Diffraction and Interference of Water Waves

Size: px
Start display at page:

Download "Diffraction and Interference of Water Waves"

Transcription

1 Diffraction and Interference of Water Waves

2 Diffraction of Waves Diffraction the bending and spreading of a wave when it passes through an opening or around an obstacle Examples: sound waves travel through a door into the classroom or hall (due to long λ) water waves bend around a breakwall Can light bend too???

3 Diffraction of Water Waves Important to understand wave properties to identify wave phenomena Reasoning is since waves exhibit diffraction, so if a certain unexplained phenomenon exhibits diffraction, it must have wavelike properties

4 Diffraction of Water Waves What affects the amount of diffraction? wavelength (λ) longer λ = more diffraction frequency (f) lower f = more diffraction opening size (w) smaller opening (w)= more diffraction

5 Diffraction of Water Waves For waves to undergo noticeable diffraction, the wavelength must be comparable to or greater than the slit width where λ w As λ, diffraction As w, diffraction Ripple tank time

6 Examples Example 1: AM radio waves bend around hills much better than FM radio waves. What conclusion can you draw about the difference between AM and FM radio waves? AM = long wavelength, low frequency FM = short wavelength, higher frequency Example 2: Why can you hear a person standing behind a tree but you cannot see him/her? Sound waves are able to diffract around the tree due to their long wavelength but light has a very short wavelength due to high frequency and cannot diffract to make a person visible. BUT is light a wave???...

7 Interference of Waves Principle of Superposition when 2 waves in the same medium interact the resulting wave has an amplitude equal to the sum of the amplitudes of the 2 interfering waves Constructive Interference = larger amplitude (antinode) waves are in phase (same λ) Destructive Interference = smaller amplitude (node) waves are out of phase (λ differs) Refer to diagrams pg.462 *in both cases, the resultant amplitude of 2 waves A and B is the algebraic sum A+B

8 Interference of Waves Tap a dish of water in the centre Tap in 2 spots with constant f Note lines of constructive interference (antinodal lines) and lines of destructive interference (nodal lines) Refer to diagram pg. 463 Note: In the 2 source pattern although the nodal lines appear to be straight, their paths are actually hyperbolas

9 Interference of Waves Two Point Source Pattern: A pair of identical point sources that are in phase produce a symmetrical pattern of constructive interference areas and nodal lines. As the frequency of vibration of the sources and λ the nodal lines come closer together and the # of nodal lines

10 Interference of Waves Interference patterns can be used to analyze wave properties such as speed, wavelength, and frequency To perform suitable calculations, the sources must have the same f and v, thus same λ LET S ANALYZE A TWO-POINT SOURCE PATTERN

11 Mathematical Analysis of Two-Point Source Interference

12 Two-Point Source Interference Pattern If two identical sources, S1 and S2, are vibrating in phase with same f and λ Then there are an equal # of nodal lines on each side of the right bisector. For Point P1 connected to S1 and S2, the difference between the 2 pts is 1 2 λ

13 For any point P on the n th nodal line the difference in path length is: P n S1 PnS2 n 1 2 P n S 1 = path length; distance from source to pt along a nodal line This relationship measures the wavelength of interfering waves from a point on a specific nodal line. *This is valid for large wavelengths and close distances. When Point P is far away from the sources or λ is too small, a new approach is needed

14 When P n is very far away compared to d between S1 and S2, P, lines P n S 1 and P n S 2 ~ parallel Line AS 2 forms a right-angle triangle w/ both lines as triangle S 1 S 2 A Difference in path length in terms of θ n : sinθ n = AS 1 d P n S sinθ n = n 1 2 and AS 1 = P n S 1 P n S 2 where 1 PnS2 2 1 n Variables n- nth nodal line S1-source 1 S2-source 2 Pn-point on nth nodal line d-distance between 2 sources L-distance from centre of sources to nodal point λ d therefore: Refer to derivation Pgs Path length difference x n -distance from bisector to nodal point θ n -angle between d and AS2 NOTE: θ n is the angle to the nth nodal line

15 The previous eq n is good when it is relatively easy to measure angle θ n to a respective nodal line such as in a ripple tank. But what about when the wavelength and distance between sources is very small and the nodal lines are close together? How can info. be calculated for a two-point interference pattern without measuring θ n directly?

