EE155/255 Green Electronics

Size: px
Start display at page:

Download "EE155/255 Green Electronics"

Transcription

1 EE155/255 Green Electronics Power Circuits Photovoltaics 10/5/16 Prof. William Dally Computer Systems Laboratory Stanford University

2 HW2 due Monday 10/10 Lab1 signed off this week Lab2 out Course Logistics

3 Course to Date We need sustainable energy systems At the core they are voltage converters Periodic steady-state analysis, buck and boost Intelligent control + power path Intelligent control done with event-driven embedded software Real devices have switching and conduction loss

4 Last Time DC and AC characteristics of MOSFETs, Diodes, and IGBTs Switches in pairs One switch does the work Turn on transient Diode reverse recovery Parasitics Gate drive and Miller capacitance Dead time and shoot through

5 Review - Turn-On Loss I P I D I L Q RR Q D s V DS t 1 t 2 t 3

6 Review - Effect of Miller Cap on Rise Time dv D dt = i G C DG C DG M1 Δt = ΔV DC DG i G i G Example: i G = 0.5A, C = 100pF, DV = 400V

7 Snubbers

8 Dampen Ringing Nodes 40A C j D L D and C j resonate when M is on Parallel R S dampens tank L D R S Series C S limits dissipation G M C S V

9 Inductance on Drain 42uJ turn-off 8uJ turn-on

10 With Snubber (1nF, 5W) 2uJ in snubber 8uJ turn-on 42uJ turn-off

11 Design Procedure C j Pick R S ~ 1/wC j 40A D Pick C S so t >= p/w Or E s = C S V 2 /2 L D R S G M C S V

12 Move Turn-Off Dissipation to Passive Device 40A D R S D S G M C S V C S slows rise time of drain C S V 2 /2R S dissipated in R S when C S discharges Rarely used today Other forms slow fall time and rising/falling current

13 Critical Loop

14 Critical Loop V G2 G1 M2 M1 i

15 Lab Half-Bridge Module

16 The Half-Bridge Module V12 Hin 1 2 Hin IRS21834 U1 V B HO S V B CSupply D2 15V C2 1 F R3 1 D1 R1 4.7 M1 V D CFilter V D Out GND 4 3 DT Vss V CC LO Com R2 4.7 C1 4.7 F M2 C3 2.2 F 200V D3 56V 5W COM

17 Bootstrap Supply V12 Hin 1 2 Hin IRS21834 U1 V B HO S V B CSupply D2 15V C2 1 F R3 1 D1 R1 4.7 M1 V D CFilter V D Out GND 4 3 DT Vss V CC LO Com R2 4.7 C1 4.7 F M2 C3 2.2 F 200V D3 56V 5W COM

18 Bootstrap Supply

19 Drain Voltage Filter V12 Hin 1 2 Hin IRS21834 U1 V B HO S V B CSupply D2 15V C2 1 F R3 1 D1 R1 4.7 M1 V D CFilter V D Out GND 4 3 DT Vss V CC LO Com R2 4.7 C1 4.7 F M2 C3 2.2 F 200V D3 56V 5W COM

20 Drain Voltage Filter 300nH Input Inductance

21 SPICE

22 SPICE Example A Voltage Doubler

23 A Voltage Doubler * Simple voltage "doubler".include "gel.lib".param td=100n tr=100n tf=100n tw=2.5u tcy=5u ncy=2.param l1=22uh c1=10uf r1=10 * call half-bridge subcircuit xhb vd mid g g 0 v12 gel_hb * circuit l1 vin mid {l1} c1 vd 0 {c1} r1 vd 0 {r1} * supplies v12 v vin vin 0 24 * stimulus VG g 0 PULSE(0 5 {td} {tr} {tf} {tw} {tcy} {ncy}).ic i(l1)=9.2.ic v(vd)=42.8.tran {ncy*tcy}

24 Turn-On Transient

25 Steady State

26 Close up of Drain Current

27 With PID Control

28 A Warning SPICE (or any simulator) is a Verification tool, not a Design tool Design your circuit first Use Excel, Matlab, a calculator etc to calculate component values Then simulate your circuit to check operation and fine-tune parameters Don t try to design your circuit using SPICE Simulation is not a substitute for thinking

29 Summary of Power Circuits Real switches have limitations Conduction losses (R ON for FETs, V CE for IGBTs, Diode drop) Switching losses (finite t on, t off, t rr ) With current source load, current ramps, then voltage falls And voltage rises before current falls May be dominated by reverse recovery time Complicated by inductance Parasitic L and C Power MOSFETs Switch quickly, have linear I-V, integral diode IGBTs Diode-like I-V, slower switching Diodes Have reverse recovery time Switches operate in pairs For one-way converters, one switch may be a diode Synchronous rectification make both switches FETs to reduce loss Need dead time to avoid shoot through current Gate-drive circuits control rise and fall times Supply Miller capacitance Bootstrap supply needed for high-side driver Snubbers dampen voltage and current transients Use SPICE as a verification tool, not a design tool

