Electrical Dispersion Compensation (EDC)

Size: px
Start display at page:

Download "Electrical Dispersion Compensation (EDC)"

Transcription

1 Electrical Dispersion Compensation (EDC) Liz Wu Linus Chuang For EE233 Spring 2006

2 EDC technology Biggest Challenge for 10G -- dispersion management 2.48G Long distance Long distance 10G ISI (Intersymbol interference) EDC -- compensates for optical dispersion in the electrical domain by algorithmic methods

3 EDC addresses three type of Dispersion Chromatic dispersion polarization dispersion T = DL λ d 1 2πC D = ( ) = β 2 2 dλ V λ g Modal dispersion P. Kirkpatrick et al. Intel Technology Journal 8, 83 (2004)

4 Brief Review of Dispersion

5 Existing Solutions of Dispersion Type Chromatic dispersion Modal dispersion Polarization dispersion Solution Dispersion compensate fiber Dispersive filter Fiber Bragg grating Graded fibers PMD compensator Drawbacks Needs to be engineered for each link -- varies with wavelength EDC -- deal with the dispersion at the receiver end -- address three different dispersion by different algorithm Cost-effective & Easy

6 10G solution on legacy fiber network Long-haul -OC-48 (2.48G bps) EDC standard -ITU/OIF -ITU-TSG15-10G over OC-48 network for 145-km psec/nm -chromatic dispersion -near ratification Short link-1gb Ethernet EDC standard -IEEE aq (10G-BASE) -10G over OM1 MMF network for 220m -modal dispersion -achieves ratification at mid 2006

7 10G with/without EDC 10 GbE shortreach 10 GbE shortreach 10 Git/s SONET 10 Gbps SONET with EDC long-haul long-haul with EDC Standard 802.3ae 802.3aq G ITU-TSG15 Max distance 26m 220m 80km 145km dispersion N/A N/A 1600ps/nm 2400ps/nm wavelength 850nm 1300nm 1550nm 1550nm fiber type MMF MMF SMF SMF 62.5/125um 62.5/125um 9um 9um BER 1E-12 1E-12 1E-12 1E-12 path penalty N/A N/A 2dB 2dB M. Furlong et al. EDN.com, 85 (March 30, 2006)

8 EDC equalization algorithms 1. CTF continuous-time filters -simplest, lowest power consumption -compensate for chromatic dispersion 2.FFE feedforward-equalizer DFE decision-feedback-equalizer -compensate for ISI that exceed one UI -most common EDC implementation 3. MLSE maximum-likelihood-sequence-estimator -best performance -but complicated and large power consumption

9 Dynamic EDC- self-adaptable algorism Fiber degrades over time and introduce new source of interference EDC refine compensation algorisms to adapt to these changes Close loop feedback mechanism to modify filters and gains

10 Market

11 Who entered the market? Long-haul application - Broadcomm (BCM8105) - SCINTERA (SCN5028) - Civcom (module) - Kodeos Communications - Infinera... ~ US$ 500 per chip (less complicated) Short link application - SCINTERA (SCN3142) - Vitesse - Infinera - PHYworks (PHY1060) - Intel (?) - Cisco (equipment) - Aeluros... ~US$100 per chip (more complicated)

12 Who is threatened by EDC? Long-haul application - Fiber manufacturers - dispersion filter vendors Short link application - Fiber manufacturers (Laser optimized 50 µm fiber) - LX4 vendors

13 Market Forecast Short link application - $400M~$600M of total addressable market revenue opportunity is at the stake - 1 million 10GbE optical ports to be shipped in 2009 worth $3B Long-haul application - sub $200M market EDC shipment forcast *Source: OFS (JEG) Estimate Based on CIR 12/04 PR for report titled 10- GIGABIT NETWORKING: A MARKET AND TECHNOLOGY ASSESSMENT

14 Market Impact ITU-TSG15 is nearing ratification 830.aq is in draft status and it should achieve ratification by midyear Interoperability testing between Industry leaders 40G LX4 According to ElectroniCast, the worldwide consumption value of filter-based devices providing variable chromatic dispersion compensation for high-speed telecommunication networks (>=10Gbps) is forecasted to increase from an estimated $580,000 in year 1999 to $30 million in year 2005.

15 Products of EDC Broadcomm announced EDC product BCM8105 at July Applied Micro Circuits Corp launched s19233 Feb Intersymbol Communications, a start up company focus on MLSE development for smartcdr Quake Technologies QT1006B1

16 EDC standards Long-haul ITU-TSG15 OIF(Optical Internetworking Forum) ITU(International Telecommunications Union) 10G OC-192 over OC-48 network for 145-km Address dispersion of 2400 pse/nm (today, OC G over SMF 80km ) Short-reach applications 802.3aq IEEE ITU(International Telecommunications Union) 10G link over OM1 MMF network to 220m Less complicated module than LX4 (today, Ethernet links over legacy OM1 MMF 26m)

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 G. S. Kanter et al. Optics Express 11, 2019 (2003)

33

34 Thank you

Mitigation of Chromatic Dispersion using Different Compensation Methods in Optical Fiber Communication: A Review

