireless Communications in a Fading Environment: a General Parameterization Quantifying Performance in Fading Channel

On limits of Wireless Communications in a Fading Environment: a General Parameterization Quantifying Performance in Fading Channel Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol. 2, No. 3, September 2014, pp. 125~131 ISSN: 2089-3272 125 On limits of Wireless Communications in a Fading Environment: a General

More information

Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System

Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 2, FEBRUARY 2002 187 Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System Xu Zhu Ross D. Murch, Senior Member, IEEE Abstract In

More information

TRANSMIT diversity has emerged in the last decade as an

TRANSMIT diversity has emerged in the last decade as an IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 5, SEPTEMBER 2004 1369 Performance of Alamouti Transmit Diversity Over Time-Varying Rayleigh-Fading Channels Antony Vielmon, Ye (Geoffrey) Li,

More information

Interference Scenarios and Capacity Performances for Femtocell Networks

Interference Scenarios and Capacity Performances for Femtocell Networks Interference Scenarios and Capacity Performances for Femtocell Networks Esra Aycan, Berna Özbek Electrical and Electronics Engineering Department zmir Institute of Technology, zmir, Turkey esraaycan@iyte.edu.tr,

More information

REMOTE CONTROL OF TRANSMIT BEAMFORMING IN TDD/MIMO SYSTEMS

REMOTE CONTROL OF TRANSMIT BEAMFORMING IN TDD/MIMO SYSTEMS The 7th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 6) REMOTE CONTROL OF TRANSMIT BEAMFORMING IN TDD/MIMO SYSTEMS Yoshitaa Hara Kazuyoshi Oshima Mitsubishi

More information

PERFORMANCE ANALYSIS OF MIMO WIRELESS SYSTEM WITH ARRAY ANTENNA

PERFORMANCE ANALYSIS OF MIMO WIRELESS SYSTEM WITH ARRAY ANTENNA PERFORMANCE ANALYSIS OF MIMO WIRELESS SYSTEM WITH ARRAY ANTENNA Mihir Narayan Mohanty MIEEE Department of Electronics and Communication Engineering, ITER, Siksha O Anusandhan University, Bhubaneswar, Odisha,

More information

MIMO PERFORMANCE ANALYSIS WITH ALAMOUTI STBC CODE and V-BLAST DETECTION SCHEME

MIMO PERFORMANCE ANALYSIS WITH ALAMOUTI STBC CODE and V-BLAST DETECTION SCHEME International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 1, January 2015 MIMO PERFORMANCE ANALYSIS WITH ALAMOUTI STBC CODE and V-BLAST DETECTION SCHEME Yamini Devlal

More information

INVESTIGATION OF CAPACITY GAINS IN MIMO CORRELATED RICIAN FADING CHANNELS SYSTEMS

INVESTIGATION OF CAPACITY GAINS IN MIMO CORRELATED RICIAN FADING CHANNELS SYSTEMS INVESTIGATION OF CAPACITY GAINS IN MIMO CORRELATED RICIAN FADING CHANNELS SYSTEMS NIRAV D PATEL 1, VIJAY K. PATEL 2 & DHARMESH SHAH 3 1&2 UVPCE, Ganpat University, 3 LCIT,Bhandu E-mail: Nirav12_02_1988@yahoo.com

More information

IN MOST situations, the wireless channel suffers attenuation

IN MOST situations, the wireless channel suffers attenuation IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 3, MARCH 1999 451 Space Time Block Coding for Wireless Communications: Performance Results Vahid Tarokh, Member, IEEE, Hamid Jafarkhani, Member,

More information

Performance Evaluation of V-Blast Mimo System in Fading Diversity Using Matched Filter

Performance Evaluation of V-Blast Mimo System in Fading Diversity Using Matched Filter Performance Evaluation of V-Blast Mimo System in Fading Diversity Using Matched Filter Priya Sharma 1, Prof. Vijay Prakash Singh 2 1 Deptt. of EC, B.E.R.I, BHOPAL 2 HOD, Deptt. of EC, B.E.R.I, BHOPAL Abstract--

