Spectrum & Cognitive Radio Research

Size: px
Start display at page:

Download "Spectrum & Cognitive Radio Research"

Transcription

1 Spectrum & Cognitive Radio Research Narayan Mandayam Rutgers University

2 The Cognitive Radio WINLAB Narayan Mandayam Christopher Rose Predrag Spasojevic Roy Yates Brian Ackland Michael Bushnell Dipankar Raychaudhuri Ivan Seskar Collaborators from Lucent and Bell Labs Theodore Sizer, Krishna Balachandran, Joseph Kang Collaborators from Georgia Tech. Joy Laskar Theory and Prototyping Effort funded by the National Science Foundation NeTS Program

3 The Spectrum Debate What everyone agrees on: Spectrum use is inefficient FCC licensing has yielded false scarcity Open Access (Commons) The triumph of technology Spectrum Property Rights The triumph of economics

4 The Open Access Conundrum Systems of end-user devices Technology Panacea Spread spectrum, UWB, MIMO, OFDM Short range communications Ad hoc multi-hop mesh networks Evidence: success of vs. 3G Minor technical rules for transceivers power spreading

5 The Open Access Conundrum -II Technical arguments against Open Access Partially developed theory Information theoretic relay & interference channel Infant technology UWB, antenna arrays Transmitter agility Technology not separable from user assumptions Capabilities of technology vary with cooperation

6 What have we learned elsewhere? Research themes that have emerged from adhoc/sensor networks research: Hierarchical Architecture wins Capacity scaling, energy efficiency, increases lifetimes, facilitates discovery Cooperation wins Fundamental performance limits via information theoretic relay and broadcast channels Global awareness and coordination wins Space, time and frequency awareness and coordination beyond local measurements

7 The Open Access Conundrum -III Require radios that can : Discover Cooperate Collaborate Self-Organize into hierarchical networks Agility is necessary at every layer of the protocol stack But cannot yet predict environments The Answer? Cognitive Radios

8 Network-Centric Cognitive Radio Platform Requirements Flexible Antenna Flexible RF Flexible RF A/D/A A/D/A Flexible Baseband (SDR) Network Processor (MAC+) Spectrum scanning PHY layer adaptation Ad hoc network discovery Multi-hop routing Flexible RF A/D/A CR Strategy (host) Etiquette processing Antenna & RF Board (Georgia Tech.) A/D/A Board (Rutgers) Baseband & Network Processor Board (Rutgers & Lucent)

9 WINLAB/Lucent Cognitive Radio Prototype Heterogeneous block-based architecture FPGA for hardware implementation Embedded RISC for software implementation Efficient unlicensed band coordination Tri-band operation (700 MHz, 2.4 & 5.1 GHz) Fast frequency scanning and agility Megarray Connector- 244 Configurable I/O pins XC2V6000 FPGA TMS320C BaseT Ethernet MPC8260 Bell Laboratories Software Defined Radio (Baseband Processor) Courtesy of Dr. T. Sizer

10 Then What? A behavioral approach to the design of cognitive radio Cognitive algorithms Infrastructure that can facilitate this Network architectures Information aids Need for understanding the fundamental performance limits

11 Cognitive Algorithms and Architectures Discovery strategies for available spectrum Algorithms and protocols for frequency selection, coordination and cooperation Coding strategies for efficient sharing Cooperative diversity and coding for increased spectrum utilization Information strategies for efficient cooperation Spectrum Servers to advise/mediate sharing Negotiation strategies for situations of conflict Pricing and game theoretic strategies to promote cooperation Domination strategies for situations of conflict Spectrum warfare with agile waveforms

12 Cooperative Architectures for Wireless Networks What can information theory tell us? (joint with Lalitha Sankaranarayanan & Gerhard Kramer)

13 What is Cooperation? Nodes in a network share resources (bandwidth, time, power) to forward packets for each other Cooperation between nodes achieves gains in Capacity scaling Coherent combining, Distributed MIMO gains Energy efficiency R gains from shorter hops (reduced path loss) Cooperative gains come at the cost of increased end-to-end latency

14 Two Types of Cooperation Cooperative Networks: Transmitting nodes duplex between transmitting their own data and cooperating E.g. sensor networks, military (trust-based) networks Hierarchical Networks: Dedicated relay nodes to forward data for all transmitters in the network Source nodes only transmit but do not cooperate among themselves E.g. managed wide-area networks; non-cooperative networks

15 A Cooperative Network AP: Data sinks, : Source nodes Model as multiple-access channel with generalized feedback (MAC-GF) with half-duplex constraints AP Wired Backbone AP AP

16 Cooperative Network Model U U B 1 B n Y1 2 Y n 2 n X1 X n 2 n Y4 Dest. (AP) ( ˆ B ) 1, ˆ B U U2 1 2 Half-Duplex Multiple Access Channel with Generalized Feedback (MAC-GF) The m th source transmits in time (or frequency) fraction α m while all M sources cooperate in fraction α M+1

17 A Hierarchical Network AP: Data sinks, : Source nodes, FN: Forwarding nodes Model as multiple-access relay channel (MARC) with halfduplex constraints