16 From the previous diagram, as P, lines P n S 1 and P n C ~ parallel which are both perpendicular to AS2. Since the right bisector CB is perpendicular to S1S2, from similar triangles, θ n = θ n From previous diagram sinθ n = x n and sinθ L n = n 1 2 Since θ n = θ n equating the two formulas results in the equation: λ d x n L = n 1 2 λ d This eq n is valid for small wavelengths and small distance d between sources. Note: You do not need θ n.

17 Summary: Two-Point Source Interference Equations for Sources Vibrating In-Phase λ d Note: sinθ 1 (max # of nodal lines occurs when θ=90 on 1 side of pattern, double for total # of nodal lines in pattern) 1. Source wavelength: sinθ n = n Nodal line number: x n L = n 1 2 This eq n is good for small wavelengths and distances between sources. Formula #1 can also be used to calculate: i) the maximum number of nodal lines (sinθ n = 1 if θ n = 90 ) ii) the location of the antinodes λ d

18 Example #1: Two point sources 5.0 cm apart, in phase and connected to the same generator, create interfering waves with a frequency of 8.0 Hz in a ripple tank. One point on the first nodal line is 10.0 cm from one source and 11.0 cm from the other. Find: the wavelength of the waves speed of the waves Example #2: The distance from the right bisector to the second nodal line in a two-point interference pattern is 8.0 cm. The distance from the midpoint between the two sources to point P is 28 cm. What is the angle for the second nodal line?

19 EXTRA Example #1: Two point sources, in phase and connected to the same generator, create waves with a frequency of 2.5 Hz. One point on the third nodal line is 7.5 cm from one source and 15.0 cm from the other. Find: the wavelength speed of the wave Example #2: Two identical sources, in phase, create an interference pattern. One point on the 2nd nodal line is 3.80 cm from one source and cm from another. How far apart should the two sources be placed so that they are situated at nodes with exactly four nodes between them.

20 Example #3: A two point source interference pattern is analyzed from a distance. A point on the third nodal line is 25cm from the centre of the two sources and 5.0cm from the median bisector. If the two sources are 2.5cm apart, find: the wavelength of the sources the angle between the bisector and nodal point

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA PREVIEW When two waves meet in the same medium they combine to form a new wave by the principle of superposition. The result of superposition

More information

Harmonic Motion and Mechanical Waves. Jun 4 10:31 PM. the angle of incidence equals the angle of reflection.

Harmonic Motion and Mechanical Waves. Jun 4 10:31 PM. the angle of incidence equals the angle of reflection. Wave Properties Harmonic Motion and Mechanical Waves The law of reflection the angle of incidence equals the angle of reflection. The normal is an imaginary line that is perpendicular to the surface. The

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

Assessment Schedule 2014 Physics: Demonstrate understanding of wave systems (91523)

Assessment Schedule 2014 Physics: Demonstrate understanding of wave systems (91523) NCEA Level 3 Physics (91523) 2014 page 1 of 5 Assessment Schedule 2014 Physics: Demonstrate understanding of wave systems (91523) Assessment Criteria Achievement Achievement with Merit Achievement with

More information

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no 1 Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no medium required to transfer wave energy 2 Mechanical

More information

Level 2 Physics: Waves Waves Behaviour - Answers

Level 2 Physics: Waves Waves Behaviour - Answers Level 2 Physics: Waves Waves Behaviour - Answers The Mess that is NCEA Assessment Schedules. Level 2 Physics: AS 970 replaced AS 90254. In 90254, from 2004 to 20, there was an Evidence column with the

More information

A Level. A Level Physics. WAVES: Combining Waves (Answers) AQA. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Combining Waves (Answers) AQA. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics WAVES: Combining Waves (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. To produce

More information

AS Physics Unit 5 - Waves 1

AS Physics Unit 5 - Waves 1 AS Physics Unit 5 - Waves 1 WHAT IS WAVE MOTION? The wave motion is a means of transferring energy from one point to another without the transfer of any matter between the points. Waves may be classified

More information

Quiz on Chapters 13-15

Quiz on Chapters 13-15 Quiz on Chapters 13-15 Chapter 16 Waves and Sound continued Final Exam, Thursday May 3, 8:00 10:00PM ANH 1281 (Anthony Hall). Seat assignments TBD RCPD students: Thursday May 3, 5:00 9:00PM, BPS 3239.