More information

Performance Analysis of Ultra-Wideband Spatial MIMO Communications Systems

Performance Analysis of Ultra-Wideband Spatial MIMO Communications Systems Performance Analysis of Ultra-Wideband Spatial MIMO Communications Systems Wasim Q. Malik, Matthews C. Mtumbuka, David J. Edwards, Christopher J. Stevens Department of Engineering Science, University of

More information

CHAPTER 8 MIMO. Xijun Wang

CHAPTER 8 MIMO. Xijun Wang CHAPTER 8 MIMO Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 10 2. Tse, Fundamentals of Wireless Communication, Chapter 7-10 2 MIMO 3 BENEFITS OF MIMO n Array gain The increase

More information

BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS

BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS Amit Kumar Sahu *, Sudhansu Sekhar Singh # * Kalam Institute of Technology, Berhampur, Odisha,

More information

Written Exam Channel Modeling for Wireless Communications - ETIN10

Written Exam Channel Modeling for Wireless Communications - ETIN10 Written Exam Channel Modeling for Wireless Communications - ETIN10 Department of Electrical and Information Technology Lund University 2017-03-13 2.00 PM - 7.00 PM A minimum of 30 out of 60 points are

More information

The Impact of Correlation on Multi-Antenna System Performance: Correlation Matrix Approach

The Impact of Correlation on Multi-Antenna System Performance: Correlation Matrix Approach he Impact of Correlation on Multi-Antenna System Performance: Correlation Matrix Approach S. Loya, A. Koui Department of Electrical Engineering, Ecole de echnologie Superieure 00, Notre-Dame St. West,

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Performance of Closely Spaced Multiple Antennas for Terminal Applications

Performance of Closely Spaced Multiple Antennas for Terminal Applications Performance of Closely Spaced Multiple Antennas for Terminal Applications Anders Derneryd, Jonas Fridén, Patrik Persson, Anders Stjernman Ericsson AB, Ericsson Research SE-417 56 Göteborg, Sweden {anders.derneryd,

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library About Random LOS in Rician Fading Channels for MIMO OTA Tests This document has been downloaded from Chalmers Publication Library (CPL). It is the author s version of a work

More information

Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers

Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers 11 International Conference on Communication Engineering and Networks IPCSIT vol.19 (11) (11) IACSIT Press, Singapore Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers M. A. Mangoud

More information

This is an author produced version of Capacity bounds and estimates for the finite scatterers MIMO wireless channel.

This is an author produced version of Capacity bounds and estimates for the finite scatterers MIMO wireless channel. This is an author produced version of Capacity bounds and estimates for the finite scatterers MIMO wireless channel. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/653/ Article:

More information

[P7] c 2006 IEEE. Reprinted with permission from:

[P7] c 2006 IEEE. Reprinted with permission from: [P7 c 006 IEEE. Reprinted with permission from: Abdulla A. Abouda, H.M. El-Sallabi and S.G. Häggman, Effect of Mutual Coupling on BER Performance of Alamouti Scheme," in Proc. of IEEE International Symposium

More information

1. MIMO capacity basics

1. MIMO capacity basics Introduction to MIMO: Antennas & Propagation aspects Björn Lindmark. MIMO capacity basics. Physical interpretation of the channel matrix Example x in free space 3. Free space vs. multipath: when is scattering

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /VETECS.2004.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /VETECS.2004. Webb, MW, Beach, MA, & Nix, AR (24) Capacity limits of MIMO channels with co-channel interference IEEE 9th Vehicular Technology Conference, 24 (VTC 24-Spring), 2, 73-77 DOI: 19/VETECS241388919 Peer reviewed

More information

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS Navgeet Singh 1, Amita Soni 2 1 P.G. Scholar, Department of Electronics and Electrical Engineering, PEC University of Technology, Chandigarh, India 2

More information

BER Analysis of Receive Diversity Using Multiple Antenna System and MRC

BER Analysis of Receive Diversity Using Multiple Antenna System and MRC International Journal of Information Communication Technology and Digital Convergence Vol. 2, No. 1, June. 2017, pp. 15-25 BER Analysis of Receive Diversity Using Multiple Antenna System and MRC Shishir