18 Hierarchical Network Model Relay (FN) U U B 1 B n X1 X n 2 n Y3 n X 3 n Y4 Dest. (AP) ( ˆ B ) 1, ˆ B U U2 1 2 Constrained Multiple Access Relay Channel (MARC) Relay receives and transmits in time (or frequency) fraction α and (1 α) respectively

19 Strategies for Cooperation The cooperating nodes or relays can aid the transmitting node in the following ways: Decode-and-Forward (DF): decode and re-encode received signals before forwarding Compress-and-Forward (CF): forward a compressed version of the received signal Amplify-and-Forward (AF): scale and forward the received soft observations Choice of strategy dictated by network geometry, node/relay processing power, latency tolerance

20 Cooperation vs. Hierarchy Cooperation requires incentives Hierarchy incurs infrastructure costs Compare cooperation and hierarchy Using total power as the cost metric For fixed total power, rate and diversity gains for both networks are geometry dependent The gains can be used to choose the network architecture and cooperative strategy

21 Example: A Network with 2 Sources Cooperation (no relay) vs. Hierarchy (relay) for 2 source network Decode-and-Forward strategy ( j) P m Path-loss exponent γ = 4 ; power at m th node in j th network M ( C) M 1 ( H) P m 1 m = + P m 1 m = P = = tot

22 Achievable Rates (No Fading) Sum Rate R 1 +R 2 (bits/ch. use) MAC (C) P r =75% P r =12.5% P r =2.5% P r =.25% 3 Full Coop Distance of sources from origin (d) R tot = 9 db P r =P ratio P 1 = P 2

23 Outage Probability (Rayleigh Fading) P out = Pr(R 1 =R 2 < R) P tot = 9 db P 1 = P 2 2d =.5 MAC (C) (H): P 3 (H) =75% (H): P 3 (H) =50% (H): P 3 (H) =25% (H): P 3 (H) =12.5% (H): P 3 (H) =2.5% R (bits/ch. use) Full Cooperation

24 Evaluation of Cognitive Approaches Capacity performance: Rates, energy efficiency, BER/FER, outage Cost performance: Hardware and software complexity Emulation of large-scale networks of cognitive radios ORBIT Testbed Emergent behavior Protocol Complexity (degree of coordination) Unlicensed band + simple coord protocols Internet Internet Server-based Server-based Spectrum Spectrum Etiquette Etiquette Unlicensed Unlicensed Band Band with DCA with DCA (e.g x) (e.g x) Ad-hoc, Ad-hoc, Multi-hop Multi-hop Collaboration Collaboration Radio-level Radio-level Spectrum Spectrum Etiquette Etiquette Protocol Protocol Cooperative Cooperative Coding, Coding, Signal Processing Signal Processing cognitive radio schemes Internet Internet Spectrum Spectrum Leasing Leasing Static Static Assignment Assignment Reactive Reactive Rate/Power Rate/Power Control Control UWB, UWB, Spread Spread Spectrum Spectrum Agile Agile Wideband Wideband Radios Radios Open Access + smart radios Hardware Complexity

25 Information Aids for Open Access (sort of a Google for Spectrum) (joint work with WINLAB)

26 Spectrum Policy Server (SPS) Internet-based Spectrum Policy Server can help to coordinate wireless networks - needs connection to Internet even under congested conditions (...low bit-rate OK) - some level of position determination needed (..coarse location OK) - spectrum coordination achieved via etiquette protocol centralized at server Internet Internet Spectrum Policy Server WLAN operator A AP1 Access Point (AP2) WLAN operator B Etiquette Protocol AP1: type, loc, freq, pwr AP2: type, loc, freq, pwr BT MN: type, loc, freq, pwr Master Node Ad-hoc Bluetooth Piconet Wide-area Cellular data service

27 SPS Methodology New users get an SPS address Analogous to DHCP Users send activity traces to SPS server SPS maintains database of activity traces SPS SPS Issues What to measure? Coarseness of measurements? Trace update frequency? SPS database organization to facilitate fast searching? SPS Actions Share wireless node descriptors? Coordinate comm. between nodes? Mediate spectrum sharing among nodes?

28 Triumph of Technology vs. Triumph of Economics Open Access (Commons) [Noam, Benkler, Shepard, Reed ] Agile wideband radios will dynamically share a commons Spectrum Property Rights [Coase, Hazlett, Faulhaber+Farber] Owners can buy/sell/trade spectrum Flexible use, flexible technology, flexible divisibility, transferability A spectrum market will (by the force of economics) yield an efficient solution

Cognitive Radio

Cognitive Radio Cognitive Radio Research@ Roy Yates Rutgers University December 10, 2008 ryates@winlab.rutgers.edu www.winlab.rutgers.edu 1 Cognitive Radio Research A Multidimensional Activity Spectrum Policy Economics

More information

High Performance Cognitive Radio Platform with Integrated Physical & Network Layer Capabilities

High Performance Cognitive Radio Platform with Integrated Physical & Network Layer Capabilities High Performance Cognitive Radio Platform with Integrated Physical & Network Layer Capabilities Bryan Ackland, Ivan Seskar WINLAB, Rutgers University bda@winlab.rutgers.edu seskar@winlab.rutgers.edu www.winlab.rutgers.edu