30 Photovoltaics

31 Energy Conversion

32

33 Photovoltaic System Solar Panel Solar Panel Solar Panel Solar Panel 400V DC PV Controller and Inverter 240V AC 60 Hz To Grid Solar Panel Solar Panel 48V DC Photovoltaic Array Batteries

34

35

36 Electrons absorb energy from photons

37 Equivalent Circuit R S + I SC D1 D2 R SH V C _

38 IV-Curve

39 Typical Module CS6P 60 cells in series ~0.5V per cell 3 strings of 20 with bypass diode on each string

40 Typical Module

41 IV Curve from SPICE Model

42 Peak-Power Tracking Find point on IV curve where power is maximized. Start at any point (v(0),i(0)) Dither v, v(i+1) = v(i) + Dv Check result: if(p(i+1) < p(i)) v(i+1) = v(i) Try both directions: Dv = -Dv

43 MPP Tracking The Movie

44 Start at (35 V, 5.5A) P=192.5

45 Dither by DV = 0.5V to V = 35.5V (35.5V, 4.7A) P=166.9 < 192.5

46 (35.5V, 4.7A) P=166.9 < Bad Move Go Back to (35, 5.5)

47 Dither by -0.5V to 34.5V (34.5, 6.2) P=213.9 > 192.5

48 (34.5, 6.2) P=213.9 > Keep move and keep going

49 Move to 34.0 (34.0, 6.7) P=227.8 > 213.9

50 (34.0, 6.7) P=227.8 > Keep move and keep going

51 (33.5, 7.0) P=234.5> Keep move and keep going

52 (33.0, 7.3) P=240.9 > Keep move and keep going

53 (32.5, 7.5) P= > Keep move and keep going

54 (32.0, 7.6) P=243.2 < Abandon Move and Go Back!

55 Operate at (32.5, 7.5) P=243.8 With occasional forays to 32.0 and 33.0

56 Hillclimbing On the Power Curve

57 Compound Power Curve

58 Compound Power Curve (2 Panels) Not convex How do you find maximum power point?

59 Three Panels

60 Typical String of 10 PV Panels

61 Exhaustion Try every operating point Random Search Strategies for Non-Convex MPPT Randomly pick new points keep if better Hierarchical Try every point with coarse spacing Try every point near best point with finer spacing Repeat Acquire and Track One of the above to acquire MPPT (e.g., hierarchical) Then gradient search to track Periodically revisit (devote some fraction of string time to this) Optimal method depends on Shape of curve How fast the curve changes How the curve changes

62 Good Optimization Depends on Understanding The Collect lots of data Problem Time series of IV curves from typical strings Understand the data What causes dips Bad panels Static offset in current Fixed shading trees, buildings, etc Periodic offset same time each day Variable shading clouds, etc Unpredictable shading but shifts across panels in one direction Develop algorithms Test on data

63 An Example of Optimization Trade-off parameters against one another to maximize a figure of merit. In this case, parameters are panel voltage and current. Figure of merit is power. Optimization is done real-time because temperature and irradiance change. Sometimes optimization is done at design time, or calibration time.

64 MPPT Power Path (Boost Converter with Energy Meter) V L G M 2 V PV L 1 C O Load PV Panel I PV C i G M 1 R S

65 MPPT Power Path (Boost Converter with Energy Meter) V L G M 2 V PV L 1 C O Load PV Panel I PV C i G M 1 R S MPPT is a boost converter that regulates its INPUT voltage

66 Cycle Waveforms il(a) Size inductor L to set ripple v in (V) 35 Size input cap C i for acceptable ripple v out (V) Size output cap C o for acceptable ripple t (µs)

67 SPICE

68 v in (V) Longer Simulation i pv (A) v out (V) D P (W) t (ms)

69 PV Systems

70 Microinverter Panel 30-40V 0-10A Inverter AC Line 240 Vrms ~1Arms

71 Store Energy During AC Null

72 Approach 1 DC Link 30-40V 0-10A V 0-1A Rectified AC 240V, 1A rms Boost Buck Unfold

73 Approach 2 Single Stage Rectified AC 240V, 1A rms 30-40V 0-10A Convert Unfold

74 Two-Path 400VDC Buck 240V 120Hz rectified sine Unfold 240V AC 60Hz Boost V 120Hz Buck 2/3 of power through main path Lower path levels input current