Mitigation of Chromatic Dispersion using Different Compensation Methods in Optical Fiber Communication: A Review Volume-4, Issue-3, June-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 21-25 Mitigation of Chromatic Dispersion using Different

More information

Trends in Optical Transceivers:

Trends in Optical Transceivers: Trends in Optical Transceivers: Light sources for premises networks Peter Ronco Corning Optical Fiber Asst. Product Line Manager Premises Fibers January 24, 2006 Outline: Introduction: Transceivers and

More information

Optical Fiber and PMD. Reach and Economics for EFM

Optical Fiber and PMD. Reach and Economics for EFM Optical Fiber and PMD Reach and Economics for EFM November 2001 IEEE 802.3ah Charles Ufongene Paul Kolesar John George Bernie Eichenbaum EPON P2MP Reach calculated for SSMF, ZWPF, NZDF, NDF Based on MPN

More information

Presentation Overview

Presentation Overview Low-cost WDM Transceiver Technology for 10-Gigabit Ethernet and Beyond Brian E. Lemoff, Lisa A. Buckman, Andrew J. Schmit, and David W. Dolfi Agilent Laboratories Hot Interconnects 2000 Stanford, CA August

More information

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 2 Issue 4 Dec - 2012 11-16 TJPRC Pvt. Ltd., PERFORMANCE ENHANCEMENT

More information

There are lots of problems or challenges with fiber, Attenuation, Reflections, Dispersion and so on. So here we will look at these problems.

There are lots of problems or challenges with fiber, Attenuation, Reflections, Dispersion and so on. So here we will look at these problems. The Hard theory The Hard Theory An introduction to fiber, should also include a section with some of the difficult theory. So if everything else in the book was very easily understood, then this section

More information

10Gbps Optical Line Using Electronic Equalizer and its Cost Effectiveness

10Gbps Optical Line Using Electronic Equalizer and its Cost Effectiveness 10Gbps Optical Line Using Electronic Equalizer and its Cost Effectiveness Dr. Pulidindi Venugopal #1, Y.S.V.S.R.Karthik *2, Jariwala Rudra A #3 #1 VIT Business School, VIT University Vellore, Tamilnadu,

More information

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1 Dispersion management Lecture 7 Dispersion compensating fibers (DCF) Fiber Bragg gratings (FBG) Dispersion-equalizing filters Optical phase conjugation (OPC) Electronic dispersion compensation (EDC) Fiber

More information

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Simarpreet Kaur Gill 1, Gurinder Kaur 2 1Mtech Student, ECE Department, Rayat- Bahra University,

More information

Unit-5. Lecture -4. Power Penalties,

Unit-5. Lecture -4. Power Penalties, Unit-5 Lecture -4 Power Penalties, Power Penalties When any signal impairments are present, a lower optical power level arrives at the receiver compared to the ideal reception case. This lower power results

More information

Multimode fiber media types for 802.3cd

Multimode fiber media types for 802.3cd 1 Multimode fiber media types for 802.3cd P802.3cd, Fort Worth, Texas September 12-16, 2016 Rick Pimpinella Jose Castro Brett Lane Panduit Labs, Panduit Corp. 2 Laser Optimized Multimode Fiber Types Fiber

More information

Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4. Frank Chang Vitesse

Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4. Frank Chang Vitesse Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4 Frank Chang Vitesse Review 10GbE 802.3ae testing standards 10GbE optical tests and specifications divided into Transmitter;

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2 13.2 An MLSE Receiver for Electronic-Dispersion Compensation of OC-192 Fiber Links Hyeon-min Bae 1, Jonathan Ashbrook 1, Jinki Park 1, Naresh Shanbhag 2, Andrew Singer 2, Sanjiv Chopra 1 1 Intersymbol

More information

Modal Noise and Implications for the CSRS Test

Modal Noise and Implications for the CSRS Test Optical Navigation Division Modal Noise and Implications for the CSRS Test David Cunningham, Piers Dawe, John Ewen, Christine M. Krause, Petar Pepeljugoski, Abhijit Shanbhag, Nick Weiner, Avago Technologies

More information

How Bend Insensitive Multimode Fiber is Affecting Installation and Testing of Enterprise and Data Center Cabling

How Bend Insensitive Multimode Fiber is Affecting Installation and Testing of Enterprise and Data Center Cabling How Bend Insensitive Multimode Fiber is Affecting Installation and Testing of Enterprise and Data Center Cabling David Mazzarese, Technical Manager, Fiber Systems and Standards Engineering, OFS Learning

More information

τ mod = T modal = longest ray path shortest ray path n 1 L 1 = L n 2 1

τ mod = T modal = longest ray path shortest ray path n 1 L 1 = L n 2 1 S. Blair February 15, 2012 23 2.2. Pulse dispersion Pulse dispersion is the spreading of a pulse as it propagates down an optical fiber. Pulse spreading is an obvious detrimental effect that limits the

