Simulation of Interline Dynamic Voltage Restorer for Sag/Swell Compensation and Power factor Improvement in Hybrid Electric System

Size: px
Start display at page:

Download "Simulation of Interline Dynamic Voltage Restorer for Sag/Swell Compensation and Power factor Improvement in Hybrid Electric System"

Transcription

1 Simulation of Interline Dynamic Voltage Restorer for Sag/Swell Compensation and Power factor Improvement in Hybrid Electric System Mr.A.Mohammad Ovaiz Assistant Professor DR.RR, DR.SR Engineering college Chennai Kanaka Divya. V DR.RR, DR.SR Engineering College Chennai. Kankadivya48@gmail.c om Abstract This paper has highly beneficial in application oriented and mainly deals with improving the power quality on the distribution side in remote areas using an interline dynamic voltage restorer (IDVR).This IDVR is made up of several DVRs with a common dc link. When the voltage sags/ swells the active power from one feeder is transferred to other and this sag or swell for long durations can be mitigated and the Displacement Factor (DF) is very low depending upon the additional burden to the electrical supply side. This will affects the system voltage regulation and utilization of power in system is low. To overcome this limitations, in this paper the DF value is tuned using the power control and voltage control modes. Here the IDVR injects the voltage using PQ sharing which adjusts the DF value and thus the power quality as well as real and reactive power is improved. The performance of the proposed topology is verified by simulating using Mat lab/simulink. Keywords Back-to-Back voltage source Inverter, DVR, Interline Dynamic Voltage Restorer (IDVR), Displacement factor, Common DC link capacitor, power quality I. INTRODUCTION NOWADAYS, a lot of people exertions need aid accomplished for control personal satisfaction change. The voltage sag may be a standout amongst those significant power quality challenges for touchy loads [1]. Depending upon the duration and magnitude of the voltage sag/swell the damages on the consumers will be different. [2], [3]. The secondary costs about these ISSN: Girija. R DR.RR DR.SR Engineering College Chennai. giri30laxmi12@gmai l.com Christina.A Dr.RR,DR.SR Engineering college Chennai harms defend the expanding interest towards voltage sag mitigation techniques. Dynamic voltage restorers (DVRs) is a power electronic device used for compensating the voltage sag mitigation in the distribution side of power system [4]. Voltage sag can be compensated using the DVR by purely injecting a reactive power or combination of active and reactive power, but some amount of voltage drop is only compensated by injecting the reactive power attained. The compensation capacity is mainly depend upon the greatest achievable inverter voltage, the energy stored in the dc link, duration of voltage sag [5]-[8]. The compensation capability with the least energy is limited when the voltage sag exceeds some certain value, which is a function of load power factor [5]. Even though this method reduces energy consumption, the long term and deeper voltage sag cannot be completely compensated by injecting the reactive power. Therefore to have a complete compensation, it is necessary to inject both active and reactive power in distribution side. An interline DVR (IDVR) has been proposed in [9].The IDVR consist of several DVRs with a common DC link. It protects the touchy loads against voltage sags, by locating each DVR in an independent feeder. Therefore one of the DVRs in IDVR starts to compensate the voltage sag,other DVRs replenish the common dc-link voltage. In [10], the capability of DVR is extended to mitigate deeper voltage sags. In this shunt reactance is parallel 8 1

2 connected with the load to decrease the load power factor during the voltage sag condition. Using demonstrated phasor diagram in Fig. 2(a), (1) can be written as, In [11], the capacity of IDVR in compensating the sag at high power factor is improved by two 7-level cascaded H-bridge converters with common dc link. But due to the 24 switches used in the two 7-level cascaded H-bridge (multilevel inverter) the harmonics in each switches are high therefore the loss will be more, efficiency will be reduced and power factor will be less. PDVR1=VL1IL1Cos(ɸ1)-VS1IL1Cos(ɸ1-α) To overcome this limitation, a topology is proposed in this paper which reduces the total harmonics and which not only improves the capacity and ability of compensator to mitigate very deep sags at high and moderate factors and also displacement factor is improved by PQ sharing.in this paper, voltage sag is compensated by using an IDVR which employs two voltage source inverters (12 switches) with a common DC link in a three phase mode as in Fig1. Finally, the validity of the proposed configuration and its effectiveness is verified by simulation and experimental results. (2) Where it is obvious that load current IL1 is equal to source current IS1 due to series connection of DVR1 with load1. When minimum energy method is adopted for sag compensation, (2) is modified as, ME PDVR 1 ifvs 1 VL 1Cos( 1 ) 0 VL 1 I L 1 ( Cos( 1 ) VS 1 / VL 1 ) ifv V Cos( ) S1 L1 1 (3) Moreover, active power which is drown by DVR2 from feeder2 can be derived from Fig. 2(b) as follows, PDVR2 =VL2IL2(Cos(ɸ2-β) -Cos (ɸ2) ) (4) where injected voltage by DVR2 during sag period leads to a phase difference between V L2 and VS2 which is defined as According to (4), the maximum transferable active power is achieved when β is equal to φ2(phase of load2). In this condition, and (4) can be written as max PDVR 2 VL 2 I L 2 (1 Cos( 2 )) (5) Assuming that SL1=ρSL2 and VL1=IL1=1 p.u.,β can be derived from (3) and (4) as 0 Vsag 1 Cos( 1 ) 1 2 Cos ( Cos( 1 ) Cos( 2 ) (Vsag 1)) V sag 1 Cos( 1 ) (6) Fig.1. Schematic diagram of an IDVR with two feeder system II. OPERATING PRINCIPLES OF IDVR Interline Dynamic Voltage Restorer is a power electronic converter based device compensator that can protect touchy loads from disturbances of supply side other than outages. Interline dynamic voltage restorer (IDVR) plays a most important role in mitigating deeper voltage sag in distribution system. The IDVR system consists of several DVRs connected to different feeders with a common dc link, where these two independent feeders can be of the same or different voltage magnitude level. When one of the DVRs compensates for voltage sag, then the other DVR in IDVR system used to replenish the common dc link. Assuming P S1 and PL1 to be source 1 and load 1 active power, then the injected active power by DVR1 would be PDVR1=PL1-PS1 ISSN: (1) Fig.2.Phasor diagram of IDVR during voltage sag compensation (a) DVR1 injecting voltage (b) DVR2 injecting voltage 9 2