More information

Adaptive Wireless Networks Using Cognitive Radios as a Building Block

Adaptive Wireless Networks Using Cognitive Radios as a Building Block Adaptive Wireless Networks Using Cognitive Radios as a Building Block MobiCom 2004 Keynote Speech Sept 29, Philadelphia D. Raychaudhuri Professor ECE Dept & Director, WINLAB Rutgers University ray@winlab.rutgers.edu

More information

Cognitive Radio Platform Technology

Cognitive Radio Platform Technology Cognitive Radio Platform Technology Ivan Seskar Rutgers, The State University of New Jersey www.winlab.rutgers.edu seskar (at) winlab (dot) rutgers (dot) edu Complexity/Performance Tradeoffs Efficient

More information

Radio Resource Management WINLAB IAB Meeting May 20-21, 2002

Radio Resource Management WINLAB IAB Meeting May 20-21, 2002 Radio Resource Management WINLAB IAB Meeting May 20-21, 2002 Christopher Rose Roy Yates 1 What is RRM? NETWORK Routing, Flow Control Radio Resource Management Efficient Wireless Access PHY Radio/Modem

More information

Spectrum Sensing Brief Overview of the Research at WINLAB

Spectrum Sensing Brief Overview of the Research at WINLAB Spectrum Sensing Brief Overview of the Research at WINLAB P. Spasojevic IAB, December 2008 What to Sense? Occupancy. Measuring spectral, temporal, and spatial occupancy observation bandwidth and observation

More information

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

An Introduction to Software Radio

An Introduction to Software Radio An Introduction to Software Radio (and a bit about GNU Radio & the USRP) Eric Blossom eb@comsec.com www.gnu.org/software/gnuradio comsec.com/wiki USENIX / Boston / June 3, 2006 What's Software Radio? It's

More information

PoC #1 On-chip frequency generation

PoC #1 On-chip frequency generation 1 PoC #1 On-chip frequency generation This PoC covers the full on-chip frequency generation system including transport of signals to receiving blocks. 5G frequency bands around 30 GHz as well as 60 GHz

More information

SDR Platforms for Research on Programmable Wireless Networks

SDR Platforms for Research on Programmable Wireless Networks SDR Platforms for Research on Programmable Wireless Networks John Chapin jchapin@vanu.com Presentation to NSF NeTS Informational Meeting 2/5/2004 Outline SDR components / terminology Example SDR systems

More information

Exploiting Interference through Cooperation and Cognition

Exploiting Interference through Cooperation and Cognition Exploiting Interference through Cooperation and Cognition Stanford June 14, 2009 Joint work with A. Goldsmith, R. Dabora, G. Kramer and S. Shamai (Shitz) The Role of Wireless in the Future The Role of

More information

Wireless Systems Laboratory Stanford University Pontifical Catholic University Rio de Janiero Oct. 13, 2011

Wireless Systems Laboratory Stanford University Pontifical Catholic University Rio de Janiero Oct. 13, 2011 Andrea Goldsmith Wireless Systems Laboratory Stanford University Pontifical Catholic University Rio de Janiero Oct. 13, 2011 Future Wireless Networks Ubiquitous Communication Among People and Devices Next-generation

More information

Cognitive Radio for Future Internet Survey on CR Testbed & Product

Cognitive Radio for Future Internet Survey on CR Testbed & Product Cognitive Radio for Future Internet Survey on CR Testbed & Product Munhwan Choi Multimedia & Wireless Networking Laboratory School of Electrical Engineering and INMC Seoul National University, Seoul, Korea

More information

Programmable Wireless Networking Overview

Programmable Wireless Networking Overview Programmable Wireless Networking Overview Dr. Joseph B. Evans Program Director Computer and Network Systems Computer & Information Science & Engineering National Science Foundation NSF Programmable Wireless

More information

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Mona Mostafa Hella Assistant Professor, ESCE Department Rensselaer Polytechnic Institute What is RFIC? Any integrated

More information

Breaking Spectrum Gridlock With Cognitive Radios: An Information Theoretic Perspective

Breaking Spectrum Gridlock With Cognitive Radios: An Information Theoretic Perspective Breaking Spectrum Gridlock With Cognitive Radios: An Information Theoretic Perspective Naroa Zurutuza - EE360 Winter 2014 Introduction Cognitive Radio: Wireless communication system that intelligently

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Andrea Goldsmith. Stanford University

Andrea Goldsmith. Stanford University Andrea Goldsmith Stanford University Envisioning an xg Network Supporting Ubiquitous Communication Among People and Devices Smartphones Wireless Internet Access Internet of Things Sensor Networks Smart

More information

NI Technical Symposium ni.com

NI Technical Symposium ni.com NI Technical Symposium 2016 1 Build 5G Systems Today Avichal Kulshrestha 2 How We Consume Data is Changing 3 Where We Are Today Explosion of wireless data and connected devices Last year s mobile data

More information

The world s first collaborative machine-intelligence competition to overcome spectrum scarcity

The world s first collaborative machine-intelligence competition to overcome spectrum scarcity The world s first collaborative machine-intelligence competition to overcome spectrum scarcity Paul Tilghman Program Manager, DARPA/MTO 8/11/16 1 This slide intentionally left blank 2 This slide intentionally