More information

WDM Alternatives for 100Gb SMF Applications

WDM Alternatives for 100Gb SMF Applications WDM Alternatives for 100Gb SMF Applications IEEE HSSG Presentation Chris Cole chris.cole@finisar.com Outline Data rate target proposal Signal rate alternatives 40km/80km cooled 1550nm alternatives and

More information

Global Consumer Internet Traffic

Global Consumer Internet Traffic Evolving Optical Transport Networks to 100G Lambdas and Beyond Gaylord Hart Infinera Abstract The cable industry is beginning to migrate to 100G core optical transport waves, which greatly improve fiber

More information

af-phy July 1996

af-phy July 1996 155.52 Mbps Short Wavelength Physical Layer Specification af-phy-0062.000 Technical Committee 155.52 Mbps Physical Layer Interface Specification for Short Wavelength Laser af-phy-0062.000 July 1996 1 ATM

More information

10Gb/s PMD Using PAM-5 Modulation. Oscar Agazzi Broadcom Corp Alton Parkway Irvine, CA 92618

10Gb/s PMD Using PAM-5 Modulation. Oscar Agazzi Broadcom Corp Alton Parkway Irvine, CA 92618 10Gb/s PMD Using PAM-5 Modulation Oscar Agazzi Broadcom Corp. 16215 Alton Parkway Irvine, CA 92618 1 Goals Achieve distance objective of 300m over existing MMF Operate with single channel optoelectronic

More information

Pluggable Transceiver Modules

Pluggable Transceiver Modules APPENDIXB Revised: April 2012 This appendix provides descriptions and specifications for the pluggable transceiver modules that are supported on the Catalyst 6 series Ethernet switching modules. The appendix

More information

Improvements to Modal Noise Penalty Calculations

Improvements to Modal Noise Penalty Calculations Improvements to Modal Noise Penalty Calculations Petar Pepeljugoski, Daniel Kuchta and Aleksandar Risteski IBM T.J. Watson Research Center Yorktown Heights, NY 1598 Outline Modal Noise (MN) penalty calculation

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [VLC PHY Considerations] Date Submitted: [09 September 2008] Source: [Sang-Kyu Lim, Kang Tae-Gyu, Dae Ho

More information

for SWL and LWL Fiber Systems Chromatic Dispersion Limited Link Lengths David Cunningham, Leonid Kazovsky* and M. Nowell

for SWL and LWL Fiber Systems Chromatic Dispersion Limited Link Lengths David Cunningham, Leonid Kazovsky* and M. Nowell Chromatic Dispersion Limited Link Lengths for SWL and LWL Fiber Systems IEEE 802 Plenary Meeting Vancouver, BC November 11-15, 1996 David Cunningham, Leonid Kazovsky* and M. Nowell Hewlett-Packard Laboratories

More information

Electronic Dispersion Compensation of 40-Gb/s Multimode Fiber Links Using IIR Equalization

Electronic Dispersion Compensation of 40-Gb/s Multimode Fiber Links Using IIR Equalization Electronic Dispersion Compensation of 4-Gb/s Multimode Fiber Links Using IIR Equalization George Ng & Anthony Chan Carusone Dept. of Electrical & Computer Engineering University of Toronto Canada Transmitting

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

Emerging Subsea Networks

Emerging Subsea Networks Upgrading on the Longest Legacy Repeatered System with 100G DC-PDM- BPSK Jianping Li, Jiang Lin, Yanpu Wang (Huawei Marine Networks Co. Ltd) Email: Huawei Building, No.3 Shangdi

More information

Fiber Optic Principles. Oct-09 1

Fiber Optic Principles. Oct-09 1 Fiber Optic Principles Oct-09 1 Fiber Optic Basics Optical fiber Active components Attenuation Power budget Bandwidth Oct-09 2 Reference www.flukenetworks.com/fiber Handbook Fiber Optic Technologies (Vivec

More information

DISPERSION COMPENSATION IN OFC USING FBG

DISPERSION COMPENSATION IN OFC USING FBG DISPERSION COMPENSATION IN OFC USING FBG 1 B.GEETHA RANI, 2 CH.PRANAVI 1 Asst. Professor, Dept. of Electronics and Communication Engineering G.Pullaiah College of Engineering Kurnool, Andhra Pradesh billakantigeetha@gmail.com

More information

NEW YORK CITY COLLEGE of TECHNOLOGY

NEW YORK CITY COLLEGE of TECHNOLOGY NEW YORK CITY COLLEGE of TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ELECTRICAL AND TELECOMMUNICATIONS ENGINEERING TECHNOLOGY Course : Prepared by: TCET 4102 Fiber-optic communications Module

More information

10GBASE-S Technical Feasibility

10GBASE-S Technical Feasibility 10GBASE-S Technical Feasibility Picolight Cielo IEEE P802.3ae Los Angeles, October 2001 Interim meeting 1 10GBASE-S Feasibility Supporters Petar Pepeljugoski, IBM Tom Lindsay, Stratos Lightwave Bob Grow,

More information

06-011r0 Towards a SAS-2 Physical Layer Specification. Kevin Witt 11/30/2005

06-011r0 Towards a SAS-2 Physical Layer Specification. Kevin Witt 11/30/2005 06-011r0 Towards a SAS-2 Physical Layer Specification Kevin Witt 11/30/2005 Physical Layer Working Group Goal Draft a Specification which will: 1. Meet the System Designers application requirements, 2.