3 From (6), it is seen that for sag depth less than 1 Cos (ɸ1) p.u., DVR2 is not involved to power exchange and just DVR1 compensates the sag. But, for sag values greater than 1 Cos (ɸ1) p.u., DVR2 starts to exchange active power from feeder2 to feeder1 and participates in the compensation. In this case, the maximum value of β is φ2and the maximum voltage sag that can be compensated is obtained by ME max max PDVR 1 PDVR 2 Vsag 1 1 (Cos ( 1 ) Cos ( 2 )) (7) In other words, for voltage sags greater than Vsagmaxp.u., IDVR is not capable to compensate it completely. III. MODEL SYSTEM The maximum power at DVR2 depends on the load power factor and at Cos(φ2),(i.e.,) the injection of active power is limited at high power factors and due to the more no of switches used in multilevel inverter the switching losses and harmonic distortions are high. To overcome this limitations and to improve the performance of IDVR, the load power factor has to decrease during the sag period. To overcome this issues, the two three phase voltage source inverter based IDVR is used and the fixed inductance with reactive power is connected paralleled to each load. To determine the real and reactive power for improving the displacement factor by PQ sharing the fixed inductance is paralleled to each load. subtracted for phase angle(φ).for real power, both magnitude and angle is multiplied by cosine and for reactive power both magnitude and angle is multiplied by sine. IV. VSI BASED IDVR The two three phase voltage source inverter is used instead of using single Z source inverter and Cascaded H-Bridge multilevel inverter. The Z source inverter is connected commonly for two feeder lines, whereas in this the three phase voltage source inverter is connected separately for each feeder line. So that if the voltage sag occurs in each line can be compensated completely. In cascaded H-bridge multilevel inverter consist of 24 switches so that switching losses will be high and harmonics also be high whereas in this proposed scheme totally 12 switches are used. Therefore switching losses is less and total harmonic distortion is also. In this two 3 phase voltage source inverter, VSI 1 is connected to feeder line 1 and VSI 2 is connected to feeder line2. If voltage sag is occurred in feeder 1 then VSI1 is used to compensate and VSI2 is used to replenish the common dc link. Similarly if voltage sag is occurred in feeder 2 then VSI2 is used to compensate the voltage sag and VSI1 is used to replenish the common dc link. The switching operation: there are six combinations of conducting switches during an will be shown later the fundamental component of the three output cycle:(sw5, Sw6, Sw1), (Sw6, Sw1, Sw2), (Sw1, Sw2, Sw3), (Sw2, Sw3, Sw4), (Sw3, Sw4, Sw5), (Sw4, Sw5, Sw6). The output from this inverter is to be fed to a 3-phase balanced load Fig.3. Block diagram of proposed system As shown in above fig (3), the voltage and current from the inductance of each feeder line is carried out. By using Fast Fourier Transform the magnitude and phase shift of voltage and current are determined. Then magnitude of both voltage and current are multiplied and phase shift of current and voltage are ISSN: 10 3

4 Fig.4.schematic diagram of 3 phase VSI Fig.6.Grid Voltage at Condition in Distribution Line1 Here this inverter is used to inject the real power into the series transformer which is connected in feeder line when the voltage sag is occurred in the line. When the voltage swell occurs the voltage will be stored in the capacitor which is connected with common dc link voltage (130v). This DC link capacitor is replenished by one of the DVR in the IDVR system. V. Parameters of under experiment system Parameters Modulation Switching frequency PFs of the loads DC-link capacitor Value Phase shifted PWM 1KHz µF Total DC-link voltage Rated voltage (rms) 130v 415v Inductance value 1mH V. SIMULATION RESULT The detailed investigate of IDVR system consists of different feeder with parameter to be carried out using MATLAB/SIMULINK. Simulation has been carried out in IDVR system consisting of two line of 200v voltage. The restoration capability and performance of IDVR was tested by simulation using MATLAB/SIMULINK. Initially the IDVR system was subjected to voltage sag 50%. The transient performance of voltage sag front and recovery using simulation were observed also the performance was evaluated when the dc voltage drop during sag. It shows that IDVR using VSI, storage energy in common DC link can be utilized during the voltage compensation with use of boost property of the inverter. ISSN: 11 4

5 Fig.7.Grid Voltage at Condition after injection IDVR in Line 1 Fig.8.Grid Current at Condition in Distribution Line 1 Fig.10.Grid Voltage at Condition in Distribution Line 2 Fig.12.Grid Current at Condition in Distribution Line 2 ISSN: Fig.14.Real & Reactive power at condition before injection IDVR in Line 1 Fig.9Grid Current at Condition after injection IDVR in Line1 Fig11..Grid Voltage at Condition after injection IDVR in Line 2 Fig.13.Grid Current at Condition after injection IDVR in Line1 125