More information

(i) node [1] (ii) antinode...

(i) node [1] (ii) antinode... 1 (a) When used to describe stationary (standing) waves explain the terms node...... [1] (ii) antinode....... [1] (b) Fig. 5.1 shows a string fixed at one end under tension. The frequency of the mechanical

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

Interference & Superposition. Creating Complex Wave Forms

Interference & Superposition. Creating Complex Wave Forms Interference & Superposition Creating Complex Wave Forms Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing

More information

Physics 4. Diffraction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Diffraction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Diffraction Diffraction When light encounters an obstacle it will exhibit diffraction effects as the light bends around the object or passes through a narrow opening. Notice the alternating bright

More information

2. Which pair of lettered points lie on the same nodal line? a) v and t b) x and r c) x and w d) u and y e) v and u 2 ANS: C

2. Which pair of lettered points lie on the same nodal line? a) v and t b) x and r c) x and w d) u and y e) v and u 2 ANS: C 1 Conceptual Questions 1. Which pair of lettered points lie on the central maximum? a) v and t b) x and z c) x and w d) u and y e) v and u 1 ANS: E The central maximum lies on the perpendicular bisector.

More information

Chapter 17. Linear Superposition and Interference

Chapter 17. Linear Superposition and Interference Chapter 17 Linear Superposition and Interference Linear Superposition If two waves are traveling through the same medium, the resultant wave is found by adding the displacement of the individual waves

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

Chapters 11, 12, 24. Refraction and Interference of Waves

Chapters 11, 12, 24. Refraction and Interference of Waves Chapters 11, 12, 24 Refraction and Interference of Waves Beats Two overlapping waves with slightly different frequencies gives rise to the phenomena of beats. Beats The beat frequency is the difference

More information

Ch17. The Principle of Linear Superposition and Interference Phenomena. The Principle of Linear Superposition

Ch17. The Principle of Linear Superposition and Interference Phenomena. The Principle of Linear Superposition Ch17. The Principle of Linear Superposition and Interference Phenomena The Principle of Linear Superposition 1 THE PRINCIPLE OF LINEAR SUPERPOSITION When two or more waves are present simultaneously at

More information

Chapter 17. The Principle of Linear Superposition and Interference Phenomena

Chapter 17. The Principle of Linear Superposition and Interference Phenomena Chapter 17 The Principle of Linear Superposition and Interference Phenomena 17.1 The Principle of Linear Superposition When the pulses merge, the Slinky assumes a shape that is the sum of the shapes of

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

In the Figure above, the fringe at point P on the screen will be:

In the Figure above, the fringe at point P on the screen will be: Coherent, monochromatic plane waves: In the Figure above, the fringe at point P on the screen will be: 1. An interference maximum 2. An interference minimum 3. Don t have a clue Answer: 2. Interference

More information

AP PHYSICS WAVE BEHAVIOR

AP PHYSICS WAVE BEHAVIOR AP PHYSICS WAVE BEHAVIOR NAME: HB: ACTIVITY I. BOUNDARY BEHAVIOR As a wave travels through a medium, it will often reach the end of the medium and encounter an obstacle or perhaps another medium through

More information

A Level. A Level Physics. WAVES: Combining Waves (Answers) OCR. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Combining Waves (Answers) OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. OCR A Level A Level Physics WAVES: Combining Waves (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. To produce

More information

Concepts in Physics. Friday, November 26th 2009

Concepts in Physics. Friday, November 26th 2009 1206 - Concepts in Physics Friday, November 26th 2009 Notes There is a new point on the webpage things to look at for the final exam So far you have the two midterms there More things will be posted over

More information

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of wave systems Subject Reference Physics 3.3 Title Demonstrate understanding of wave systems Level 3 Credits 4 Assessment External This achievement standard involves demonstrating