75 3-Phase String of Panels V 10A Inverter AC Line 480 V 20 A 3 phase No need for energy storage

76 3-F Inverter Power Path A B C A B C C 1 R CS A B C

77 Transformerless

78 Typical Utility-Scale PV System

79 Typical Utility-Scale PV System 8,000 Modules 400 strings of 20 modules each 325W/module 2.6MW DC total Central 2MW inverter Central 2MW step-up transformer to 34.5kv Single axis tracking This 2MW block is repeated for larger systems

80 PV Economics 1 Utility scale costs PV Module $0.60/W Inverter $0.10/W Mounting $0.15/W Balance $0.65/W TOTAL $1.50/W Residential costs PV Module $0.60 Microinverter $0.50 Mounting $0.20 Balance $1.70 TOTAL $3.00 Return Hours/year 2,200 Wholesale $0.05/kWh TOTAL $0.11/Wyear 7.3% ROI Return Hours/year 2,200 Retail $0.15-$0.35/kWh TOTAL $ /Wyear 11% - 26% ROI

81 PV Economics 2 Module is only 40% of cost (20% for residential) Real issue is balance-of-system (installation labor)

82 V OC Limiting Typical module (Trina TSM-310-PD14) Vmp = 36V, Voc = 46V (worst-case cold temperature) Inverter input limited to 1kV Limits strings to 21 modules At Vmp could have 27 modules 29% increase Reduces string cost by ~30%.

83 Module (and Cell) Mismatch String current limited to current from weakest cell Module current mismatch s = 5% Worse for residential installations (partial shading) Two questions: What is the typical mismatch profile of a 10-module string? What power reduction does a X % current mismatch result in?

84 Faults and Failures Cell open/short Diode open/short Arc fault

85 Summary of PV PV cells/strings are voltage-dependent current sources (Diode in parallel with current source) PV controllers regulate their input voltage/current to maximize power Maximum power-point tracking Can apply almost any converter topology Boost used for illustration Regulate input rather than output Gradient search for convex optimization More sophisticated search needed for multi cell/panel string

86 In Upcoming Lectures No Date Topic HW out HW in Lab out Lab ck Lab HW 1 9/26/16Intro (basic converters) 1 1 Intro to ST32F3 Periodic Steady State 2 9/28/16Embedded Prog/Power Elect. 3 10/3/16Power Electronics - 1 (switches) AC Energy Meter Power Devices 4 10/5/16Power Electronics - 2 (circuits) 5 10/10/16Photovoltaics PV MPPT PV SPICE 6 10/12/16Feedback Control 7 10/17/16Electric Motors Motor control Matlab Feedback 8 10/19/16Isolated Converters 9 10/24/16Solar Day 5/PP Motor control - Lab/ Isolated Converters 10 10/26/16Magnetics 11 10/31/16Soft Switching 6 5/PP 6 5 PS Magnetics and Inverters 12 11/2/16Project Discussions 13 11/7/16Inverters, Grid, PF, and Batteries 6 P 6 Project 14 11/9/16Thermal & EMI 15 11/14/16Quiz Review C /16/16Grounding, and Debugging Q 11/16/16Quiz - in the evening C2 11/21/16Thanksgiving Break 11/23/16Thanksgiving Break 17 11/28/ /30/16 C /5/ /7/16Wrapup TBD Project presentations P TBD Project webpage due

EE152 Green Electronics

EE152 Green Electronics EE152 Green Electronics Power Circuits Photovoltaics 9/30/15 Prof. William Dally Computer Systems Laboratory Stanford University Course Logistics HW2 out Today due Monday 10/5 Lab1 signed off this week

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Embedded Software Power Devices 10/2/17 Prof. William Dally Computer Systems Laboratory Stanford University EE155/255 F17 L3 2 Lab group assignments Logistics Go to Canvas and

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Thermal and EMI 11/7/16 Prof. William Dally Computer Systems Laboratory Stanford University No Date Topic HW out HW in Lab out Lab ck Lab HW 1 9/26/16 Intro (basic converters)

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Quiz Review 11/14/16 Prof. William Dally Computer Systems Laboratory Stanford University Quiz is next Wednesday 11/16 7:00PM to 9:00PM Room 200-203 Covers all material to date

More information

EE152 Green Electronics

EE152 Green Electronics EE152 Green Electronics Power Factor and Inverters 10/28/14 Prof. William Dally Computer Systems Laboratory Stanford University Lab 5 PV lab this week Course Logistics Solar day is on Thursday 10/30/14

More information

In this lab you will build a photovoltaic controller that controls a single panel and optimizes its operating point driving a resistive load.