More information

Performance Evaluation of the VBLAST Algorithm in W-CDMA Systems

Performance Evaluation of the VBLAST Algorithm in W-CDMA Systems erformance Evaluation of the VBLAST Algorithm in W-CDMA Systems Dragan Samardzija, eter Wolniansky, Jonathan Ling Wireless Research Laboratory, Bell Labs, Lucent Technologies, 79 Holmdel-Keyport Road,

More information

Distributed Source Model for Short-Range MIMO

Distributed Source Model for Short-Range MIMO Distributed Source Model for Short-Range MIMO by Jeng-Shiann Jiang and Mary Ann Ingram {jsjiang, mai}@ece.gatech.edu School of Electrical and Computer Engineering Georgia Institute of Technology Copyright

More information

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam. ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 19 Today: (1) Diversity Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Lecture 4 Diversity and MIMO Communications

Lecture 4 Diversity and MIMO Communications MIMO Communication Systems Lecture 4 Diversity and MIMO Communications Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 1 Outline Diversity Techniques

More information

Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario

Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario Shu Sun, Hangsong Yan, George R. MacCartney, Jr., and Theodore S. Rappaport {ss7152,hy942,gmac,tsr}@nyu.edu IEEE International

More information

Optimization of Coded MIMO-Transmission with Antenna Selection

Optimization of Coded MIMO-Transmission with Antenna Selection Optimization of Coded MIMO-Transmission with Antenna Selection Biljana Badic, Paul Fuxjäger, Hans Weinrichter Institute of Communications and Radio Frequency Engineering Vienna University of Technology

More information

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm

Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm 1 Ch.Srikanth, 2 B.Rajanna 1 PG SCHOLAR, 2 Assistant Professor Vaagdevi college of engineering. (warangal) ABSTRACT power than

More information

MIMO Capacity in a Pedestrian Passageway Tunnel Excited by an Outside Antenna

MIMO Capacity in a Pedestrian Passageway Tunnel Excited by an Outside Antenna MIMO Capacity in a Pedestrian Passageway Tunnel Excited by an Outside Antenna J. M. MOLINA-GARCIA-PARDO*, M. LIENARD**, P. DEGAUQUE**, L. JUAN-LLACER* * Dept. Techno. Info. and Commun. Universidad Politecnica

More information

Effects of Fading Channels on OFDM

Effects of Fading Channels on OFDM IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 9 (September 2012), PP 116-121 Effects of Fading Channels on OFDM Ahmed Alshammari, Saleh Albdran, and Dr. Mohammad

More information

An Analytical Design: Performance Comparison of MMSE and ZF Detector

An Analytical Design: Performance Comparison of MMSE and ZF Detector An Analytical Design: Performance Comparison of MMSE and ZF Detector Pargat Singh Sidhu 1, Gurpreet Singh 2, Amit Grover 3* 1. Department of Electronics and Communication Engineering, Shaheed Bhagat Singh

More information

MIMO Environmental Capacity Sensitivity

MIMO Environmental Capacity Sensitivity MIMO Environmental Capacity Sensitivity Daniel W. Bliss, Keith W. Forsythe MIT Lincoln Laboratory Lexington, Massachusetts bliss@ll.mit.edu, forsythe@ll.mit.edu Alfred O. Hero University of Michigan Ann

More information

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM 89 CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM 4.1 INTRODUCTION This chapter investigates a technique, which uses antenna diversity to achieve full transmit diversity, using

More information

A Differential Detection Scheme for Transmit Diversity

A Differential Detection Scheme for Transmit Diversity IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 7, JULY 2000 1169 A Differential Detection Scheme for Transmit Diversity Vahid Tarokh, Member, IEEE, Hamid Jafarkhani, Member, IEEE Abstract

More information

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

UWB Small Scale Channel Modeling and System Performance

UWB Small Scale Channel Modeling and System Performance UWB Small Scale Channel Modeling and System Performance David R. McKinstry and R. Michael Buehrer Mobile and Portable Radio Research Group Virginia Tech Blacksburg, VA, USA {dmckinst, buehrer}@vt.edu Abstract