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

Total care for networks. Introduction to Dispersion

Total care for networks. Introduction to Dispersion Introduction to Dispersion Introduction to PMD Version1.0- June 01, 2000 Copyright GN Nettest 2000 Introduction To Dispersion Contents Definition of Dispersion Chromatic Dispersion Polarization Mode Dispersion

More information

Polarization Mode Dispersion Aspects for Parallel and Serial PHY

Polarization Mode Dispersion Aspects for Parallel and Serial PHY Polarization Mode Dispersion Aspects for Parallel and Serial PHY IEEE 802.3 High-Speed Study Group November 13-16, 2006 Marcus Duelk Bell Labs / Lucent Technologies duelk@lucent.com Peter Winzer Bell Labs

More information

IEEE July 2001 Plenary Meeting Portland, OR Robert S. Carlisle Sr. Market Development Engineer

IEEE July 2001 Plenary Meeting Portland, OR Robert S. Carlisle Sr. Market Development Engineer Ethernet PON Fiber Considerations IEEE July 2001 Plenary Meeting Portland, OR Robert S. Carlisle Sr. Market Development Engineer Special Thanks to Contributors Kendall Musgrove - Sr. Market Development

More information

Optical Networks emerging technologies and architectures

Optical Networks emerging technologies and architectures Optical Networks emerging technologies and architectures Faculty of Computer Science, Electronics and Telecommunications Department of Telecommunications Artur Lasoń 100 Gb/s PM-QPSK (DP-QPSK) module Hot

More information

Mixing TrueWave RS Fiber with Other Single-Mode Fiber Designs Within a Network

Mixing TrueWave RS Fiber with Other Single-Mode Fiber Designs Within a Network Mixing TrueWave RS Fiber with Other Single-Mode Fiber Designs Within a Network INTRODUCTION A variety of single-mode fiber types can be found in today s installed networks. Standards bodies, such as the

More information

VCSEL Based 10 Gigabit Serial Solutions

VCSEL Based 10 Gigabit Serial Solutions VCSEL Based 10 Gigabit Serial Solutions 802.3ae Plenary Meeting March 2000 Jack Jewell jljewell@picolight.com 303-530-3189 Introduction Objectives: 1) Assess the PHY links 1, 2, 3 proposed by Vipul Bhatt

More information

Combining Component Characterization and Simulation to Enable the Next Generation Optical Network

Combining Component Characterization and Simulation to Enable the Next Generation Optical Network Combining Component Characterization and Simulation to Enable the Next Generation Optical Network A Luna Technologies Webinar Cosponsored by RSoft Design Group Luna Technologies: Dr. Brian Soller - Director

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

Computer Networks

Computer Networks 15-441 Computer Networks Physical Layer Professor Hui Zhang hzhang@cs.cmu.edu 1 Communication & Physical Medium There were communications before computers There were communication networks before computer

More information

CISCO DWDM GBICS. Figure 1. Cisco DWDM GBICs. Main features of the Cisco DWDM GBICs:

CISCO DWDM GBICS. Figure 1. Cisco DWDM GBICs. Main features of the Cisco DWDM GBICs: DATA SHEET CISCO DWDM GBICS The Cisco Dense Wavelength-Division Multiplexing (DWDM) Gigabit Interface Converter (GBIC) pluggables allow enterprise companies and service providers to provide scalable and

More information

Chapter 8. Digital Links

Chapter 8. Digital Links Chapter 8 Digital Links Point-to-point Links Link Power Budget Rise-time Budget Power Penalties Dispersions Noise Content Photonic Digital Link Analysis & Design Point-to-Point Link Requirement: - Data

More information

Technical Specifications

Technical Specifications APPENDIXB This appendix includes the following sections: Switch Specifications, page B-1 Module Specifications, page B-2 Power Specifications, page B-4 X2 Transceiver Specifications, page B-7 and + Transceiver

More information

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks 363 Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks CHAOUI Fahd 3, HAJAJI Anas 1, AGHZOUT Otman 2,4, CHAKKOUR Mounia 3, EL YAKHLOUFI Mounir

More information

OFS AllWave non-dispersion shifted single-mode optical fiber

OFS AllWave non-dispersion shifted single-mode optical fiber The New Standard for Single-Mode Fiber! Product Description OFS AllWave non-dispersion shifted single-mode optical fiber (NDSF) is the industry s first Full-Spectrum fiber designed for optical transmission

More information

MPN Theory Predictions vs. Measurements. Meir Bartur ZONU, Inc. IEEE ah interim January 2002 Raleigh, NC

MPN Theory Predictions vs. Measurements. Meir Bartur ZONU, Inc. IEEE ah interim January 2002 Raleigh, NC MPN Theory Predictions vs. Measurements Meir Bartur ZONU, Inc. IEEE 8. ah interim January Raleigh, NC MPN theory predictions and test results MPN theory predictions at.5 Gb/s (see Appendix for equations