In this lab you will build a photovoltaic controller that controls a single panel and optimizes its operating point driving a resistive load. EE 155/255 Lab #3 Revision 1, October 10, 2017 Lab3: PV MPPT Photovoltaic cells are a great source of renewable energy. With the sun directly overhead, there is about 1kW of solar energy (energetic photons)

More information

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 52 CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 3.1 INTRODUCTION The power electronics interface, connected between a solar panel and a load or battery bus, is a pulse width modulated

More information

Lecture 4 ECEN 4517/5517

Lecture 4 ECEN 4517/5517 Lecture 4 ECEN 4517/5517 Experiment 3 weeks 2 and 3: interleaved flyback and feedback loop Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture -1 Introduction to DC-DC converter Good day to all of you, we

More information

A High-Efficiency MOSFET Transformerless Inverter for Nonisolated Microinverter Applications

A High-Efficiency MOSFET Transformerless Inverter for Nonisolated Microinverter Applications Page number 1 A High-Efficiency MOSFET Transformerless Inverter for Nonisolated Microinverter Applications Abstract With worldwide growing demand for electric energy, there has been a great interest in

More information

Application Note 0009

Application Note 0009 Recommended External Circuitry for Transphorm GaN FETs Application Note 9 Table of Contents Part I: Introduction... 2 Part II: Solutions to Suppress Oscillation... 2 Part III: The di/dt Limits of GaN Switching

More information

EE155/255 F16 Midterm

EE155/255 F16 Midterm EE155/255 F16 Midterm Name: (please print) In recognition of and in the spirit of the Stanford University Honor Code, I certify that I will neither give nor receive unpermitted aid on this exam. Signature:

More information

The Quest for High Power Density

The Quest for High Power Density The Quest for High Power Density Welcome to the GaN Era Power Conversion Technology Drivers Key design objectives across all applications: High power density High efficiency High reliability Low cost 2

More information

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Lakshmi M Shankreppagol 1 1 Department of EEE, SDMCET,Dharwad, India Abstract: The power requirements for the microprocessor

More information

POWER ISIPO 29 ISIPO 27

POWER ISIPO 29 ISIPO 27 SI NO. TOPICS FIELD ISIPO 01 A Low-Cost Digital Control Scheme for Brushless DC Motor Drives in Domestic Applications ISIPO 02 A Three-Level Full-Bridge Zero-Voltage Zero-Current Switching With a Simplified

More information

Grid Connected photovoltaic system based on Chain cell converter Using Simulink

Grid Connected photovoltaic system based on Chain cell converter Using Simulink Grid Connected photovoltaic system based on Chain cell converter Using Simulink Problem statement To prove Chain cell converter performance superior when compared with the traditional Pulse width modulation

More information

AN Analog Power USA Applications Department

AN Analog Power USA Applications Department Using MOSFETs for Synchronous Rectification The use of MOSFETs to replace diodes to reduce the voltage drop and hence increase efficiency in DC DC conversion circuits is a concept that is widely used due

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger Topics Why GaN? Integration for Higher System Performance Application Examples Taking GaN beyond

More information

Switches And Antiparallel Diodes

Switches And Antiparallel Diodes H-bridge Inverter Circuit With Transistor Switches And Antiparallel Diodes In these H-bridges we have implemented MOSFET transistor for switching. sub-block contains an ideal IGBT, Gto or MOSFET and antiparallel

More information

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply System Board 6309 MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply Maxim s power-supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of these

More information

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS 2.1 Introduction Conventional diode rectifiers have rich input harmonic current and cannot meet the IEC PFC regulation,

More information

Chapter 1: Introduction

Chapter 1: Introduction 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction to Power Processing Power input Switching converter

More information

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE This thesis is submitted as partial fulfillment of the requirement for the award of Bachelor of Electrical Engineering (Power System) Faculty of

More information

Power Management for Computer Systems. Prof. C Wang

Power Management for Computer Systems. Prof. C Wang ECE 5990 Power Management for Computer Systems Prof. C Wang Fall 2010 Course Outline Fundamental of Power Electronics cs for Computer Systems, Handheld Devices, Laptops, etc More emphasis in DC DC converter

More information

HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER

HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER Data Sheet No. 60206 HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER Features Simple primary side control solution to enable half-bridge DC-Bus Converters for 48V distributed systems

More information

An Interleaved High-Power Fly back Inverter for Photovoltaic Applications

An Interleaved High-Power Fly back Inverter for Photovoltaic Applications An Interleaved High-Power Fly back Inverter for Photovoltaic Applications S.Sudha Merlin PG Scholar, Department of EEE, St.Joseph's College of Engineering, Semmencherry, Chennai, Tamil Nadu, India. ABSTRACT:

More information

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits Upal Sengupta, Texas nstruments ABSTRACT Portable product design requires that power supply