6 Fig.15. Real & Reactive power at condition after injection IDVR in Line1 Fig.16. Real & Reactive power at condition before injection in Line2 VI. CONCLUSION This paper proposes the concept of IDVR, which is an economical approach to improve power quality. In this mode, the DF feeder is improved via active and reactive power exchange (PQ sharing) between feeders through the common dc link. The main conclusion of this work can be summarized as follow: 1. In this mode, IDVR connected parallel to the impedance instead of reactance, the current will be tuned, real power and reactive power are also compensated thus increase the Displacement Factor (DF) When applying the proposed concept, DF of source feeder will have a notable improvement 2. using of minimum switches in inverter in this proposed IDVR, the switching losses is reduced and THD also reduced the harmonics. 3. The proposed mode is highly beneficial in application oriented, here we are using two sources in which one is DC source (solar) which is converted into AC and another one is of direct AC source like diesel power plant/wind mill. While utilize the stored energy (common DC link) with the used of boost convertor capability of the VSI using PI controller. The simulation shows that in IDVR system can mitigate about the deep voltage sag with long duration. The proposed concept has been supported with simulation and experimental result. VII. REFERENCES [1]P.F. Comesana, D.F. Freijedo, J.D. Gandoy, O. Lopez, A.G. Yepes, J. Malvar, "Mitigation of voltage sags, imbalances and harmonics in sensitive industrial loads by means of a series power line conditioner" Electric Power systems Research 84 (2012) [2] A. Felce, S. A. C. A. Inelectra, G. Matas, and Y. ISSN: Da Silva, Voltage Sag Analysis and Solution for an Industrial Plant with Embedded Induction Motors, In Industry Applications Conference, th IAS Annual meeting, conference record of 2004 IEEE, vol. 4, pp Fig17. Real & Reactive power at condition after injection IDVR in Distribution Line2 [3] A. Sannino, M. G. Miller, and M. H. J. Bollen, "Overview of voltage sag mitigation", Proc. IEEE Power Eng. Soc. Winter Meeting, vol. 4, pp [4] E. Babaei, M. F. Kangarlu, and M. Sabahi, Mitigation of voltage disturbances using dynamic voltage restorer based on direct converters, IEEE Trans. Power Del., vol. 25, no. 4, pp , Oct [5] D. M. Vilathgamuwa, A. A. D. R. Perera and S. S. Choi "Voltage sag compensation with energy optimized dynamic voltage restorer", IEEE Trans. Power Del., vol. 18, no. 3, pp [6] N. A. Samra, C. Neft, A. Sundaram, and W. Malcolm, The distribution system dynamic voltage restorer and its applications at industrial facilities with sensitive loads, in Proc. Power Conversion Intell. Mo-tion Power Quality, Long Beach, CA, Sept [7] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, Dynamic voltage restoration with minimum energy injection, IEEE Trans. Power System, vol. 15, pp , Feb [8] J. G. Nielsen and F. Blaabjerg, "A detailed comparison of system topologies for dynamic voltage restorers", IEEE Trans. Ind. Appl., vol. 41, no. 5, pp [9] D. Vilathgamuwa, H. Wijekoon and S. Choi "A novel technique to compensate voltage sags in multiline distribution system The interline dynamic voltage restorer", IEEE Trans. Ind. Electron., vol. 53, no. 5, pp [10] M. Moradlou and H. R. Karshenas "Design strategy for optimum rating selection of interline DVR", IEEE Trans. Power Del., vol. 26, no. 1, 13 6

7 pp [11] S. Galeshi and H. Iman-Eini, "A dynamic voltage restorer using multilevel cascaded inverter and capacitors as energy sources," in Proc rd Power Electronics, Drive Systems and Technologies Conference, pp [12] H. K. Al-Hadidi and A. M. Gole "Minimum power operation of cascade inverter based dynamic voltage restorer", Proc. 3rd Inst. Elect. Eng. Int. Conf. PEMD, pp [13] Elserougi, Ahmed, A. Massoud, A. AbdelKhalik, Shehab Ahmed, and A. Hossam-Eldin. "An Interline Dynamic Voltage Restoring and Displacement Factor Controlling Device (IVDFC)." IEEE Trans. on Power Electronics, vol.29, no.3, pp , January [14]S. Sri Krishna Kumar and Dr. P.K. Dhal, Modelling and analysis of Multiple output inverters, ARPN Journal of Engineering and Applied Sciences, vol.11,no.3, February 2016,pp ISSN: 14 7

A Multilevel Diode Clamped SVPWM Based Interline Dynamic Voltage Restorer with Sag & Swell Limiting Function

A Multilevel Diode Clamped SVPWM Based Interline Dynamic Voltage Restorer with Sag & Swell Limiting Function International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 5 (2017) pp. 751-760 Research India Publications http://www.ripublication.com A Multilevel Diode Clamped SVPWM

More information

IMPROVING THE COMPENSATION CAPACITY OF INTERLINE DYNAMIC VOLTAGE RESTORER

IMPROVING THE COMPENSATION CAPACITY OF INTERLINE DYNAMIC VOLTAGE RESTORER IMPROVING THE COMPENSATION CAPACITY OF INTERLINE DYNAMIC VOLTAGE RESTORER C.Ratna Kumari and T. Kishore Kumar PG Scholar, Dept of EEE, KSRM College of Engineering (Autonomous), Kadapa, AP, India. Assistant

More information

Sag/Swell Compensation and Displacement Factor Improvement using IDVR in Distribution Network

Sag/Swell Compensation and Displacement Factor Improvement using IDVR in Distribution Network Voltage Sag/Swell Compensation and Displacement Factor Improvement using IDVR in Distribution Network Vinothini.R 1 Balamurugan.M 2 PG Scholar, Power Electronics and Drives, Associate Prof, Head of EEE