More information

Real-time Distributed MIMO Systems. Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi

Real-time Distributed MIMO Systems. Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi Real-time Distributed MIMO Systems Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi Dense Wireless Networks Stadiums Concerts Airports Malls Interference Limits Wireless Throughput APs

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks. Plenary Talk at: Jack H. Winters. September 13, 2005

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks. Plenary Talk at: Jack H. Winters. September 13, 2005 Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks Plenary Talk at: Jack H. Winters September 13, 2005 jwinters@motia.com 12/05/03 Slide 1 1 Outline Service Limitations Smart Antennas

More information

Wireless Intro : Computer Networking. Wireless Challenges. Overview

Wireless Intro : Computer Networking. Wireless Challenges. Overview Wireless Intro 15-744: Computer Networking L-17 Wireless Overview TCP on wireless links Wireless MAC Assigned reading [BM09] In Defense of Wireless Carrier Sense [BAB+05] Roofnet (2 sections) Optional

More information

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE Int. J. Chem. Sci.: 14(S3), 2016, 794-800 ISSN 0972-768X www.sadgurupublications.com SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE ADITYA SAI *, ARSHEYA AFRAN and PRIYANKA Information

More information

Cognitive Cellular Systems in China Challenges, Solutions and Testbed

Cognitive Cellular Systems in China Challenges, Solutions and Testbed ITU-R SG 1/WP 1B WORKSHOP: SPECTRUM MANAGEMENT ISSUES ON THE USE OF WHITE SPACES BY COGNITIVE RADIO SYSTEMS (Geneva, 20 January 2014) Cognitive Cellular Systems in China Challenges, Solutions and Testbed

More information

Cognitive Radio Enabling Opportunistic Spectrum Access (OSA): Challenges and Modelling Approaches

Cognitive Radio Enabling Opportunistic Spectrum Access (OSA): Challenges and Modelling Approaches Cognitive Radio Enabling Opportunistic Spectrum Access (OSA): Challenges and Modelling Approaches Xavier Gelabert Grupo de Comunicaciones Móviles (GCM) Instituto de Telecomunicaciones y Aplicaciones Multimedia

More information

Spectrum Sharing and Flexible Spectrum Use

Spectrum Sharing and Flexible Spectrum Use Spectrum Sharing and Flexible Spectrum Use Kimmo Kalliola Nokia Research Center FUTURA Workshop 16.8.2004 1 NOKIA FUTURA_WS.PPT / 16-08-2004 / KKa Terminology Outline Drivers and background Current status

More information

Overview. Cognitive Radio: Definitions. Cognitive Radio. Multidimensional Spectrum Awareness: Radio Space

Overview. Cognitive Radio: Definitions. Cognitive Radio. Multidimensional Spectrum Awareness: Radio Space Overview A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications Tevfik Yucek and Huseyin Arslan Cognitive Radio Multidimensional Spectrum Awareness Challenges Spectrum Sensing Methods

More information

Director: Prof. Dongfeng Yuan UK-China Science Bridges Project

Director: Prof. Dongfeng Yuan UK-China Science Bridges Project Wireless Mobile Communication and Transmission (WMCT) Lab. Director: Prof. Dongfeng Yuan UK-China Science Bridges Project OUTLINE General Introduction Research Areas Desired Research Topics Patentable

More information

Cognitive Radio: Fundamentals and Opportunities

Cognitive Radio: Fundamentals and Opportunities San Jose State University From the SelectedWorks of Robert Henry Morelos-Zaragoza Fall August 24, 2007 Cognitive Radio: Fundamentals and Opportunities Robert H Morelos-Zaragoza, San Jose State University

More information

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks Cognitive Wireless Network 15-744: Computer Networking L-19 Cognitive Wireless Networks Optimize wireless networks based context information Assigned reading White spaces Online Estimation of Interference

More information

Network Centric Cognitive Radio Page: 1

Network Centric Cognitive Radio Page: 1 Network Centric Cognitive Radio Page: 1 High Performance Cognitive Radio Platform with Integrated Physical and Network Layer Capabilities Bryan Ackland, Dipankar Raychaudhuri, Michael Bushnell, Christopher

More information

Prototyping Next-Generation Communication Systems with Software-Defined Radio

Prototyping Next-Generation Communication Systems with Software-Defined Radio Prototyping Next-Generation Communication Systems with Software-Defined Radio Dr. Brian Wee RF & Communications Systems Engineer 1 Agenda 5G System Challenges Why Do We Need SDR? Software Defined Radio

More information

MIMO in 3G STATUS. MIMO for high speed data in 3G systems. Outline. Information theory for wireless channels

MIMO in 3G STATUS. MIMO for high speed data in 3G systems. Outline. Information theory for wireless channels MIMO in G STATUS MIMO for high speed data in G systems Reinaldo Valenzuela Wireless Communications Research Department Bell Laboratories MIMO (multiple antenna technologies) provides higher peak data rates

More information

Smart-Radio-Technology-Enabled Opportunistic Spectrum Utilization

Smart-Radio-Technology-Enabled Opportunistic Spectrum Utilization Smart-Radio-Technology-Enabled Opportunistic Spectrum Utilization Xin Liu Computer Science Dept. University of California, Davis Spectrum, Spectrum Spectrum is expensive and heavily regulated 3G spectrum