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

Installing the Avaya 10-Gigabit

Installing the Avaya 10-Gigabit Installing the Avaya 10-Gigabit CHAPTER 1 Uplink Module Overview This document describes the installation of the Avaya 10-Gigabit Uplink Module (Figure 1). Figure 1. 10-Gigabit Uplink Module This document

More information

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link Special Issue Optical Communication The Development of the 16 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link Tomofumi Kise* 1, Toshihito Suzuki* 2, Masaki Funabashi* 1, Kazuya Nagashima*

More information

Prolabs SFP-10G-LRM. Datasheet: Transceivers. 10GBd SFP+ LRM Transceiver. Ordering Information. Introduction. Ordering Information SFP-10G-LRM

Prolabs SFP-10G-LRM. Datasheet: Transceivers. 10GBd SFP+ LRM Transceiver. Ordering Information. Introduction. Ordering Information SFP-10G-LRM Prolabs SFP-10G-LRM 10GBd SFP+ LRM Transceiver Key Features Up to 10.5 GBd bi-directional data links Compliant with IEEE 802.3aq 10GBASE-LRM Compliant with SFF8431 Hot-pluggable SFP+ footprint 1310nm FP

More information

XFP-10GB-EZR (OC192) 10GB Multirate DDMI XFP 1550nm cooled EML with APD Receiver 120km transmission distanc 10GB Multirate DDMI XFP

XFP-10GB-EZR (OC192) 10GB Multirate DDMI XFP 1550nm cooled EML with APD Receiver 120km transmission distanc 10GB Multirate DDMI XFP Feature XFP MSA Rev 4.5 compliant 120km Reach on SMF-28 fi ber utilizing Electronic Dispersion Compensation (EDC) Supports 9.95, 10.31, 10.52, 10.7 and 11.1Gb/s XFI High Speed Electrical Interface Digital

More information

Polarization Mode Dispersion and Its Mitigation Techniques in High Speed Fiber Optical Communication Systems

Polarization Mode Dispersion and Its Mitigation Techniques in High Speed Fiber Optical Communication Systems Polarization Mode Dispersion and Its Mitigation Techniques in High Speed Fiber Optical Communication Systems Chongjin Xie Bell Labs, Lucent Technologies 791 Holmdel-Keyport Road, Holmdel, NJ 07733 WOCC

More information

EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow

EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow EE 233. LIGHTWAVE SYSTEMS Chapter 2. Optical Fibers Instructor: Ivan P. Kaminow PLANAR WAVEGUIDE (RAY PICTURE) Agrawal (2004) Kogelnik PLANAR WAVEGUIDE a = (n s 2 - n c2 )/ (n f 2 - n s2 ) = asymmetry;

More information

SO-SFP-16GFC-ER-Dxxxx

SO-SFP-16GFC-ER-Dxxxx SO-SFP-16GFC-ER-Dxxxx SFP+, 16G/8G/4G FC, 10G FC, 10GBASE-ER, DWDM (ITU 921 to 960), SM, DDM, 40km, LC SO-SFP-16GFC-ER-Dxxxx Overview The SO-SFP-16GFC-ER-Dxxxx fiber optical SFP+ (small form pluggable)

More information

Introduction of 25 Gb/s VCSELs

Introduction of 25 Gb/s VCSELs Introduction of 25 Gb/s VCSELs IEEE P802.3.ba 40Gb/s and 100Gb/s Ethernet Task Force May 2008, Munich Kenichiro Yashiki - NEC Hikaru Kouta - NEC 1 Contributors and Supporters Jim Tatum - Finisar Akimasa

More information

GYM Bilgi Teknolojileri

GYM Bilgi Teknolojileri SFP Transceiver Module GLC SX MM GLC SX MM is 1000Base-SX SFP fiber optic transceiver for multimode fiber and it works at 850nm wavelength, Cisco GLC SX MM SFP is compatible with IEEE 802.3z and could

More information

Product Specification OC-48 LR-2/STM L-16.2 Multirate 2x10 SFF Transceiver FTLF1621S1xCL

Product Specification OC-48 LR-2/STM L-16.2 Multirate 2x10 SFF Transceiver FTLF1621S1xCL Product Specification OC-48 LR-2/STM L-16.2 Multirate 2x10 SFF Transceiver FTLF1621S1xCL PRODUCT FEATURES Up to 2.67Gb/s bi-directional data links Standard 2x10 pin SFF footprint (MSA compliant) Analog

More information

Dynamic Behavior of Mode Partition Noise in MMF. Petar Pepeljugoski IBM Research

Dynamic Behavior of Mode Partition Noise in MMF. Petar Pepeljugoski IBM Research Dynamic Behavior of Mode Partition Noise in MMF Petar Pepeljugoski IBM Research 1 Motivation and Issues Inconsistent treatment of mode partition noise (MPN) and relative intensity noise (RIN) in spreadsheet

More information

10GBd SFP+ Short Wavelength (850nm) Transceiver

10GBd SFP+ Short Wavelength (850nm) Transceiver Preliminary DATA SHEET CFORTH-SFP+-10G-SR 10GBd SFP+ Short Wavelength (850nm) Transceiver CFORTH-SFP+-10G-SR Overview CFORTH-SFP+-10G-SR SFP optical transceivers are based on 10G Ethernet IEEE 802.3ae

More information

XFP-10GER-192IR V Operating Environment Supply Voltage 1.8V V CC V Operating Environment Supply Current 1.8V I CC1.