More information

Integrated Power Hybrid IC for Appliance Motor Drive Applications

Integrated Power Hybrid IC for Appliance Motor Drive Applications Integrated Power Hybrid IC for Appliance Motor Drive Applications PD-97277 Rev A IRAM336-025SB Series 3 Phase Inverter HIC 2A, 500V Description International Rectifier s IRAM336-025SB is a multi-chip Hybrid

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM 60 CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM 3.1 INTRODUCTION Literature reports voluminous research to improve the PV power system efficiency through material development,

More information

VERY HIGH VOLTAGE BOOST CONVERTER BASED ON BOOT STRAP CAPACITORS AND BOOST INDUCTORS USED FOR PHOTOVOLTAIC APPLICATION USING MPPT

VERY HIGH VOLTAGE BOOST CONVERTER BASED ON BOOT STRAP CAPACITORS AND BOOST INDUCTORS USED FOR PHOTOVOLTAIC APPLICATION USING MPPT INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles Davide GIACOMINI Principal, Automotive HVICs Infineon Italy s.r.l. ATV division Need for clean Hybrid and Full Electric vehicles

More information

Photovoltaic Systems I EE 446/646

Photovoltaic Systems I EE 446/646 Photovoltaic Systems I EE 446/646 PV System Types & Goal Types of PV Systems: Grid-tied systems that feed power directly into the utility grid, Residential Systems (1-10kW) Commercial/industrial systems

More information

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A. K. Panda and Aroul. K Abstract--This paper proposes a zero-voltage transition (ZVT) PWM synchronous buck converter, which

More information

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY System Board 6283 MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY Overview Maxim s power supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

Power Electronics in PV Systems

Power Electronics in PV Systems Introduction to Power Electronics in PV Systems EEN 2060 References: EEN4797/5797 Intro to Power Electronics ece.colorado.edu/~ecen5797 Textbook: R.W.Erickson, D.Maksimovic, Fundamentals of Power Electronics,

More information

Power Management. Introduction. Courtesy of Dr. Sanchez-Sinencio s Group. ECEN 489: Power Management Circuits and Systems

Power Management. Introduction. Courtesy of Dr. Sanchez-Sinencio s Group. ECEN 489: Power Management Circuits and Systems Power Management Introduction Courtesy of Dr. Sanchez-Sinencio s Group 1 Today What is power management? Big players Market Types of converters Pros and cons Specifications Selection of converters 2 Motivation

More information

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies Power of GaN Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies Steve Tom Product Line Manager, GaN Products stom@ti.com Solving power and energy-management

More information

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System Vahida Humayoun 1, Divya Subramanian 2 1 P.G. Student, Department of Electrical and Electronics Engineering,

More information

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 100 CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 7.1 INTRODUCTION An efficient Photovoltaic system is implemented in any place with minimum modifications. The PV energy conversion

More information

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 53-60 www.iosrjen.org Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications. Sangeetha U G 1 (PG Scholar,

More information

Cal Poly SuPER System Photovoltaic Array Universal DC-DC Step Down Converter

Cal Poly SuPER System Photovoltaic Array Universal DC-DC Step Down Converter Cal Poly SuPER System Photovoltaic Array Universal DC-DC Step Down Converter A Thesis Presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER 1 Aravind Murali, 2 Mr.Benny.K.K, 3 Mrs.Priya.S.P 1 PG Scholar, 2 Associate Professor, 3 Assistant Professor Abstract - This paper proposes a highly efficient

More information

High Efficiency Wide Load Range Buck/Boost/Bridge Photovoltaic Microconverter

High Efficiency Wide Load Range Buck/Boost/Bridge Photovoltaic Microconverter High Efficiency Wide Load Range Buck/Boost/Bridge Photovoltaic Microconverter Richard K. Hester, Christopher Thornton, Sairaj Dhople, Zheng Zhao, Nagarajan Sridhar, and Dave Freeman Texas Instruments TI

More information

Photovoltaic Systems Engineering

Photovoltaic Systems Engineering Photovoltaic Systems Engineering Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Reference for this lecture: Trishan Esram and Patrick L. Chapman. Comparison of Photovoltaic Array Maximum

More information

Digital PWM IC Control Technology and Issues

Digital PWM IC Control Technology and Issues Digital PWM IC Control Technology and Issues Prof. Seth R. Sanders Angel V. Peterchev Jinwen Xiao Jianhui Zhang Department of EECS University of California, Berkeley Digital Control Advantages implement

More information

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89 Soft Switching Converter with High Voltage Gain for Solar Energy Applications S. Hema*, A. Arulmathy,V. Saranya, S. Yugapriya Department of EEE, Veltech, Chennai *Corresponding author: E-Mail: hema@veltechengg.com