More information

INSTITUT D ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES "#$ " UMR 6164

INSTITUT D ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES #$  UMR 6164 ! "#$ " UMR 6164 1 Cognitive Radio functional requirements Cognitive Radio system requirements Flexible radio UWB SDR and UWB SDR-compatible UWB Conclusion NEWCOM Workshop at IST Mobile Summit June 2006

More information

A review paper on Software Defined Radio

A review paper on Software Defined Radio A review paper on Software Defined Radio 1 Priyanka S. Kamble, 2 Bhalchandra B. Godbole Department of Electronics Engineering K.B.P.College of Engineering, Satara, India. Abstract -In this paper, we summarize

More information

Industrial Wireless Systems

Industrial Wireless Systems Application Considerations Don Pretty Principal Engineer Geometric Controls Inc Bethlehem, PA Sheet 1 Ethernet Dominates on the Plant Floor Sheet 2 Recognize Any of These? Sheet 3 Answers: 10 BASE 2 RG

More information

Control issues in cognitive networks. Marko Höyhtyä and Tao Chen CWC-VTT-Gigaseminar 4th December 2008

Control issues in cognitive networks. Marko Höyhtyä and Tao Chen CWC-VTT-Gigaseminar 4th December 2008 Control issues in cognitive networks Marko Höyhtyä and Tao Chen CWC-VTT-Gigaseminar 4th December 2008 Outline Cognitive wireless networks Cognitive mesh Topology control Frequency selection Power control

More information

Mobile Broadband Multimedia Networks

Mobile Broadband Multimedia Networks Mobile Broadband Multimedia Networks Techniques, Models and Tools for 4G Edited by Luis M. Correia v c» -''Vi JP^^fte«jfc-iaSfllto ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN

More information

Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks

Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks Truman Ng, Wei Yu Electrical and Computer Engineering Department University of Toronto Jianzhong (Charlie)

More information

Distributed spectrum sensing in unlicensed bands using the VESNA platform. Student: Zoltan Padrah Mentor: doc. dr. Mihael Mohorčič

Distributed spectrum sensing in unlicensed bands using the VESNA platform. Student: Zoltan Padrah Mentor: doc. dr. Mihael Mohorčič Distributed spectrum sensing in unlicensed bands using the VESNA platform Student: Zoltan Padrah Mentor: doc. dr. Mihael Mohorčič Agenda Motivation Theoretical aspects Practical aspects Stand-alone spectrum

More information

Supplemental Slides: MIMO Testbed Development at the MPRG Lab

Supplemental Slides: MIMO Testbed Development at the MPRG Lab Supplemental Slides: MIMO Testbed Development at the MPRG Lab Raqibul Mostafa Jeffrey H. Reed Slide 1 Overview Space Time Coding (STC) Overview Virginia Tech Space Time Adaptive Radio (VT-STAR) description:

More information

International Telecommunication Union

International Telecommunication Union 1 The views expressed in this paper are those of the author and do not necessarily reflect the opinions of the ITU or its Membership. Advanced Wireless Technologies and Spectrum Management Taylor Reynolds

More information

COGNITIVE RADIO TECHNOLOGY: ARCHITECTURE, SENSING AND APPLICATIONS-A SURVEY

COGNITIVE RADIO TECHNOLOGY: ARCHITECTURE, SENSING AND APPLICATIONS-A SURVEY COGNITIVE RADIO TECHNOLOGY: ARCHITECTURE, SENSING AND APPLICATIONS-A SURVEY G. Mukesh 1, K. Santhosh Kumar 2 1 Assistant Professor, ECE Dept., Sphoorthy Engineering College, Hyderabad 2 Assistant Professor,

More information

Cooperative Spectrum Sensing in Cognitive Radio

Cooperative Spectrum Sensing in Cognitive Radio Cooperative Spectrum Sensing in Cognitive Radio Project of the Course : Software Defined Radio Isfahan University of Technology Spring 2010 Paria Rezaeinia Zahra Ashouri 1/54 OUTLINE Introduction Cognitive

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Networking Devices over White Spaces

Networking Devices over White Spaces Networking Devices over White Spaces Ranveer Chandra Collaborators: Thomas Moscibroda, Rohan Murty, Victor Bahl Goal: Deploy Wireless Network Base Station (BS) Good throughput for all nodes Avoid interfering

More information

MATLAB COMMUNICATION TITLES

MATLAB COMMUNICATION TITLES MATLAB COMMUNICATION TITLES -2018 ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING(OFDM) 1 ITCM01 New PTS Schemes For PAPR Reduction Of OFDM Signals Without Side Information 2 ITCM02 Design Space-Time Trellis

More information

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks Jack H. Winters May 31, 2004 jwinters@motia.com 12/05/03 Slide 1 Outline Service Limitations Smart Antennas Ad Hoc Networks Smart

More information

Cross-Layer Design and CR

Cross-Layer Design and CR EE360: Lecture 11 Outline Cross-Layer Design and CR Announcements HW 1 posted, due Feb. 24 at 5pm Progress reports due Feb. 29 at midnight (not Feb. 27) Interference alignment Beyond capacity: consummating