XFP-10GER-192IR V Operating Environment Supply Voltage 1.8V V CC V Operating Environment Supply Current 1.8V I CC1. XFP-10GER-192IR The XFP-10GER-192IRis programmed to be fully compatible and functional with all intended CISCO switching devices. This XFP optical transceiver is designed for IEEE 802.3ae 10GBASE-ER, 10GBASE-

More information

10Gb/s 10Km CDR SFP+ 1310nm Transceivers

10Gb/s 10Km CDR SFP+ 1310nm Transceivers Features l Compliant to SFP+ MSA l Fully RoHS Compliant l All metal housing for superior EMI performance l IPF compliant mechanics (SFF-8432 Rev 5.0) l CDR with 9.95 to 11.3Gbps l Uncooled DML DFB Laser

More information

Four-wave mixing in O-band for 100G EPON John Johnson

Four-wave mixing in O-band for 100G EPON John Johnson Four-wave mixing in O-band for 100G EPON John Johnson IEEE 802.3ca Conference Call July 6, 2016 Four-wave mixing in O-band Broadcom proposed keeping all upstream and downstream wavelengths in O-band in

More information

Wavelength (nm) (m) ( o C) SPM-2100AWG 10.3 SR / SW 300 / 82 / 33* 850 VCSEL SFP+ with DMI -40 to 85 Yes

Wavelength (nm) (m) ( o C) SPM-2100AWG 10.3 SR / SW 300 / 82 / 33* 850 VCSEL SFP+ with DMI -40 to 85 Yes / SPM-2100BWG / SPM-2100AWG (RoHS Compliant) 3.3V / 850 nm / 10.3 Gb/s Digital Diagnostic SFP+ LC Multi-Mode TRANSCEIVER ********************************************************************************************************************************************************************

More information

Implementation of MLSE equalizer in OptSim and evaluation of its performance

Implementation of MLSE equalizer in OptSim and evaluation of its performance Implementation of MLSE equalizer in OptSim and evaluation of its performance A. Napoli, V. Curri, P. Poggiolini Politecnico di Torino Torino ITALY www.optcom.polito.it P. Watts, R. Killey, S. Savory University

More information

Dispersion in Optical Fibers

Dispersion in Optical Fibers Dispersion in Optical Fibers By Gildas Chauvel Anritsu Corporation TABLE OF CONTENTS Introduction Chromatic Dispersion (CD): Definition and Origin; Limit and Compensation; and Measurement Methods Polarization

More information

DWDM XENPAK Transceiver, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber

DWDM XENPAK Transceiver, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber CFORTH-DWDM-XENPAK-xx.xx Specifications Rev. D00B Preiminary DATA SHEET CFORTH-DWDM-XENPAK-xx.xx DWDM XENPAK Transceiver, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber CFORTH-DWDM-XENPAK-xx.xx

More information

100G CWDM4 MSA Technical Specifications 2km Optical Specifications

100G CWDM4 MSA Technical Specifications 2km Optical Specifications 100G CWDM4 MSA Technical Specifications 2km Specifications Participants Editor David Lewis, LUMENTUM Comment Resolution Administrator Chris Cole, Finisar The following companies were members of the CWDM4

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

User Manual. Installation Transmit Receive Module SFP/XFP

User Manual. Installation Transmit Receive Module SFP/XFP User Manual Installation Dragon PTN Transmit Receive Module SFP/XFP Installation Transmit Receive Module SFP/XFP Technical support https://hirschmann-support.belden.com The naming of copyrighted trademarks

More information

Dynamic Behavior of Mode Partition Noise in MMF. Petar Pepeljugoski IBM Research

Dynamic Behavior of Mode Partition Noise in MMF. Petar Pepeljugoski IBM Research Dynamic Behavior of Mode Partition Noise in MMF Petar Pepeljugoski IBM Research 1 Motivation and Issues Inconsistent treatment of mode partition noise (MPN) and relative intensity noise (RIN) in spreadsheet

More information

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode The International Journal Of Engineering And Science (IJES) Volume 2 Issue 7 Pages 07-11 2013 ISSN(e): 2319 1813 ISSN(p): 2319 1805 Performance Analysis of Dwdm System With Different Modulation Techique

More information

Qualifying Fiber for 10G Deployment

Qualifying Fiber for 10G Deployment Qualifying Fiber for 10G Deployment Presented by: Bob Chomycz, P.Eng. Email: BChomycz@TelecomEngineering.com Tel: 1.888.250.1562 www.telecomengineering.com 2017, Slide 1 of 25 Telecom Engineering Introduction