More information

Design of Interline Dynamic Voltage Restorer for Voltage Sag Compensation

Design of Interline Dynamic Voltage Restorer for Voltage Sag Compensation Design of Interline Dynamic Voltage Restorer for Voltage Sag Compensation Anandan.D 1, Karthick.B 2, Soniya.R 3, Vanthiyadevan.T 4, V.Karthivel, M.E., 5 U.G. Student, Department of EEE, Angel College of,

More information

Harmonic Reduction in Five Level Inverter Based Dynamic Voltage Restorer

Harmonic Reduction in Five Level Inverter Based Dynamic Voltage Restorer Research Journal of Applied Sciences, Engineering and Technology 2(8): 789-797, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted date: September 27, 2010 Accepted date: November 18,

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter Mahesh Ahuja 1, B.Anjanee Kumar 2 Student (M.E), Power Electronics, RITEE, Raipur, India 1 Assistant

More information

Compensation of Unbalanced Sags/Swells by Single Phase Dynamic Voltage Restorer

Compensation of Unbalanced Sags/Swells by Single Phase Dynamic Voltage Restorer Compensation of nbalanced Sags/Swells by Single Phase Dynamic Voltage Restorer S.Manmadha Rao, S.V.R.akshmi Kumari, B.Srinivasa Rao singamsetty47@gmail.com Abstract- Power quality is the most important

More information

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

Design Strategy for Optimum Rating Selection of Interline D-STATCOM International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 3 ǁ March. 2013 ǁ PP.12-17 Design Strategy for Optimum Rating Selection of Interline

More information

ISSN Vol.03,Issue.11, December-2015, Pages:

ISSN Vol.03,Issue.11, December-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.11, December-2015, Pages:2020-2026 Power Quality Improvement using BESS Based Dynamic Voltage Restorer B. ABHINETHRI 1, K. SABITHA 2 1 PG Scholar, Dr. K.V. Subba

More information

Power Quality Improvement by DVR

Power Quality Improvement by DVR Power Quality Improvement by DVR K Rama Lakshmi M.Tech Student Department of EEE Gokul Institute of Technology and Sciences, Piridi, Bobbili Vizianagaram, AP, India. Abstract The dynamic voltage restorer

More information

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Mitigating Voltage Sag Using Dynamic Voltage Restorer Mitigating Voltage Sag Using Dynamic Voltage Restorer Sumit A. Borakhade 1, R.S. Pote 2 1 (M.E Scholar Electrical Engineering, S.S.G.M.C.E. / S.G.B.A.U. Amravati, India) 2 (Associate Professor, Electrical

More information

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 09 (September. 2014), V3 PP 11-20 www.iosrjen.org A Versatile Control Scheme for UPQC for Power Quality Improvement

More information

Investigation of Inter-Line Dynamic Voltage Restorer in Multi Feeder Distribution System for Voltage Sag Mitigation

Investigation of Inter-Line Dynamic Voltage Restorer in Multi Feeder Distribution System for Voltage Sag Mitigation Proceedings of the 14th nternational Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-1, 010, Paper D 163. nvestigation of nter-line Dynamic Voltage Restorer in Multi

More information

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition ISSN (Online) 232 24 ISSN (Print) 232 5526 Vol. 2, Issue 7, July 24 Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition Brijesh Parmar, Prof. Shivani Johri 2, Chetan

More information

Voltage Sag and Mitigation Using Dynamic Voltage Restorer (DVR) System

Voltage Sag and Mitigation Using Dynamic Voltage Restorer (DVR) System Faculty of Electrical Engineering Universiti Teknologi Malaysia OL. 8, NO., 006, 3 37 ELEKTRIKA oltage Sag and Mitigation Using Dynamic oltage Restorer (DR) System Shairul Wizmar Wahab and Alias Mohd Yusof

More information

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality P.Padmavathi, M.L.Dwarakanath, N.Sharief, K.Jyothi Abstract This paper presents an investigation

More information

ISSN Vol.07,Issue.21, December-2015, Pages:

ISSN Vol.07,Issue.21, December-2015, Pages: ISSN 2348 2370 Vol.07,Issue.21, December-2015, Pages:4128-4132 www.ijatir.org Mitigation of Multi Sag/Swell using DVR with Hysteresis Voltage Control DAKOJU H V V S S N MURTHY 1, V. KAMARAJU 2 1 PG Scholar,

More information

FAULT CURRENT LIMITER IN SINGLE PHASE AND THREE PHASE LINES FOR COMPENSATING VOLTAGE SAG

FAULT CURRENT LIMITER IN SINGLE PHASE AND THREE PHASE LINES FOR COMPENSATING VOLTAGE SAG FAULT CURRENT LIMITER IN SINGLE PHASE AND THREE PHASE LINES FOR COMPENSATING VOLTAGE SAG B. Navya Sree 1, K.Sudha 2, U. Madhuri 3 1 Asst. Professor, Department of Electrical and Electronics Engineering,

More information

Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System

Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System Rohit Singh 1 and Shavet Sharma 2 1,2 Department of Electrical Engineering, Sri Sai College

More information

Improvement of Power Quality Using a Hybrid Interline UPQC

Improvement of Power Quality Using a Hybrid Interline UPQC Improvement of Power Quality Using a Hybrid Interline UPQC M.K.Elango 1, C.Vengatesh Department of Electrical and Electronics Engineering K.S.Rangasamy College of Technology Tiruchengode, Tamilnadu, India

More information

Comparative Study of Sag & Swell Mitigation by a Novel Multi Level DVR with Wavelets