More information

CS 294-7: Wireless Local Area Networks. Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA

CS 294-7: Wireless Local Area Networks. Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA CS 294-7: Wireless Local Area Networks Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA 94720-1776 1996 1 Desirable Features Ability to operate worldwide Minimize power

More information

A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS

A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS A GENERIC ARCHITECTURE FOR SMART MULTI-STANDARD SOFTWARE DEFINED RADIO SYSTEMS S.A. Bassam, M.M. Ebrahimi, A. Kwan, M. Helaoui, M.P. Aflaki, O. Hammi, M. Fattouche, and F.M. Ghannouchi iradio Laboratory,

More information

International Telecommunication Union

International Telecommunication Union Advanced Wireless Technologies and Spectrum Management Taylor Reynolds ITU Strategy and Policy Unit INT / MSU Summer Programme 2004 Geneva Switzerland 05 July 2004 1 The views expressed in this paper are

More information

UWB for Sensor Networks:

UWB for Sensor Networks: IEEE-UBC Symposium on future wireless systems March 10 th 2006, Vancouver UWB for Sensor Networks: The 15.4a standard Andreas F. Molisch Mitsubishi Electric Research Labs, and also at Department of Electroscience,

More information

Chapter 10. User Cooperative Communications

Chapter 10. User Cooperative Communications Chapter 10 User Cooperative Communications 1 Outline Introduction Relay Channels User-Cooperation in Wireless Networks Multi-Hop Relay Channel Summary 2 Introduction User cooperative communication is a

More information

SPECTRUM MARKETS. Michael Honig Department of EECS Northwestern University. March MSIT Week 10

SPECTRUM MARKETS. Michael Honig Department of EECS Northwestern University. March MSIT Week 10 SPECTRUM MARKETS Michael Honig Department of EECS Northwestern University March 2014 MSIT Week 10 Spectrum Markets 2 Engineering Policy Economics Randall Berry, Michael Honig, EECS Rakesh Vohra, Kellogg

More information

A Secure Transmission of Cognitive Radio Networks through Markov Chain Model

A Secure Transmission of Cognitive Radio Networks through Markov Chain Model A Secure Transmission of Cognitive Radio Networks through Markov Chain Model Mrs. R. Dayana, J.S. Arjun regional area network (WRAN), which will operate on unused television channels. Assistant Professor,

More information

T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University

T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University Cross-layer design for video streaming over wireless ad hoc networks T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University Outline Cross-layer

More information

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert Planning Your Wireless Transportation Infrastructure Presented By: Jeremy Hiebert Agenda Agenda o Basic RF Theory o Wireless Technology Options o Antennas 101 o Designing a Wireless Network o Questions

More information

What is New in Wireless System Design

What is New in Wireless System Design What is New in Wireless System Design Houman Zarrinkoub, PhD. houmanz@mathworks.com 2015 The MathWorks, Inc. 1 Agenda Landscape of Wireless Design Our Wireless Initiatives Antenna-to-Bit simulation Smart

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way International Technology Conference, 14~15 Jan. 2003, Hong Kong Technology Drivers for Tomorrow Challenges for Broadband Systems Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku

More information

Interference Alignment. Extensions. Basic Premise. Capacity and Feedback. EE360: Lecture 11 Outline Cross-Layer Design and CR. Feedback in Networks

Interference Alignment. Extensions. Basic Premise. Capacity and Feedback. EE360: Lecture 11 Outline Cross-Layer Design and CR. Feedback in Networks EE360: Lecture 11 Outline Cross- Design and Announcements HW 1 posted, due Feb. 24 at 5pm Progress reports due Feb. 29 at midnight (not Feb. 27) Interference alignment Beyond capacity: consummating unions

More information

Cognitive Radio: Smart Use of Radio Spectrum

Cognitive Radio: Smart Use of Radio Spectrum Cognitive Radio: Smart Use of Radio Spectrum Miguel López-Benítez Department of Electrical Engineering and Electronics University of Liverpool, United Kingdom M.Lopez-Benitez@liverpool.ac.uk www.lopezbenitez.es,

More information

SourceSync. Exploiting Sender Diversity

SourceSync. Exploiting Sender Diversity SourceSync Exploiting Sender Diversity Why Develop SourceSync? Wireless diversity is intrinsic to wireless networks Many distributed protocols exploit receiver diversity Sender diversity is a largely unexplored

More information

WiMAX Basestation: Software Reuse Using a Resource Pool. Arnon Friedmann SW Product Manager

WiMAX Basestation: Software Reuse Using a Resource Pool. Arnon Friedmann SW Product Manager WiMAX Basestation: Software Reuse Using a Resource Pool Cory Modlin Wireless Systems Architect cmodlin@ti.com L. N. Reddy Wireless Software Manager lnreddy@tataelxsi.co.in Arnon Friedmann SW Product Manager

More information

VALUING SPECTRUM. Michael Honig Department of EECS Northwestern University. Based on a paper with Tom Hazlett. December 2016

VALUING SPECTRUM. Michael Honig Department of EECS Northwestern University. Based on a paper with Tom Hazlett. December 2016 VALUING SPECTRUM Michael Honig Department of EECS Northwestern University Based on a paper with Tom Hazlett. Spectrum Crunch 2 Petabytes per month Spectrum Policy is Important 3 Gross inefficiencies still