More information

PHY122 Physics for the Life Sciences II

PHY122 Physics for the Life Sciences II PHY122 Physics for the Life Sciences II Lecture 16 Waves and Interference HW 10 is due Sunday, 6 Nov. at 8:00 pm Make-ups for Labs 3,4,5 MUST be done this week (or else! As you all know since Day 1 of

More information

Physics 1C. Lecture 14C. "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France

Physics 1C. Lecture 14C. The finest words in the world are only vain sounds if you cannot understand them. --Anatole France Physics 1C Lecture 14C "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France Standing Waves You can also create standing waves in columns of air. But in air,

More information

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by PC1141 Physics I Speed of Sound 1 Objectives Determination of several frequencies of the signal generator at which resonance occur in the closed and open resonance tube respectively. Determination of the

More information

Waves & Interference

Waves & Interference Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing waves The student will be able to: HW: 1 Define, apply,

More information

Part 1: Standing Waves - Measuring Wavelengths

Part 1: Standing Waves - Measuring Wavelengths Experiment 7 The Microwave experiment Aim: This experiment uses microwaves in order to demonstrate the formation of standing waves, verifying the wavelength λ of the microwaves as well as diffraction from

More information

that this was due Diffraction: can hear notice it - one way to ripple tanks visualize wide, - if the slit is less than directions

that this was due Diffraction: can hear notice it - one way to ripple tanks visualize wide, - if the slit is less than directions Lecture Notes (When Light Waves Interfere) Intro: - Newton believed that light was composed of fast-moving, tiny particles which he called corpuscles - Grimaldi, an Italian scientist, discovered in the

More information

the mechanical wave model can be used to explain phenomena related to reflection and refraction, including echoes and seismic phenomena.

the mechanical wave model can be used to explain phenomena related to reflection and refraction, including echoes and seismic phenomena. WAVES 5 Syllabus Checklist SCIENCE UNDERSTANDING WAVES waves are periodic oscillations that transfer energy from one point to another. mechanical waves transfer energy through a medium; longitudinal and

More information

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ.

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. PhysicsndMathsTutor.com 28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. 9702/1/M/J/02 X microwave transmitter S 1 S 2

More information

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound?

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound? Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound? 2. How does a sound wave travel through air? 3. What media transmit sound? 4. What determines the speed of sound in a medium? 5.

More information

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion Mechanical Waves Represents the periodic motion of matter e.g. water, sound Energy can be transferred from one point to another by waves Waves are cyclical in nature and display simple harmonic motion

More information

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2 Page 1 of 12 Physics Week 13(Sem. 2) Name Light Chapter Summary Cont d 2 Lens Abberation Lenses can have two types of abberation, spherical and chromic. Abberation occurs when the rays forming an image

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 81 Phy123 1 6 11 18 Chapter 35 Diffraction and Polarization Double- Slit Experiment destructive interference Two sources of light

More information

M1.D [1] M2.C [1] Suitable experiment eg diffraction through a door / out of a pipe

M1.D [1] M2.C [1] Suitable experiment eg diffraction through a door / out of a pipe M.D [] M.C [] M3.(a) Suitable experiment eg diffraction through a door / out of a pipe (b) Using c = d / t t = 500 / 480 = 5. s (c) (Measured time is difference between time taken by light and time taken

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

Episode 323: Diffraction

Episode 323: Diffraction Episode 323: Diffraction Note the spelling - double ff. The first recorded observation of diffraction was by Grimaldi in 1665. The shadows cast by light sources were not quite the same size as the anticipated

More information

describe sound as the transmission of energy via longitudinal pressure waves;

describe sound as the transmission of energy via longitudinal pressure waves; 1 Sound-Detailed Study Study Design 2009 2012 Unit 4 Detailed Study: Sound describe sound as the transmission of energy via longitudinal pressure waves; analyse sound using wavelength, frequency and speed

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review hecklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8)

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8) Waves & Energy Transfer Physics 11 Introduction to Waves Chapter 11 ( 11-1, 11-7, 11-8) Waves are all about Periodic Motion. Periodic motion is motion that repeats after a certain period of time. This

More information

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The E-M spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference

More information

4. WAVES Waves in one dimension (sections )

4. WAVES Waves in one dimension (sections ) 1 4. WAVES 4.1. Waves in one dimension (sections 4.1-4.6) Oscillation An oscillation is a back-and-forwards-movement like a mass hanging on a spring which is extended and released. [In this case, when

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: WAVES BEHAVIOUR QUESTIONS No Brain Too Small PHYSICS DIFFRACTION GRATINGS (2016;3) Moana is doing an experiment in the laboratory. She shines a laser beam at a double slit and observes an interference

More information

12. PRELAB FOR INTERFERENCE LAB

12. PRELAB FOR INTERFERENCE LAB 12. PRELAB FOR INTERFERENCE LAB 1. INTRODUCTION As you have seen in your studies of standing waves, a wave and its reflection can add together constructively (peak meets peak, giving large amplitude) or

More information

Wave Review Questions Updated

Wave Review Questions Updated Name: Date: 1. Which type of wave requires a material medium through which to travel? 5. Which characteristic is the same for every color of light in a vacuum? A. radio wave B. microwave C. light wave

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

3/23/2015. Chapter 11 Oscillations and Waves. Contents of Chapter 11. Contents of Chapter Simple Harmonic Motion Spring Oscillations

3/23/2015. Chapter 11 Oscillations and Waves. Contents of Chapter 11. Contents of Chapter Simple Harmonic Motion Spring Oscillations Lecture PowerPoints Chapter 11 Physics: Principles with Applications, 7 th edition Giancoli Chapter 11 and Waves This work is protected by United States copyright laws and is provided solely for the use

More information

Descriptors crest(positive), trough (negative), wavelength, amplitude

Descriptors crest(positive), trough (negative), wavelength, amplitude Review of Waves Definition transfer of energy through a medium Pulse single disturbance Wave repeated or periodic disturbance Medium a substance or material which carries the wave Particle displacement

More information

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 1 Announcements Week 14 Prepset due Fri at 8:30 am PS 11 due Week 14 Friday at 9 pm in boxes outside 26-152

More information

7.8 The Interference of Sound Waves. Practice SUMMARY. Diffraction and Refraction of Sound Waves. Section 7.7 Questions

7.8 The Interference of Sound Waves. Practice SUMMARY. Diffraction and Refraction of Sound Waves. Section 7.7 Questions Practice 1. Define diffraction of sound waves. 2. Define refraction of sound waves. 3. Why are lower frequency sound waves more likely to diffract than higher frequency sound waves? SUMMARY Diffraction

More information

Electromagnetic Waves Chapter Questions

Electromagnetic Waves Chapter Questions Electromagnetic Waves Chapter Questions 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

1. (i) λ distance between (neighbouring) identical points/points with same phase (on the wave) accept peak/crest to peak/crest, etc.

1. (i) λ distance between (neighbouring) identical points/points with same phase (on the wave) accept peak/crest to peak/crest, etc. PhysicsAndMathsTutor.com 1 1. (i) λ distance between (neighbouring) identical points/points with same phase (on the wave) accept peak/crest to peak/crest, etc. f number of waves passing a point /cycles/vibrations

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Standing Waves. ˆ About double the amplitude of the incident or reflected wave.

Standing Waves. ˆ About double the amplitude of the incident or reflected wave. Labs for College Physics: Mechanics Worksheet Experiment 6.1-1 Standing Waves As you work through the steps in the lab procedure, use the exact values you see in the simulations to record your observed

More information

Episode 321: Interference patterns

Episode 321: Interference patterns Episode 321: Interference patterns When two or more waves meet, we may observe interference effects. It is likely that your students will have already met the basic ideas of constructive and destructive

More information

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich LECTURE 13 DIFFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 33-4 & 33-6 to 33-7 Single slit diffraction Two slit interference-diffraction Fraunhofer and Fresnel diffraction Diffraction

More information

Properties and Applications

Properties and Applications Properties and Applications What is a Wave? How is it Created? Waves are created by vibrations! Atoms vibrate, strings vibrate, water vibrates A wave is the moving oscillation Waves are the propagation

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

Unit Test Strand: The Wave Nature of Light

Unit Test Strand: The Wave Nature of Light 22K 11T 2A 3C Unit Test Strand: The Wave Nature of Light Expectations: E1. analyse technologies that use the wave nature of light, and assess their impact on society and the environment; E2. investigate,