Comparative Study of Sag & Swell Mitigation by a Novel Multi Level DVR with Wavelets Comparative Study of Sag & Swell Mitigation by a Novel Multi Level DVR with Wavelets G. Devadasu Department of EEE, CMR College of Engineering and Technology Dr. M. Sushama Department of EEE, JNTUH University

More information

Modeling and Analysis of a Nonlinear Adaptive Filter Control for Interline Unified Power Quality Conditioner

Modeling and Analysis of a Nonlinear Adaptive Filter Control for Interline Unified Power Quality Conditioner Modeling and Analysis of a Nonlinear Adaptive Filter Control for Interline Unified Power Quality Conditioner 1 Tahsin Köro lu, 2 Mustafa nci, 3 K. Ça atay Bay nd r, 4 Mehmet Tümay 1 Osmaniye Korkut Ata

More information

A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S

A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S M.L.SAMPATH KUMAR*1, FIROZ-ALI-MD*2 M.Tech Student, Department of EEE, NCET, jupudi, Ibrahimpatnam, Vijayawada,

More information

Optimum placement of capacitor in distribution system using a DVR with ANN Technique

Optimum placement of capacitor in distribution system using a DVR with ANN Technique Optimum placement of capacitor in distribution system using a DVR with ANN Technique S Tanya Priyanka*, J Krishna Kishore** *1 M.Tech student, Department of E.E.E, QIS College of Engineering and Technology,

More information

SIMULATION VERIFICATION OF DYNAMIC VOLTAGE RESTORER USING HYSTERESIS BAND VOLTAGE CONTROL

SIMULATION VERIFICATION OF DYNAMIC VOLTAGE RESTORER USING HYSTERESIS BAND VOLTAGE CONTROL SIMULATION VERIFICATION OF DYNAMIC VOLTAGE RESTORER USING HYSTERESIS BAND VOLTAGE CONTROL 1 R V D Rama Rao*, 2 Dr.Subhransu Sekhar Dash, Assoc. Professor, Narasaraopeta Engineering College, Narasaraopet

More information

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating P.Ankineedu Prasad 1, N.Venkateswarlu 2. V.Ramesh 3, L.V.Narasimharao 4 Assistant Professor 12 & Professor 4& Research Scholar

More information

Voltage Quality Enhancement in an Isolated Power System through Series Compensator

Voltage Quality Enhancement in an Isolated Power System through Series Compensator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 6 (June 2016), PP.20-26 Voltage Quality Enhancement in an Isolated Power

More information

Power Quality Improvement using Hysteresis Voltage Control of DVR

Power Quality Improvement using Hysteresis Voltage Control of DVR Power Quality Improvement using Hysteresis Voltage Control of DVR J Sivasankari 1, U.Shyamala 2, M.Vigneshwaran 3 P.G Scholar, Dept of EEE, M.Kumarasamy college of Engineering, Karur, Tamilnadu, India

More information

Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM)

Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM) Vol. 3, Issue. 4, Jul. - Aug. 2013 pp-2367-2373 ISSN: 2249-6645 Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM) B. Giri Prasad Reddy 1, V. Obul

More information

A Power Control Scheme for UPQC for Power Quality Improvement

A Power Control Scheme for UPQC for Power Quality Improvement A Power Control Scheme for UPQC for Power Quality Improvement 1 Rimpi Rani, 2 Sanjeev Kumar, 3 Kusum Choudhary 1 Student (M.Tech), 23 Assistant Professor 12 Department of Electrical Engineering, 12 Yamuna

More information

Compensation for Voltage and Current in Multifeeder System Using MC-UPQC

Compensation for Voltage and Current in Multifeeder System Using MC-UPQC International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 5 (August 2012), PP. 47-55 Compensation for Voltage and Current in Multifeeder

More information

Design an Interline Dynamic Voltage Restorer for Voltage Sag Compensation using Z-Source Inverter

Design an Interline Dynamic Voltage Restorer for Voltage Sag Compensation using Z-Source Inverter International Journal of Electrical Engineering. ISSN 0974-2158 Volume 4, Number 5 (2011), pp. 541-554 International Research Publication House http://www.irphouse.com Design an Interline Dynamic Voltage

More information

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 7 (July 2014), PP.01-15 Reduction of Voltage Imbalance in a Two Feeder

More information

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) VOL. 4, NO. 4, JUNE 9 ISSN 89-668 6-9 Asian Research Publishing Network (ARPN). All rights reserved. MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) Rosli Omar and Nasrudin Abd Rahim

More information

Kalman Filter Based Unified Power Quality Conditioner for Output Regulation

Kalman Filter Based Unified Power Quality Conditioner for Output Regulation Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 3 (2014), pp. 247-252 Research India Publications http://www.ripublication.com/aeee.htm Kalman Filter Based Unified Power

More information

DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER

DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER 1 V.JAYALAKSHMI, 2 DR.N.O.GUNASEKHAR 1 Research Scholar, Bharath University, Chennai, Tamil Nadu, India. 2 Professor, Eswari Engineering College,

More information

Performance of DVR & Distribution STATCOM in Power Systems

Performance of DVR & Distribution STATCOM in Power Systems International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 232-869 Volume: 3 Issue: 2 83 89 Performance of DVR & Distribution STATCOM in Power Systems Akil Ahemad Electrical

More information

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System Rosli Omar, 1 N.A Rahim 2 1 aculty of Electrical Engineering, Universiti Teknikal Malaysia

More information

LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER OF UPQC

LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER OF UPQC International Journal of Advances in Applied Science and Engineering (IJAEAS) ISSN (P): 2348-1811; ISSN (E): 2348-182X Vol-1, Iss.-3, JUNE 2014, 220-225 IIST LOAD REACTIVE POWER COMPENSATION BY USING SERIES

More information

UPQC for Improvement Power Quality.