More information

Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks

Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks Bernhard Firner Chenren Xu Yanyong Zhang Richard Howard Rutgers University, Winlab May 10, 2011 Bernhard Firner (Winlab)

More information

IMPROVED PROBABILITY OF DETECTION AT LOW SNR IN COGNITIVE RADIOS

IMPROVED PROBABILITY OF DETECTION AT LOW SNR IN COGNITIVE RADIOS 87 IMPROVED PROBABILITY OF DETECTION AT LOW SNR IN COGNITIVE RADIOS Parvinder Kumar 1, (parvinderkr123@gmail.com)dr. Rakesh Joon 2 (rakeshjoon11@gmail.com)and Dr. Rajender Kumar 3 (rkumar.kkr@gmail.com)

More information

Wireless LAN Applications LAN Extension Cross building interconnection Nomadic access Ad hoc networks Single Cell Wireless LAN

Wireless LAN Applications LAN Extension Cross building interconnection Nomadic access Ad hoc networks Single Cell Wireless LAN Wireless LANs Mobility Flexibility Hard to wire areas Reduced cost of wireless systems Improved performance of wireless systems Wireless LAN Applications LAN Extension Cross building interconnection Nomadic

More information

Optimum Power Allocation in Cooperative Networks

Optimum Power Allocation in Cooperative Networks Optimum Power Allocation in Cooperative Networks Jaime Adeane, Miguel R.D. Rodrigues, and Ian J. Wassell Laboratory for Communication Engineering Department of Engineering University of Cambridge 5 JJ

More information

DURIP Distributed SDR testbed for Collaborative Research. Wednesday, November 19, 14

DURIP Distributed SDR testbed for Collaborative Research. Wednesday, November 19, 14 DURIP Distributed SDR testbed for Collaborative Research Distributed Software Defined Radar Testbed Collaborative research resource based on software defined radar (SDR) platforms that can adaptively modify

More information

Building Complex Systems with COTS Software Defined Radios

Building Complex Systems with COTS Software Defined Radios Building Complex Systems with COTS Software Defined Radios Sarah Yost Product Marketing Manager, National Instruments ni.com ITU-R Vision for 5G >10 Gb/s Peak Rate embb 100X More Devices mmtc umtc, UR/LL

More information

1 Short-range wireless communications and reliability

1 Short-range wireless communications and reliability 1 Short-range wireless communications and reliability Ismail Guvenc, Sinan Gezici, Zafer Sahinoglu, and Ulas C. Kozat Even though there is no universally accepted definition, short-range wireless communications

More information

Cooperative Compressed Sensing for Decentralized Networks

Cooperative Compressed Sensing for Decentralized Networks Cooperative Compressed Sensing for Decentralized Networks Zhi (Gerry) Tian Dept. of ECE, Michigan Tech Univ. A presentation at ztian@mtu.edu February 18, 2011 Ground-Breaking Recent Advances (a1) s is

More information

Capacity and Cooperation in Wireless Networks

Capacity and Cooperation in Wireless Networks Capacity and Cooperation in Wireless Networks Chris T. K. Ng and Andrea J. Goldsmith Stanford University Abstract We consider fundamental capacity limits in wireless networks where nodes can cooperate

More information

Ultra Wideband (UWB) & Radio Phy

Ultra Wideband (UWB) & Radio Phy Ultra Wideband (UWB) & Radio Phy speaker: Predrag Spasojevic Dipankar Raychaudhuri, Larry Greenstein, Ivan Seskar, Leo Razoumov, James Evans, Di Wu, Guofeng Lu, and Mustafa Demirhan May 2003, IAB Meeting

More information

Cognitive Ultra Wideband Radio

Cognitive Ultra Wideband Radio Cognitive Ultra Wideband Radio Soodeh Amiri M.S student of the communication engineering The Electrical & Computer Department of Isfahan University of Technology, IUT E-Mail : s.amiridoomari@ec.iut.ac.ir

More information

Software Radio: An Enabling Technology for Mobile Communications

Software Radio: An Enabling Technology for Mobile Communications Software Radio: An Enabling Technology for Mobile Communications Carles Vilella, Joan L. Pijoan Dep. Communications and Signal Theory La Salle Engineering and Architecture Ramon Llull University Barcelona,

More information

Viral Radio Adaptive and cooperative exploitation of RF photons

Viral Radio Adaptive and cooperative exploitation of RF photons Viral Radio Adaptive and cooperative exploitation of RF photons David P. Reed Adjunct Professor, MIT Media Lab MIT Communications Futures Program dpreed@reed.com Technical basis of viral communications

More information

Real-Time Spectrum Management for Wireless Networks

Real-Time Spectrum Management for Wireless Networks Real-Time Spectrum Management for Wireless Networks Dan Stevenson, Arnold Bragg RTI International, Inc. Research Triangle Park, NC Outline Problem statement Disruptive idea Details: approach, issues, architecture

More information

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica 5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica! 2015.05.29 Key Trend (2013-2025) Exponential traffic growth! Wireless traffic dominated by video multimedia! Expectation of ubiquitous broadband