More information

ECEN4797/5797 Lecture #11

ECEN4797/5797 Lecture #11 ECEN4797/5797 Lecture #11 Announcements On-campus students: pick up graded HW2, turn in HW3 Homework 4 is due in class on Friday, Sept. 23. The grace-period for offcampus students expires 5pm (Mountain)

More information

7.2 SEPIC Buck-Boost Converters

7.2 SEPIC Buck-Boost Converters Boost-Buck Converter 131 5. The length of the trace from GATE output of the HV9930 to the GATE of the MOSFET should be as small as possible, with the source of the MOSFET and the GND of the HV9930 being

More information

(or Climbing the Peak without Falling Off the Other Side ) Dave Edwards

(or Climbing the Peak without Falling Off the Other Side ) Dave Edwards (or Climbing the Peak without Falling Off the Other Side ) Dave Edwards Ripple Correlation Control In wind, water or solar alternative energy power conversion systems, tracking and delivering maximum power

More information

GaN in Practical Applications

GaN in Practical Applications in Practical Applications 1 CCM Totem Pole PFC 2 PFC: applications and topology Typical AC/DC PSU 85-265 V AC 400V DC for industrial, medical, PFC LLC 12, 24, 48V DC telecomm and server applications. PFC

More information

CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm

CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm 44 CHAPTER-3 DESIGN ASPECTS OF DC-DC BOOST CONVERTER IN SOLAR PV SYSTEM BY MPPT ALGORITHM 3.1 Introduction In the

More information

Low Cost 8W Off-line LED Driver using RT8487

Low Cost 8W Off-line LED Driver using RT8487 Application Note AN019 Jun 2014 Low Cost 8W Off-line LED Driver using RT8487 Abstract RT8487 is a boundary mode constant current controller with internal high side driver, which can be used in buck and

More information

FSB50760SF, FSB50760SFT Motion SPM 5 SuperFET Series

FSB50760SF, FSB50760SFT Motion SPM 5 SuperFET Series FSB50760SF, FSB50760SFT Motion SPM 5 SuperFET Series Features UL Certified No. E209204 (UL1557) 600 V R DS(on) = 530 m Max SuperFET MOSFET 3- Phase with Gate Drivers and Protection Built-in Bootstrap Diodes

More information

1.5MHz, 800mA, High-Efficiency PWM Synchronous Step-Down Converter

1.5MHz, 800mA, High-Efficiency PWM Synchronous Step-Down Converter 1.5MHz, 800mA, High-Efficiency PWM Synchronous Step-Down Converter Description The is a high efficiency, low-noise, DC-DC step-down pulse width modulated (PWM) converter that goes automatically into PFM

More information

CONSONANCE. 4A, Standalone Li-ion Battery Charger IC With Photovoltaic Cell MPPT Function CN3791. General Descriptions: Features: Pin Assignment:

CONSONANCE. 4A, Standalone Li-ion Battery Charger IC With Photovoltaic Cell MPPT Function CN3791. General Descriptions: Features: Pin Assignment: 4A, Standalone Li-ion Battery Charger IC With Photovoltaic Cell MPPT Function CN3791 General Descriptions: The CN3791 is a PWM switch-mode lithium ion battery charger controller that can be powered by

More information

Recommended External Circuitry for Transphorm GaN FETs. Zan Huang Jason Cuadra

Recommended External Circuitry for Transphorm GaN FETs. Zan Huang Jason Cuadra Recommended External Circuitry for Transphorm GaN FETs Zan Huang Jason Cuadra Application Note Rev. 1.0 November 22, 2016 Table of Contents 1 Introduction 3 2 Sustained oscillation 3 3 Solutions to suppress

More information

2A, 23V, 380KHz Step-Down Converter

2A, 23V, 380KHz Step-Down Converter 2A, 23V, 380KHz Step-Down Converter General Description The is a buck regulator with a built-in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent

More information

A Color LED Driver Implemented by the Active Clamp Forward Converter

A Color LED Driver Implemented by the Active Clamp Forward Converter A Color LED Driver Implemented by the Active Clamp Forward Converter C. H. Chang, H. L. Cheng, C. A. Cheng, E. C. Chang * Power Electronics Laboratory, Department of Electrical Engineering I-Shou University,

More information

In association with International Journal Scientific Research in Science and Technology

In association with International Journal Scientific Research in Science and Technology 1st International Conference on Applied Soft Computing Techniques 22 & 23.04.2017 In association with International Journal of Scientific Research in Science and Technology Design and implementation of

More information

Appendix: Power Loss Calculation

Appendix: Power Loss Calculation Appendix: Power Loss Calculation Current flow paths in a synchronous buck converter during on and off phases are illustrated in Fig. 1. It has to be noticed that following parameters are interrelated:

More information

Finite Step Model Predictive Control Based Asymmetrical Source Inverter with MPPT Technique

Finite Step Model Predictive Control Based Asymmetrical Source Inverter with MPPT Technique International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 01 (January 2015), PP.08-16 Finite Step Model Predictive Control Based

More information

TYPICALLY, a two-stage microinverter includes (a) the

TYPICALLY, a two-stage microinverter includes (a) the 3688 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 5, MAY 2018 Letters Reconfigurable LLC Topology With Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems Ming Shang, Haoyu

More information

Inverter topologies for photovoltaic modules with p-sim software

Inverter topologies for photovoltaic modules with p-sim software Inverter topologies for photovoltaic modules with p-sim software Anand G. Acharya, Brijesh M. Patel, Kiran R. Prajapati 1. Student, M.tech, power system, SKIT, Jaipur, India, 2. Assistant Professor, ADIT,

More information

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1 5V/12V Synchronous Buck PWM Controller DESCRIPTION The is a high efficiency, fixed 300kHz frequency, voltage mode, synchronous PWM controller. The device drives two low cost N-channel MOSFETs and is designed

More information

Elgar ETS TerraSAS. 1kW-1MW V. Standalone TerraSAS Photovoltaic Simulator

Elgar ETS TerraSAS. 1kW-1MW V. Standalone TerraSAS Photovoltaic Simulator Elgar ETS TerraSAS Standalone TerraSAS Photovoltaic Simulator Low output capacitance High bandwidth up to 30kHz High resolution I-V curve simulates static and dynamic conditions Designed for high speed

More information

A High Efficiency and High Voltage Gain DC-DC Converter for Renewable Energy Connected to Induction Motor

A High Efficiency and High Voltage Gain DC-DC Converter for Renewable Energy Connected to Induction Motor I J C T A, 10(5) 2017, pp. 947-957 International Science Press A High Efficiency and High Voltage Gain DC-DC Converter for Renewable Energy Connected to Induction Motor M. Suresh * and Y.P. Obulesu **

More information

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session March 24 th 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1 Mobility (cm 2 /Vs) EBR Field (MV/cm) GaN vs. Si WBG GaN material

More information

An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply

An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply Spiros Cofinas Department of Electrotechnics and Computer Science Hellenic Naval Academy Terma Hatzikyriakou, Piraeus GREECE

More information

Lecture 7 ECEN 4517/5517

Lecture 7 ECEN 4517/5517 Lecture 7 ECEN 4517/5517 Experiments 4-5: inverter system Exp. 4: Step-up dc-dc converter (cascaded boost converters) Analog PWM and feedback controller to regulate HVDC Exp. 5: DC-AC inverter (H-bridge)

More information

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion Mrs.Nagajothi Jothinaga74@gmail.com Assistant Professor Electrical & Electronics Engineering Sri Vidya College of Engineering

More information

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter MIC2193 4kHz SO-8 Synchronous Buck Control IC General Description s MIC2193 is a high efficiency, PWM synchronous buck control IC housed in the SO-8 package. Its 2.9V to 14V input voltage range allows

More information

A Single Switch DC-DC Converter for Photo Voltaic-Battery System

A Single Switch DC-DC Converter for Photo Voltaic-Battery System A Single Switch DC-DC Converter for Photo Voltaic-Battery System Anooj A S, Lalgy Gopi Dept Of EEE GEC, Thrissur ABSTRACT A photo voltaic-battery powered, single switch DC-DC converter system for precise

More information

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 40 CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 2.1 INTRODUCTION Interleaving technique in the boost converter effectively reduces the ripple current

More information

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside Highlights of the Chapter 4 1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside voltage. Some industry-generated papers recommend

More information

PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER

PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER S. Divya 1, K. Abarna 1 and M. Sasikumar 2 1 Power Electronics and Drives, Jeppiaar Engineering College, Chennai, India 2 Department

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: [Chakradhar et al., 3(6): June, 2014] ISSN:

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: [Chakradhar et al., 3(6): June, 2014] ISSN: IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Development of TMS320F2810 DSP Based Bidirectional buck-boost Chopper Mr. K.S. Chakradhar *1, M.Ayesha siddiqa 2, T.Vandhana 3,

More information

Monitoring Transistor Degradation in Power Inverters Through Pole Shifts

Monitoring Transistor Degradation in Power Inverters Through Pole Shifts Monitoring Transistor Degradation in Power Inverters Through Pole Shifts J. Hunter Hayes Department of Electrical and Computer Engineering Clemson University Clemson, SC jhunterhayes@gmail.com Todd H.