More information

Model OT-DCM-Fxx. Dispersion Compensation Module

Model OT-DCM-Fxx. Dispersion Compensation Module 24926 Highway 108 Sierra Village, CA 95346 Phone: (800) 545-1022 Fax: (209) 586-1026 E-Mail: sales @olsontech.com Model OT-DCM-Fxx Dispersion Compensation Module OPERATING MANUAL 24926 Highway 108 Sierra

More information

Lecture 2. Introduction to Optical. Ivan Avrutsky, ECE 5870 Optical Communication Networks, Lecture 2. Slide 1

Lecture 2. Introduction to Optical. Ivan Avrutsky, ECE 5870 Optical Communication Networks, Lecture 2. Slide 1 Lecture 2 Introduction to Optical Networks Ivan Avrutsky, ECE 5870 Optical Communication Networks, Lecture 2 Slide 1 Optical Communication Networks 1. Why optical? 2. How does it work? 3. How to design

More information

Experimental Demonstration of 56Gbps NRZ for 400GbE 2km and 10km PMD Using 100GbE Tx & Rx with Rx EQ

Experimental Demonstration of 56Gbps NRZ for 400GbE 2km and 10km PMD Using 100GbE Tx & Rx with Rx EQ Experimental Demonstration of 56Gbps NRZ for 400GbE 2km and 10km PMD Using 100GbE Tx & Rx with Rx EQ Yangjing Wen, Fei Zhu, and Yusheng Bai Huawei Technologies, US R&D Center Santa Clara, CA 95050 IEEE802.3bs

More information

DS-8G-ZR-Dxxxx. SFP+, 8/4/2/1 Gbps FC/FICON, DWDM, SM, DDM, 23dB, 80km. DS-8G-ZR-Dxxxx OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION

DS-8G-ZR-Dxxxx. SFP+, 8/4/2/1 Gbps FC/FICON, DWDM, SM, DDM, 23dB, 80km. DS-8G-ZR-Dxxxx OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION DS-8G-ZR-Dxxxx SFP+, 8/4/2/1 Gbps FC/FICON, DWDM, SM, DDM, 23dB, 80km DS-8G-ZR-Dxxxx OVERVIEW The DS-8G-ZR-Dxxxx fiber optical SFP+ (small form pluggable) transceivers are uniquely layer 1 tested and approved

More information

Exam : : Cisco Optical SONET Exam. Title. Ver :

Exam : : Cisco Optical SONET Exam. Title. Ver : Exam : 642-311 Title : Cisco Optical SONET Exam Ver : 10.05.07 QUESTION 1: The exhibit shows a 15454/15216 DWDM system and alarm indications. What are two possible sources of trouble shown in the system?

More information

DATA SHEET. MODULETEK: SFP10-CWDM-DML-xxxx-20KM-15DB-D10. 10Gb/s SFP+ CWDM 20km Transceiver. SFP10-CWDM-DML-xxxx-20KM-15DB-D10 Overview

DATA SHEET. MODULETEK: SFP10-CWDM-DML-xxxx-20KM-15DB-D10. 10Gb/s SFP+ CWDM 20km Transceiver. SFP10-CWDM-DML-xxxx-20KM-15DB-D10 Overview DATA SHEET MODULETEK: SFP10-CWDM-DML-xxxx-20KM-15DB-D10 10Gb/s SFP+ CWDM 20km Transceiver SFP10-CWDM-DML-xxxx-20KM-15DB-D10 Overview ModuleTek s SFP10-CWDM-DML-xxxx-20KM-15DB-D10 SFP+ CWDM 20km optical

More information

Performance Analysis of WDM RoF-EPON Link with and without DCF and FBG

Performance Analysis of WDM RoF-EPON Link with and without DCF and FBG Optics and Photonics Journal, 2013, 3, 163-168 http://dx.doi.org/10.4236/opj.2013.32027 Published Online June 2013 (http://www.scirp.org/journal/opj) Performance Analysis of WDM RoF-EPON Link with and

More information

Technical Specifications

Technical Specifications Switch Specifications Switch Specifications, on page 1 Power Specifications, on page SFP Transceiver Specifications, on page 4 The following table lists the environmental specifications for the Cisco MDS

More information

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating International Journal of Computational Engineering & Management, Vol. 15 Issue 5, September 2012 www..org 16 Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating P. K. Raghav 1,

More information

400G-BD4.2 Multimode Fiber 8x50Gbps Technical Specifications

400G-BD4.2 Multimode Fiber 8x50Gbps Technical Specifications 400G-BD4.2 Multimode Fiber 8x50Gbps Technical Specifications As Defined by the 400G BiDi MSA Revision 1.0 September 1, 2018 Chair Mark Nowell, Cisco Co-Chair John Petrilla, FIT Editor - Randy Clark, FIT

More information

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using Sabina #1, Manpreet Kaur *2 # M.Tech(Scholar) & Department of Electronics & Communication

More information

PROLABS JD121B-C. 10 Gigabit 1550nm SingleMode XFP Optical Transceiver, 40km Reach.