UPQC for Improvement Power Quality. International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 4, Issue 4 [Sep 2014] PP: 07-19 UPQC for Improvement Power Quality. Dr.S Kamakshaiah 1 Ashwini Kumar 2 1,2, Dept

More information

Design Of An Integrated Dynamic Voltage Restorer-Ultracapacitor For Improving The Power Quality Of The Distribution Grid

Design Of An Integrated Dynamic Voltage Restorer-Ultracapacitor For Improving The Power Quality Of The Distribution Grid Design Of An Integrated Dynamic Voltage Restorer-Ultracapacitor For Improving The Power Quality Of The Distribution Grid K.Jaya Maha Lakshmi, smt M.Kumudwathi Abstract- In this paper, a new idea is presented

More information

Mitigation of Voltage Sag/Swell by Using Battery Energy Storage DVR for Induction Motor Drive Applications

Mitigation of Voltage Sag/Swell by Using Battery Energy Storage DVR for Induction Motor Drive Applications Mitigation of Voltage Sag/Swell by Using Battery Energy Storage DVR for Induction Motor Drive Applications N.Vani Sunanda PG Student, Department of EEE, Sir C.V. Raman College of Engineering, AP, India.

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances ISSN: 227881 Vol. 1 Issue 1, December- 212 Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances B.Sasikala 1, Khamruddin Syed 2 Department of Electrical and

More information

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 Unit.2-Voltage Sag D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 13/09/2012 Unit.2 Voltage sag 1 Unit-2 -Voltage Sag Mitigation Using

More information

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS SIMUATION OF D-STATCOM AND DVR IN POWER SYSTEMS S.V Ravi Kumar 1 and S. Siva Nagaraju 1 1 J.N.T.U. College of Engineering, KAKINADA, A.P, India E-mail: ravijntu@gmail.com ABSTRACT A Power quality problem

More information

SIMULATION OF D-STATCOM IN POWER SYSTEM

SIMULATION OF D-STATCOM IN POWER SYSTEM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) SIMULATION OF D-STATCOM IN POWER SYSTEM Akil Ahemad 1, Sayyad Naimuddin 2 1 (Assistant Prof. Electrical Engineering Dept., Anjuman college

More information

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC N. Uma Maheshwar, Assistant Professor, EEE, Nalla Narasimha Reddy Group of Institutions. T. Sreekanth,

More information

VOLTAGE SAG COMPENSATION USING UNIFIED POWER FLOWER CONTROLLER IN MV POWER SYSTEM USING FUZZY CONTROLLER

VOLTAGE SAG COMPENSATION USING UNIFIED POWER FLOWER CONTROLLER IN MV POWER SYSTEM USING FUZZY CONTROLLER VOLTAGE SAG COMPENSATION USING UNIFIED POWER FLOWER CONTROLLER IN MV POWER SYSTEM USING FUZZY CONTROLLER Alefy B. 1, * Hosseini Firouz M. 1, and Memarinezhad H. 2 1 Department of Electrical Engineering,

More information

FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM

FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM P. K. Mani 1 and K. Siddappa Naidu 2 1 Department of Electrical and Electronics Engineering, Vel

More information

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System G. Laxminarayana 1, S. Raja Shekhar 2 1, 2 Aurora s Engineering College, Bhongir, India Abstract: In this

More information

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 8 (September 2012), PP. 16-20 Implementation of SRF based Multilevel Shunt

More information

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 36-41 Analysis, Modeling and Simulation of Dynamic Voltage

More information

Downloaded from

Downloaded from Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 330 Power Quality Improvement Using UPQC Chandrashekhar Reddy S Assoc.Professor, Dept.of Electrical

More information

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES P. K. Mani 1 and K. Siddappa Naidu 2 1 Department of Electrical and Electronics Engineering, Vel Tech Multitech Dr. Rangarajan Dr. Sakunthala Engineering

More information

Power Quality Improvement By Using CHB Inverter Based DVR

Power Quality Improvement By Using CHB Inverter Based DVR International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 5 Issue: 6 June 28 www.irjet.net p-issn: 2395-72 Power Quality Improvement By Using CHB Inverter Based DVR Bharti

More information

SUPER CONDUCTING MAGNETIC ENERGY SYSTEM WITH DVR FOR VOLTAGE QUALITY IMPROVEMENT USING PSO BASED SIMPLE ABC FRAME THEORY

SUPER CONDUCTING MAGNETIC ENERGY SYSTEM WITH DVR FOR VOLTAGE QUALITY IMPROVEMENT USING PSO BASED SIMPLE ABC FRAME THEORY International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 2250-155X; ISSN(E): 2278-943X Vol. 7, Issue 2, Apr 2017, 1-10 TJPRC Pvt. Ltd. SUPER CONDUCTING MAGNETIC ENERGY

More information

Multifunctional Dynamic Voltage Restorer Using Matrix Converter Resmi. S, Reshmi. V, Joffie Jacob Amal Jyothi College of Engineering, Kanjirappally

Multifunctional Dynamic Voltage Restorer Using Matrix Converter Resmi. S, Reshmi. V, Joffie Jacob Amal Jyothi College of Engineering, Kanjirappally Multifunctional Dynamic Voltage Restorer Using Matrix Converter Resmi. S, Reshmi. V, Joffie Jacob Amal Jyothi College of Engineering, Kanjirappally Abstract Power Quality (PQ) has become a critical issue

More information

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN A novel control strategy for Mitigation of Inrush currents in Load Transformers using Series Voltage source Converter Pulijala Pandu Ranga Rao *1, VenuGopal Reddy Bodha *2 #1 PG student, Power Electronics