More information

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Topic 2 Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Bing Lu Agenda 1. Basic Operation of Flyback and Forward Converters 2. Active Clamp Operation and Benefits

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Elgar TerraSAS 1kW-1MW Programmable Solar Array Simulator Simulate dynamic irradiance and temperature ranging from a

More information

Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System

Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System Patil S.N. School of Electrical and Electronics. Engg. Singhania University, Rajashthan, India Dr. R. C. Prasad 2 Prof.

More information

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors Reshma Ismail PG Scholar, EEE Department KMEA Engineering College Edathala, Kerala, India Neenu B Assistant Professor, EEE Department

More information

Low Cost MPPT Algorithms for PV Application: PV Pumping Case Study. M. A. Elgendy, B. Zahawi and D. J. Atkinson. Presented by:

Low Cost MPPT Algorithms for PV Application: PV Pumping Case Study. M. A. Elgendy, B. Zahawi and D. J. Atkinson. Presented by: Low Cost MPPT Algorithms for PV Application: PV Pumping Case Study M. A. Elgendy, B. Zahawi and D. J. Atkinson Presented by: Bashar Zahawi E-mail: bashar.zahawi@ncl.ac.uk Outline Maximum power point tracking

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 68 CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 4.1 INTRODUCTION The main objective of this research work is to implement and compare four control methods, i.e., PWM

More information

RT8487. High Efficiency BCM LED Driver Controller for High Power Factor Offline Applications. General Description. Features. Ordering Information

RT8487. High Efficiency BCM LED Driver Controller for High Power Factor Offline Applications. General Description. Features. Ordering Information High Efficiency BCM LED Driver Controller for High Power Factor Offline Applications General Description The RT8487 is a Boundary mode high PF floating buck constant LED current output controller with

More information

In Search of Powerful Circuits: Developments in Very High Frequency Power Conversion

In Search of Powerful Circuits: Developments in Very High Frequency Power Conversion Massachusetts Institute of Technology Laboratory for Electromagnetic and Electronic Systems In Search of Powerful Circuits: Developments in Very High Frequency Power Conversion David J. Perreault Princeton

More information

A Solar Powered Water Pumping System with Efficient Storage and Energy Management

A Solar Powered Water Pumping System with Efficient Storage and Energy Management A Solar Powered Water Pumping System with Efficient Storage and Energy Management Neena Thampi, Nisha R Abstract This paper presents a standalone solar powered water pumping system with efficient storage

More information

Motion-SPM. FSB50250UD Smart Power Module (SPM ) General Description. Features. Absolute Maximum Ratings. Symbol Parameter Conditions Rating Units

Motion-SPM. FSB50250UD Smart Power Module (SPM ) General Description. Features. Absolute Maximum Ratings. Symbol Parameter Conditions Rating Units FSB50250UD Smart Power Module (SPM ) Features 500V R DS(on) =4.2W(max) 3-phase FRFET inverter including high voltage integrated circuit (HVIC) 3 divided negative dc-link terminals for inverter current

More information

Application Note AN-1120

Application Note AN-1120 Application Note AN-1120 Buffer Interface with Negative Gate Bias for Desat Protected HVICs used in High Power Applications By Marco Palma - International Rectifier Niels H. Petersen - Grundfos Table of

More information

Closed Loop Control of Boost Converter for a Grid Connected Photovoltaic System

Closed Loop Control of Boost Converter for a Grid Connected Photovoltaic System International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 4 (2013), pp. 459-471 International Research Publication House http://www.irphouse.com Closed Loop Control of Boost Converter

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 6.3.5. Boost-derived isolated converters A wide variety of boost-derived isolated dc-dc converters

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

Design and Simulation of Soft Switched Converter with Current Doubler Scheme for Photovoltaic System

Design and Simulation of Soft Switched Converter with Current Doubler Scheme for Photovoltaic System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. III (Jan Feb. 2015), PP 73-77 www.iosrjournals.org Design and Simulation

More information

Boundary Mode Offline LED Driver Using MP4000. Application Note

Boundary Mode Offline LED Driver Using MP4000. Application Note The Future of Analog IC Technology AN046 Boundary Mode Offline LED Driver Using MP4000 Boundary Mode Offline LED Driver Using MP4000 Application Note Prepared by Zheng Luo March 25, 2011 AN046 Rev. 1.0

More information

FINAL REPORT. Cooperating Industry, Agency, Non-Profit, or University Organization(s)

FINAL REPORT. Cooperating Industry, Agency, Non-Profit, or University Organization(s) Warren J. Baker Endowment for Excellence in Project-Based Learning Robert D. Koob Endowment for Student Success FINAL REPORT I. Project Title High Density Inverter for the Little Box Google Challenge II.

More information