More information

Wireless ad hoc networks. Acknowledgement: Slides borrowed from Richard Y. Yale

Wireless ad hoc networks. Acknowledgement: Slides borrowed from Richard Y. Yale Wireless ad hoc networks Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale Infrastructure-based v.s. ad hoc Infrastructure-based networks Cellular network 802.11, access points Ad hoc networks

More information

Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling

Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling ABSTRACT Sasikumar.J.T 1, Rathika.P.D 2, Sophia.S 3 PG Scholar 1, Assistant Professor 2, Professor 3 Department of ECE, Sri

More information

2. LITERATURE REVIEW

2. LITERATURE REVIEW 2. LITERATURE REVIEW In this section, a brief review of literature on Performance of Antenna Diversity Techniques, Alamouti Coding Scheme, WiMAX Broadband Wireless Access Technology, Mobile WiMAX Technology,

More information

Some Areas for PLC Improvement

Some Areas for PLC Improvement Some Areas for PLC Improvement Andrea M. Tonello EcoSys - Embedded Communication Systems Group University of Klagenfurt Klagenfurt, Austria email: andrea.tonello@aau.at web: http://nes.aau.at/tonello web:

More information

Wireless Networks (PHY): Design for Diversity

Wireless Networks (PHY): Design for Diversity Wireless Networks (PHY): Design for Diversity Y. Richard Yang 9/20/2012 Outline Admin and recap Design for diversity 2 Admin Assignment 1 questions Assignment 1 office hours Thursday 3-4 @ AKW 307A 3 Recap:

More information

Dynamic Spectrum Access in Cognitive Radio Wireless Sensor Networks Using Different Spectrum Sensing Techniques

Dynamic Spectrum Access in Cognitive Radio Wireless Sensor Networks Using Different Spectrum Sensing Techniques Dynamic Spectrum Access in Cognitive Radio Wireless Sensor Networks Using Different Spectrum Sensing Techniques S. Anusha M. E., Research Scholar, Sona College of Technology, Salem-636005, Tamil Nadu,

More information

Cognitive Radios Games: Overview and Perspectives

Cognitive Radios Games: Overview and Perspectives Cognitive Radios Games: Overview and Yezekael Hayel University of Avignon, France Supélec 06/18/07 1 / 39 Summary 1 Introduction 2 3 4 5 2 / 39 Summary Introduction Cognitive Radio Technologies Game Theory

More information

Spectrum Detector for Cognitive Radios. Andrew Tolboe

Spectrum Detector for Cognitive Radios. Andrew Tolboe Spectrum Detector for Cognitive Radios Andrew Tolboe Motivation Currently in the United States the entire radio spectrum has already been reserved for various applications by the FCC. Therefore, if someone

More information

Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks

Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks , pp.70-74 http://dx.doi.org/10.14257/astl.2014.46.16 Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks Saransh Malik 1,Sangmi Moon 1, Bora Kim 1, Hun Choi 1, Jinsul Kim 1, Cheolhong

More information

Vidyut: Exploiting Power Line Infrastructure for Enterprise Wireless Networks. Vivek Yenamandra and Kannan Srinivasan

Vidyut: Exploiting Power Line Infrastructure for Enterprise Wireless Networks. Vivek Yenamandra and Kannan Srinivasan Vidyut: Exploiting Power Line Infrastructure for Enterprise Wireless Networks Vivek Yenamandra and Kannan Srinivasan Motivation Increasing demand for wireless capacity Proliferation of BYOD in workplaces

More information

Software Defined Radio: Enabling technologies and Applications

Software Defined Radio: Enabling technologies and Applications Mengduo Ma Cpr E 583 September 30, 2011 Software Defined Radio: Enabling technologies and Applications A Mini-Literature Survey Abstract The survey paper identifies the enabling technologies and research

More information

Wireless Networks, EARTH research project

Wireless Networks, EARTH research project ETSI Green Agenda 26 November 2009 HOW TO REDUCE-GREEN HOUSE GAS EMISSIONS FROM ICT EQUIPMENT Wireless Networks, EARTH research project Alcatel-Lucent, Bell Labs Stuttgart Ulrich Barth Energy Usage in

More information

Cognitive Radio Networks Part II

Cognitive Radio Networks Part II Cognitive Radio Networks Part II 13.10.2011 Page 1 Part II organization Cognitive Radio Network Fundamentals for Cognitive Radio Reconfiguration, adaptation, and optimization Cognitive Research: Knowledge

More information

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization.

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization. 18-452/18-750 Wireless Networks and Applications Lecture 6: Physical Layer Diversity and Coding Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Addressing the Design-to-Test Challenges for SDR and Cognitive Radio

Addressing the Design-to-Test Challenges for SDR and Cognitive Radio Addressing the Design-to-Test Challenges Bob Cutler and Greg Jue, Agilent Technologies Software Defined Radios Flexibility Radio can support multiple waveforms: Different formats, Different revisions of

More information

Optimizing future wireless communication systems

Optimizing future wireless communication systems Optimizing future wireless communication systems "Optimization and Engineering" symposium Louvain-la-Neuve, May 24 th 2006 Jonathan Duplicy (www.tele.ucl.ac.be/digicom/duplicy) 1 Outline History Challenges

More information