More information

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Abstract A Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to

More information

Beamforming with Finite Rate Feedback for LOS MIMO Downlink Channels

Beamforming with Finite Rate Feedback for LOS MIMO Downlink Channels Beamforming with Finite Rate Feedback for LOS IO Downlink Channels Niranjay Ravindran University of innesota inneapolis, N, 55455 USA Nihar Jindal University of innesota inneapolis, N, 55455 USA Howard

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

A New Approach to Layered Space-Time Code Design

A New Approach to Layered Space-Time Code Design A New Approach to Layered Space-Time Code Design Monika Agrawal Assistant Professor CARE, IIT Delhi maggarwal@care.iitd.ernet.in Tarun Pangti Software Engineer Samsung, Bangalore tarunpangti@yahoo.com

More information

Resource Allocation in Correlated MIMO Systems. Francisco Cano Broncano

Resource Allocation in Correlated MIMO Systems. Francisco Cano Broncano Resource Allocation in Correlated MIMO Systems by Francisco Cano Broncano Submitted to the CAPD of the School of Telecommunications, Systems and Engineering in partial fulfillment of the requirements for

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University lucasanguinetti@ietunipiit April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 / 46

More information

STUDY OF ENHANCEMENT OF SPECTRAL EFFICIENCY OF WIRELESS FADING CHANNEL USING MIMO TECHNIQUES

STUDY OF ENHANCEMENT OF SPECTRAL EFFICIENCY OF WIRELESS FADING CHANNEL USING MIMO TECHNIQUES STUDY OF ENHANCEMENT OF SPECTRAL EFFICIENCY OF WIRELESS FADING CHANNEL USING MIMO TECHNIQUES Jayanta Paul M.TECH, Electronics and Communication Engineering, Heritage Institute of Technology, (India) ABSTRACT

More information

[2005] IEEE. Reprinted, with permission, from [Tang Zhongwei; Sanagavarapu Ananda, Experimental Investigation of Indoor MIMO Ricean Channel Capacity,

[2005] IEEE. Reprinted, with permission, from [Tang Zhongwei; Sanagavarapu Ananda, Experimental Investigation of Indoor MIMO Ricean Channel Capacity, [2005] IEEE. Reprinted, with permission, from [Tang Zhongwei; Sanagavarapu Ananda, Experimental Investigation of Indoor MIMO Ricean Channel Capacity, IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL.

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

International Journal of Advance Engineering and Research Development. Performance Comparison of Rayleigh and Rician Fading Channel Models: A Review

International Journal of Advance Engineering and Research Development. Performance Comparison of Rayleigh and Rician Fading Channel Models: A Review Scientific Journal of Impact Factor (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 02, February -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Performance

More information

Propagation Channels. Chapter Path Loss

Propagation Channels. Chapter Path Loss Chapter 9 Propagation Channels The transmit and receive antennas in the systems we have analyzed in earlier chapters have been in free space with no other objects present. In a practical communication

More information

Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels

Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels SUDAKAR SINGH CHAUHAN Electronics and Communication Department

More information

Multi-Path Fading Channel

Multi-Path Fading Channel Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Mobile Radio Propagation: Small-Scale Fading and Multi-path

Mobile Radio Propagation: Small-Scale Fading and Multi-path Mobile Radio Propagation: Small-Scale Fading and Multi-path 1 EE/TE 4365, UT Dallas 2 Small-scale Fading Small-scale fading, or simply fading describes the rapid fluctuation of the amplitude of a radio

More information

Performance Evaluation of MIMO-OFDM Systems under Various Channels

Performance Evaluation of MIMO-OFDM Systems under Various Channels Performance Evaluation of MIMO-OFDM Systems under Various Channels C. Niloufer fathima, G. Hemalatha Department of Electronics and Communication Engineering, KSRM college of Engineering, Kadapa, Andhra

More information

Mobile Radio Propagation Channel Models

Mobile Radio Propagation Channel Models Wireless Information Transmission System Lab. Mobile Radio Propagation Channel Models Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction Propagation