More information

= 2n! 1 " L n. = 2n! 1 # v. = 2n! 1 " v % v = m/s + ( m/s/ C)T. f 1. = 142 Hz

= 2n! 1  L n. = 2n! 1 # v. = 2n! 1  v % v = m/s + ( m/s/ C)T. f 1. = 142 Hz Chapter 9 Review, pages 7 Knowledge 1. (b). (c) 3. (b). (d) 5. (b) 6. (d) 7. (d) 8. (b) 9. (a) 10. (c) 11. (a) 1. (c) 13. (b) 1. (b) 15. (d) 16. False. Interference does not leave a wave permanently altered.

More information

Name: Date: Period: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015

Name: Date: Period: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015 Name: Date: Period: Objectives: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015 A.1.1 Describe the basic structure of the human

More information

Resonant Tubes A N A N

Resonant Tubes A N A N 1 Resonant Tubes Introduction: Resonance is a phenomenon which is peculiar to oscillating systems. One example of resonance is the famous crystal champagne glass and opera singer. If you tap a champagne

More information

Chapter 18. Superposition and Standing Waves

Chapter 18. Superposition and Standing Waves Chapter 18 Superposition and Standing Waves Particles & Waves Spread Out in Space: NONLOCAL Superposition: Waves add in space and show interference. Do not have mass or Momentum Waves transmit energy.

More information

PES 2130 Fall 2014, Spendier Lecture 23/Page 1

PES 2130 Fall 2014, Spendier Lecture 23/Page 1 PS 13 Fall 14, Spendier Lecture 3/Page 1 Lecture today: Chapter 35 Interference 1) Intensity in Double-Slit Interference ) Thin Film Interference Announcements: - Shortened office hours this Thursday (1-1:3am).

More information

Resonance in Air Columns

Resonance in Air Columns Resonance in Air Columns When discussing waves in one dimension, we observed that a standing wave forms on a spring when reflected waves interfere with incident waves. We learned that the frequencies at

More information

Single, Double And N-Slit Diffraction. B.Tech I

Single, Double And N-Slit Diffraction. B.Tech I Single, Double And N-Slit Diffraction B.Tech I Diffraction by a Single Slit or Disk If light is a wave, it will diffract around a single slit or obstacle. Diffraction by a Single Slit or Disk The resulting

More information

Physics. Light Waves & Physical Optics

Physics. Light Waves & Physical Optics Physics Light Waves & Physical Optics Physical Optics Physical optics or wave optics, involves the effects of light waves that are not related to the geometric ray optics covered previously. We will use

More information

... frequency, f speed, v......

... frequency, f speed, v...... PhysicsAndMathsTutor.com 1 1. Define the terms wavelength, frequency and speed used to describe a progressive wave. wavelength, λ... frequency, f... speed, v... Hence derive the wave equation v = fλ which

More information

Physics 1520, Spring 2013 Quiz 2, Form: A

Physics 1520, Spring 2013 Quiz 2, Form: A Physics 1520, Spring 2013 Quiz 2, Form: A Name: Date: Section 1. Exercises 1. The index of refraction of a certain type of glass for red light is 1.52. For violet light, it is 1.54. Which color of light,

More information

BVHS Physics: Waves Unit - Targets

BVHS Physics: Waves Unit - Targets BVHS Physics: Waves Unit - Targets Part A: General Wave Properties: Students should be able to 1) describe waves as traveling disturbances which transport energy without the bulk motion of matter. In transverse

More information

OSCILLATIONS and WAVES

OSCILLATIONS and WAVES OSCILLATIONS and WAVES Oscillations Oscillations are vibrations which repeat themselves. EXAMPLE: Oscillations can be driven externally, like a pendulum in a gravitational field EXAMPLE: Oscillations can

More information

Waves. Topic 11.1 Standing Waves

Waves. Topic 11.1 Standing Waves Waves Topic 11.1 Standing Waves Standing Waves The Formation When 2 waves of the same speed and wavelength and equal or almost equal amplitudes travelling in opposite directions meet, a standing wave is

More information

Physics 1C. Lecture 14B

Physics 1C. Lecture 14B Physics 1C Lecture 14B "I did never know so full a voice issue from so empty a heart: but the saying is true 'The empty vessel makes the greatest sound'." --William Shakespeare Doppler Effect Why does

More information

Copyright 2010 Pearson Education, Inc.