PROLABS JD121B-C. 10 Gigabit 1550nm SingleMode XFP Optical Transceiver, 40km Reach. PROLABS JD121B-C 10 Gigabit 1550nm SingleMode XFP Optical Transceiver, 40km Reach. JD121B-C Overview PROLABS s JD121B-C 10 GBd XFP optical transceivers are designed for the IEEE 802.3ae 10GBASE-ER, 10GBASE-

More information

Electronic equalization for enabling communications at OC-192 rates using OC-48 components

Electronic equalization for enabling communications at OC-192 rates using OC-48 components Electronic equalization for enabling communications at OC-192 rates using OC-48 components G. S. Kanter, A. K. Samal, O. Coskun and A. Gandhi Santel Networks, 39899 Balentine Drive, Suite 350, Newark,

More information

Pass Cisco Exam

Pass Cisco Exam Pass Cisco 642-321 Exam Number: 642-321 Passing Score: 800 Time Limit: 120 min File Version: 38.8 http://www.gratisexam.com/ Pass Cisco 642-321 Exam Exam Name : Cisco Optical SDH Exam (SDH) Braindumps

More information

Transceiver, Chassis Connectors, and Cable and Adapter Specifications

Transceiver, Chassis Connectors, and Cable and Adapter Specifications APPENDIXB Transceiver, Chassis Connectors, and Cable and Adapter Specifications Revised: January 4, 2012 This appendix covers the transceivers supported by the Catalyst 4948E and the Catalyst 4948E-F switches,

More information

MTX510E Series 10Gb/s 1550nm Electro-absorption Modulated Laser (EML) 14 Pin Package with G-S-G RF Input

MTX510E Series 10Gb/s 1550nm Electro-absorption Modulated Laser (EML) 14 Pin Package with G-S-G RF Input 10Gb/s 1550nm Electro-absorption Modulated Laser (EML) 14 Pin Package with G-S-G RF Input The MTX510E series contain an electro-absorption modulated laser (EML) module consists of a multiquantum-well DFB

More information

Design and optimization of WDM PON system using Spectrum Sliced Technique

Design and optimization of WDM PON system using Spectrum Sliced Technique Design and optimization of WDM PON system using Spectrum Sliced Technique Sukhwinder Kaur 1, Neena Gupta 2 P.G. Student, Department of Electronics and Communication Engineering, PEC University of Technology,

More information

PROLABS J9150A-C 10GBd SFP+ Short Wavelength (850nm) Transceiver

PROLABS J9150A-C 10GBd SFP+ Short Wavelength (850nm) Transceiver PROLABS J9150A-C 10GBd SFP+ Short Wavelength (850nm) Transceiver J9150A-C Overview PROLABS s J9150A-C SFP optical transceivers are based on 10G Ethernet IEEE 802.3ae standard and SFF 8431 standard, and

More information

Variation in Multimode Fiber Response: Summary of Experimental Results

Variation in Multimode Fiber Response: Summary of Experimental Results Summary of Experimental Results IEEE P802.3aq 10GBASE-LRM, Task Group 4 November, 2004, San Antonio Infineon Fiber Optics, Infineon Fiber Optics Page 1 Summary of Experimental Results! Introduction A variation

More information

10GBASE-S Technical Feasibility RECAP

10GBASE-S Technical Feasibility RECAP 10GBASE-S Technical Feasibility RECAP Picolight Cielo Stratos Lightwave Corning CDT-Optical Lucent IBM IEEE P802.3ae Austin, TX November 2001 Plenary meeting 1 10GBASE-S Feasibility supporters Bob Grow,

More information

Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands

Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands A Presentation to EE1001 Class of Electrical Engineering Department at University of Minnesota Duluth By Professor Imran Hayee Smartphone

More information

Lecture 10. Dielectric Waveguides and Optical Fibers

Lecture 10. Dielectric Waveguides and Optical Fibers Lecture 10 Dielectric Waveguides and Optical Fibers Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions Step-Index Fiber, Multimode and Single Mode Fibers Numerical Aperture, Coupling

More information

EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

More information

Chapter 3 Signal Degradation in Optical Fibers

Chapter 3 Signal Degradation in Optical Fibers What about the loss in optical fiber? Why and to what degree do optical signals gets distorted as they propagate along a fiber? Fiber links are limited by in path length by attenuation and pulse distortion.

More information

ENDLESS INNOVATION OPTICAL FIBER. Bendfree Bendfree+ UltraPass. WidePass. Ultra Bendfree

ENDLESS INNOVATION OPTICAL FIBER. Bendfree Bendfree+ UltraPass. WidePass. Ultra Bendfree ENDLESS INNOVATION Today, vast amounts of information are running across the transmission at extremely high speeds. OPTICAL FIBER Samsung offers a full line of optical fibers for all network applications,

More information

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University Optical Digital Transmission Systems Xavier Fernando ADROIT Lab Ryerson University Overview In this section we cover point-to-point digital transmission link design issues (Ch8): Link power budget calculations

More information