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /VETECS.2006.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /VETECS.2006. Neirynck, D., Williams, C., Nix, AR., & Beach, MA. (2006). Personal area networks with line-of-sight MIMO operation. IEEE 63rd Vehicular Technology Conference, 2006 (VTC 2006-Spring), 6, 2859-2862. DOI:

More information

THE exciting increase in capacity and diversity promised by

THE exciting increase in capacity and diversity promised by IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 1, JANUARY 2004 17 Effective SNR for Space Time Modulation Over a Time-Varying Rician Channel Christian B. Peel and A. Lee Swindlehurst, Senior Member,

More information

Design of DFE Based MIMO Communication System for Mobile Moving with High Velocity

Design of DFE Based MIMO Communication System for Mobile Moving with High Velocity Design of DFE Based MIMO Communication System for Mobile Moving with High Velocity S.Bandopadhaya 1, L.P. Mishra, D.Swain 3, Mihir N.Mohanty 4* 1,3 Dept of Electronics & Telecomunicationt,Silicon Institute

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions This dissertation reported results of an investigation into the performance of antenna arrays that can be mounted on handheld radios. Handheld arrays

More information

Hybrid ARQ Scheme with Antenna Permutation for MIMO Systems in Slow Fading Channels

Hybrid ARQ Scheme with Antenna Permutation for MIMO Systems in Slow Fading Channels Hybrid ARQ Scheme with Antenna Permutation for MIMO Systems in Slow Fading Channels Jianfeng Wang, Meizhen Tu, Kan Zheng, and Wenbo Wang School of Telecommunication Engineering, Beijing University of Posts

More information

A FIRST ANALYSIS OF MIMO COMMUNICATION AS A BASIS FOR LOW POWER WIRELESS

A FIRST ANALYSIS OF MIMO COMMUNICATION AS A BASIS FOR LOW POWER WIRELESS A FIRST ANALYSIS OF MIMO OMMUNIATION AS A ASIS FOR LOW POWER WIRELESS JH van den Heuvel, PGM altus,, JP Linnartz, and FMJ Willems JHvdHeuvel@tuenl Eindhoven University of Technology, Dept of Electrical

More information

Efficient Decoding for Extended Alamouti Space-Time Block code

Efficient Decoding for Extended Alamouti Space-Time Block code Efficient Decoding for Extended Alamouti Space-Time Block code Zafar Q. Taha Dept. of Electrical Engineering College of Engineering Imam Muhammad Ibn Saud Islamic University Riyadh, Saudi Arabia Email:

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique e-issn 2455 1392 Volume 2 Issue 6, June 2016 pp. 190 197 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding

More information

Keywords WiMAX, BER, Multipath Rician Fading, Multipath Rayleigh Fading, BPSK, QPSK, 16 QAM, 64 QAM.

Keywords WiMAX, BER, Multipath Rician Fading, Multipath Rayleigh Fading, BPSK, QPSK, 16 QAM, 64 QAM. Volume 4, Issue 6, June 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Effect of Multiple

More information

MIMO Wireless Channels: Capacity and Performance Prediction

MIMO Wireless Channels: Capacity and Performance Prediction MIMO Wireless Channels: Capacity and Performance Prediction D. Gesbert Gigabit Wireless Inc., 3099 North First Street, San Jose, CA 95134 gesbert@gigabitwireless.com H. Bölcskei, D. Gore, A. Paulraj Information

More information

Study of MIMO channel capacity for IST METRA models

Study of MIMO channel capacity for IST METRA models Study of MIMO channel capacity for IST METRA models Matilde Sánchez Fernández, M a del Pilar Cantarero Recio and Ana García Armada Dept. Signal Theory and Communications University Carlos III of Madrid

More information

Attainable Throughput of an Interference-Limited Multiple-Input Multiple-Output (MIMO) Cellular System

Attainable Throughput of an Interference-Limited Multiple-Input Multiple-Output (MIMO) Cellular System IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 8, AUGUST 2001 1307 Attainable Throughput of an Interference-Limited Multiple-Input Multiple-Output (MIMO) Cellular System S. Catreux, P. F. Driessen,