More information

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method Vol.2, Issue.3, May-June 2012 pp-682-686 ISSN: 2249-6645 Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method C. Prakash 1, N. Suparna 2 1 PG Scholar,

More information

Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM)

Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM) Vol.2, Issue.2, Mar-Apr 2012 pp-506-511 ISSN: 2249-6645 Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM) P. RAMESH 1, C. SURYA CHANDRA REDDY 2, D. PRASAD 3,

More information

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): 2349-784X A Synchronous Reference Frame Theory-Space Vector Modulation (SRF SPVM) based Active

More information

Power Quality Improvement by Simultaneous Controlling of Active and Reactive Powers in UPQC-S

Power Quality Improvement by Simultaneous Controlling of Active and Reactive Powers in UPQC-S International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Power Quality Improvement by Simultaneous Controlling of Active and Reactive Powers in UPQC-S Dr.Chandrashekhar

More information

Design and Simulation of Dynamic Voltage Restorer (DVR) Using Sinusoidal Pulse Width Modulation (SPWM)

Design and Simulation of Dynamic Voltage Restorer (DVR) Using Sinusoidal Pulse Width Modulation (SPWM) 6th NATIONAL POWER SYSTEMS CONFERENCE, 5th-7th DECEMBER, 2 37 Design and Simulation of Dynamic Voltage Restorer (DVR) Using Sinusoidal Pulse Width Modulation (SPWM) Saripalli Rajesh *, Mahesh K. Mishra,

More information

Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer

Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer Australian Journal of Basic and Applied Sciences, 4(8): 3959-3969, 2010 ISSN 1991-8178 Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer

More information

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source International Journal of Emerging Engineering Research and Technology Volume 2, Issue 3, June 2014, PP 220-229 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Load Compensation at a Reduced DC Link Voltage

More information

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India) ISSN: 2349-7637 (Online) RESEARCH HUB International Multidisciplinary Research Journal (RHIMRJ) Research Paper Available online at: www.rhimrj.com Modeling and Simulation of Distribution STATCOM Bhavin

More information

UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEM FOR ENHANCING POWER QUALITY

UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEM FOR ENHANCING POWER QUALITY International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 6, Nov Dec, 2016, pp.55 63, Article ID: IJEET_07_06_005 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=6

More information

PERFORMANCE OF DVR UNDER VOLTAGE SAG AND SWELLS CONDITIONS FOR POWER QUALITY IMPROVEMENTS

PERFORMANCE OF DVR UNDER VOLTAGE SAG AND SWELLS CONDITIONS FOR POWER QUALITY IMPROVEMENTS International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization of IOTPE ISSN 77-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com December 13 Issue

More information

Modeling and Simulation of SRF and P-Q based Control DSTATCOM

Modeling and Simulation of SRF and P-Q based Control DSTATCOM International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 10 (June 2012), PP.65-71 www.ijerd.com Modeling and Simulation of SRF and P-Q based Control DSTATCOM Kasimvali.

More information

Analysis of Hybrid Power Conditioner in Three-Phase Four-Wire Distribution Power Systems for Suppressing Harmonics and Neutral-Line Current

Analysis of Hybrid Power Conditioner in Three-Phase Four-Wire Distribution Power Systems for Suppressing Harmonics and Neutral-Line Current Analysis of Hybrid Power Conditioner in Three-Phase Four-Wire Distribution Power Systems for Suppressing Harmonics and Neutral-Line Current B. Pedaiah 1, B. Parameshwar Reddy 2 M.Tech Student, Dept of

More information

A Modified Control Method For A Dual Unified Power Quality Conditioner

A Modified Control Method For A Dual Unified Power Quality Conditioner International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 3 (2015), pp. 239-251 International Research Publication House http://www.irphouse.com A Modified Control Method For A Dual

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

Mitigation of Power system Disturbance by Using MC-UPQC with PI, ANN & FUZZY Controller Technique

Mitigation of Power system Disturbance by Using MC-UPQC with PI, ANN & FUZZY Controller Technique Mitigation of Power system Disturbance by Using MC-UPQC with PI, ANN & FUZZY Controller Technique Dr.K.Ravichandrudu 1,D.Sahitya Devi 2, P.Yohan Babu 3 1,2,3 Krishnaveni Engineering College for Women,Narasaraopet,Guntur,AP

More information

GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY COMPENSATION

GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY COMPENSATION e-issn 2455 1392 Volume 3 Issue 3, March 2017 pp. 150 157 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY

More information

Interline Power Quality Conditioner for Power Quality Improvement

Interline Power Quality Conditioner for Power Quality Improvement Interline Power Quality Conditioner for Power Quality Improvement K.Sandhya 1, Dr.A.Jaya Laxmi 2 and Dr.M.P.Soni 3 1 Research Scholar, Department of Electrical and Electronics Engineering, JNTU College

More information

Voltage Variation Compensation

Voltage Variation Compensation Voltage Variation Compensation Krishnapriya M.R 1, Minnu Mariya Paul 2, Ridhun R 3, Veena Mathew 4 1,2,3 Student, Dept. of 4 Assistant Professor, Dept. of College, Kerala, India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Voltage Sag Compensation in Multiline Distribution System using Closed Loop Controlled IDVR

Voltage Sag Compensation in Multiline Distribution System using Closed Loop Controlled IDVR Voltage Sag Compensation in Multiline Distribution System using Closed Loop Controlled IDVR P.Suresh Research scholar, EEE Dept. Annamalai university, Chidambaram, India. B.Baskaran Professor, EEE Dept.