More information

Keyhole Effects in MIMO Wireless Channels - Measurements and Theory

Keyhole Effects in MIMO Wireless Channels - Measurements and Theory MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Keyhole Effects in MIMO Wireless Channels - Measurements and Theory Almers, P.; Tufvesson, F. TR23-36 December 23 Abstract It has been predicted

More information

Multiple Input Multiple Output (MIMO) Operation Principles

Multiple Input Multiple Output (MIMO) Operation Principles Afriyie Abraham Kwabena Multiple Input Multiple Output (MIMO) Operation Principles Helsinki Metropolia University of Applied Sciences Bachlor of Engineering Information Technology Thesis June 0 Abstract

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

Reduction of Co-Channel Interference in transmit/receive diversity (TRD) in MIMO System

Reduction of Co-Channel Interference in transmit/receive diversity (TRD) in MIMO System Reduction of Co-Channel Interference in transmit/receive diversity (TRD) in MIMO System Manisha Rathore 1, Puspraj Tanwar 2 Department of Electronic and Communication RITS,Bhopal 1,2 Abstract In this paper

More information

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers Navjot Kaur and Lavish Kansal Lovely Professional University, Phagwara, E-mails: er.navjot21@gmail.com,

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

9.4 Temporal Channel Models

9.4 Temporal Channel Models ECEn 665: Antennas and Propagation for Wireless Communications 127 9.4 Temporal Channel Models The Rayleigh and Ricean fading models provide a statistical model for the variation of the power received

More information

Analysis of Fast Fading in Wireless Communication Channels M.Siva Ganga Prasad 1, P.Siddaiah 1, L.Pratap Reddy 2, K.Lekha 1

Analysis of Fast Fading in Wireless Communication Channels M.Siva Ganga Prasad 1, P.Siddaiah 1, L.Pratap Reddy 2, K.Lekha 1 International Journal of ISSN 0974-2107 Systems and Technologies IJST Vol.3, No.1, pp 139-145 KLEF 2010 Fading in Wireless Communication Channels M.Siva Ganga Prasad 1, P.Siddaiah 1, L.Pratap Reddy 2,

More information

Measured propagation characteristics for very-large MIMO at 2.6 GHz

Measured propagation characteristics for very-large MIMO at 2.6 GHz Measured propagation characteristics for very-large MIMO at 2.6 GHz Gao, Xiang; Tufvesson, Fredrik; Edfors, Ove; Rusek, Fredrik Published in: [Host publication title missing] Published: 2012-01-01 Link

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

On Using Channel Prediction in Adaptive Beamforming Systems

On Using Channel Prediction in Adaptive Beamforming Systems On Using Channel rediction in Adaptive Beamforming Systems T. R. Ramya and Srikrishna Bhashyam Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India. Email:

More information

UNDERWATER ACOUSTIC CHANNEL ESTIMATION AND ANALYSIS

UNDERWATER ACOUSTIC CHANNEL ESTIMATION AND ANALYSIS Proceedings of the 5th Annual ISC Research Symposium ISCRS 2011 April 7, 2011, Rolla, Missouri UNDERWATER ACOUSTIC CHANNEL ESTIMATION AND ANALYSIS Jesse Cross Missouri University of Science and Technology

More information

Riciain Channel Capacity Comparison Between (8X8) And (4x4) MIMO

Riciain Channel Capacity Comparison Between (8X8) And (4x4) MIMO International Journal of ngineering rends and echnology (IJ) Volume 4 Issue 6 - June 13 iciain Channel Capacity Comparison Between (8X8) And (4x4) MIMO Vivek Mankotia, Ankush ansal M student HAPA UNIVSIY

More information

PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY

PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY 1 MOHAMMAD RIAZ AHMED, 1 MD.RUMEN AHMED, 1 MD.RUHUL AMIN ROBIN, 1 MD.ASADUZZAMAN, 2 MD.MAHBUB

More information

SEVERAL diversity techniques have been studied and found

SEVERAL diversity techniques have been studied and found IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 11, NOVEMBER 2004 1851 A New Base Station Receiver for Increasing Diversity Order in a CDMA Cellular System Wan Choi, Chaehag Yi, Jin Young Kim, and Dong

More information