More information

Power Quality Improvement By Using DSTATCOM Controller

Power Quality Improvement By Using DSTATCOM Controller Power Quality Improvement By Using DSTATCOM Controller R.Srikanth 1 E. Anil Kumar 2 Assistant Professor, Assistant Professor, Dept. of EEE, BITS Vizag Dept. of EEE, BITS Vizag Email id : srikanthreddypalli@gmail.com

More information

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR)

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Mr. A. S. Patil Mr. S. K. Patil Department of Electrical Engg. Department of Electrical Engg. I. C. R. E. Gargoti I. C. R. E. Gargoti

More information

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER ABRARKHAN I. PATHAN 1, PROF. S. S. VANAMANE 2 1,2 Department Electrical Engineering, Walchand college of Engineering,

More information

Key terms: Voltage, Phase Angle, FACTS, Multilevel Converter, Power Quality, STATCOM.

Key terms: Voltage, Phase Angle, FACTS, Multilevel Converter, Power Quality, STATCOM. Modeling and Analysis of Multi Level Voltage Source Inverter Based Statcom for Improving Power Quality *P.UPENDRA KUMAR, **J.ANAND KUMAR, **K.MANOHAR, **T.M.MANOHAR, **CH.S.K.CHAITANYA *Associate.Professor,

More information

Simulation and Implementation of DVR for Voltage Sag Compensation

Simulation and Implementation of DVR for Voltage Sag Compensation Simulation and Implementation of DVR for Voltage Sag Compensation D. Murali Research Scholar in EEE Dept., Government College of Engineering, Salem-636 011, Tamilnadu, India. Dr. M. Rajaram Professor &

More information

Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy

Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy Abstract This paper presents a new unified power-quality conditioning system (MC-UPQC), capable

More information

Power Quality Improvement Using DVR

Power Quality Improvement Using DVR American Journal of Applied ciences 6 (3): 396-4, 9 IN 1546-939 9 cience Publications Power Quality Improvement Using DVR C. Benachaiba and B. Ferdi Bechar University, Center BP, 417 Bechar 8, Algeria

More information

A Voltage Controlled DSTATCOM using Hybrid Renewable Energy DC Link VSI for Power Quality Improvement

A Voltage Controlled DSTATCOM using Hybrid Renewable Energy DC Link VSI for Power Quality Improvement IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 04 September 2016 ISSN (online): 2349-6010 A Voltage Controlled DSTATCOM using Hybrid Renewable Energy DC Link

More information

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

ICCCES Application of D-STATCOM for load compensation with non-stiff sources Application of D-STATCOM for load compensation with non-stiff sources 1 Shubhangi Dhole, 2 S.S.Gurav, 3 Vinayak Patil, 4 Pushkraj Kharatmal, 5 Magdum Ranjit 1 Dept of Electrical Engg. AMGOI, VATHAR TERF

More information

ISSN Vol.04,Issue.08, July-2016, Pages:

ISSN Vol.04,Issue.08, July-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.08, July-2016, Pages:1335-1341 A Voltage Controlled D-STATCOM Used In Three Phase Four Wire System for Power Quality Improvement J.RAGHAVENDRA 1, C.SREENIVASULU

More information

Performance of Indirectly Controlled STATCOM with IEEE 30-bus System

Performance of Indirectly Controlled STATCOM with IEEE 30-bus System Performance of Indirectly Controlled STATCOM with IEEE 30- System Jagdish Kumar Department of Electrical Engineering, PEC University of Technology, Chandigarh, India E-mail : jk_bishnoi@yahoo.com Abstract

More information

A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR

A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR Rongali. Shiva Kumar P.G Student Scholar, Department of Electrical & Electronics Engineering, Gokul Group Of Institutions Abstract:

More information

CONTROL OF VOLTAGE SAG/SWELL IN THREE PHASE DISTRIBUTION LINE

CONTROL OF VOLTAGE SAG/SWELL IN THREE PHASE DISTRIBUTION LINE ISSN 2320-9186 49 International Journal of Advance Research, IJOAR.org Volume 1, Issue 3, March 2013, Online: ISSN 2320-9186 CONTROL OF VOLTAGE SAG/SWELL IN THREE PHASE DISTRIBUTION LINE USING UPQC R.Senthil

More information

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults Enhancement of Power Quality in Distribution System Using D-Statcom for Different s Dr. B. Sure Kumar 1, B. Shravanya 2 1 Assistant Professor, CBIT, HYD 2 M.E (P.S & P.E), CBIT, HYD Abstract: The main

More information

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller J.Venkatesh 1, K.S.S.Prasad Raju 2 1 Student SRKREC, India, venki_9441469778@yahoo.com

More information

A Multifunctional DSTATCOM Operating Under Stiff Source Chandan Kumar, Student Member, IEEE, and Mahesh K. Mishra, Senior Member, IEEE

A Multifunctional DSTATCOM Operating Under Stiff Source Chandan Kumar, Student Member, IEEE, and Mahesh K. Mishra, Senior Member, IEEE IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 7, JULY 2014 3131 A Multifunctional DSTATCOM Operating Under Stiff Source Chandan Kumar, Student Member, IEEE, and Mahesh K. Mishra, Senior Member,

More information

Study & Comparison of Various Topologies of Dynamic Voltage Restorer & Its type: a Review

Study & Comparison of Various Topologies of Dynamic Voltage Restorer & Its type: a Review Study & Comparison of Various Topologies of Dynamic Voltage Restorer & Its type: a Review S.N. Bhalerao 1, P.J. Bhakre, C.O.Reddy 3 1 Student, Department of Electrical Engineering, MSS Collage Of Engineering,

More information