Copyright 2010 Pearson Education, Inc. 14-7 Superposition and Interference Waves of small amplitude traveling through the same medium combine, or superpose, by simple addition. 14-7 Superposition and Interference If two pulses combine to give

More information

Chapter 28 Physical Optics: Interference and Diffraction

Chapter 28 Physical Optics: Interference and Diffraction Chapter 28 Physical Optics: Interference and Diffraction 1 Overview of Chapter 28 Superposition and Interference Young s Two-Slit Experiment Interference in Reflected Waves Diffraction Resolution Diffraction

More information

Exam 3--PHYS 2021M-Spring 2009

Exam 3--PHYS 2021M-Spring 2009 Name: Class: Date: Exam 3--PHYS 2021M-Spring 2009 Multiple Choice Identify the choice that best completes the statement or answers the question Each question is worth 2 points 1 Images made by mirrors

More information

Q1. (Total 1 mark) Q2. cannot (Total 1 mark)

Q1. (Total 1 mark) Q2. cannot (Total 1 mark) Q1.Two points on a progressive wave are one-eighth of a wavelength apart. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave? 0.2 m

More information

Waves. Electromagnetic & Mechanical Waves

Waves. Electromagnetic & Mechanical Waves Waves Electromagnetic & Mechanical Waves Wave Definition: A disturbance that transfers energy from place to place. Molecules pass energy to neighboring molecules who pass energy to neighboring molecules

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

Tuesday, Nov. 9 Chapter 12: Wave Optics

Tuesday, Nov. 9 Chapter 12: Wave Optics Tuesday, Nov. 9 Chapter 12: Wave Optics We are here Geometric optics compared to wave optics Phase Interference Coherence Huygens principle & diffraction Slits and gratings Diffraction patterns & spectra

More information

Physics in Entertainment and the Arts

Physics in Entertainment and the Arts Physics in Entertainment and the Arts Chapter VIII Control of Sound The sound characteristics (acoustics) of a room depend upon a great many complex factors room size/shape wall/floor/ceiling materials

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions designed to see whether you understand the main concepts in the chapter. 1. Red laser light shines on a double slit, creating a pattern

More information

GRADE 11A: Physics 4. UNIT 11AP.4 9 hours. Properties of waves. Resources. About this unit. Previous learning. Expectations

GRADE 11A: Physics 4. UNIT 11AP.4 9 hours. Properties of waves. Resources. About this unit. Previous learning. Expectations GRADE 11A: Physics 4 Properties of waves UNIT 11AP.4 9 hours About this unit This unit is the fourth of seven units on physics for Grade 11 advanced. The unit is designed to guide your planning and teaching

More information

Waves. Read from Lesson 1 of the Waves chapter at The Physics Classroom:

Waves. Read from Lesson 1 of the Waves chapter at The Physics Classroom: Name: Waves Read from Lesson 1 of the Waves chapter at The Physics Classroom: MOP Connection: Waves: sublevel 1 http://www.physicsclassroom.com/class/waves/u10l1a.html http://www.physicsclassroom.com/class/waves/u10l1b.html

More information

Lecture 2: Interference

Lecture 2: Interference Lecture 2: Interference λ S 1 d S 2 Lecture 2, p.1 Today Interference of sound waves Two-slit interference Lecture 2, p.2 Review: Wave Summary ( ) ( ) The formula y x,t = Acoskx ωt describes a harmonic

More information

Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor)

Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P34-1 Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows

More information

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle Unit 1: Waves Lesson: Sound Sound is a mechanical wave, a longitudinal wave, a pressure wave Periodic sound waves have: Frequency f determined by the source of vibration; related to pitch of sound Period

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

Music. Sound Part II

Music. Sound Part II Music Sound Part II What is the study of sound called? Acoustics What is the difference between music and noise? Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear

More information

Slide 1 / 99. Electromagnetic Waves

Slide 1 / 99. Electromagnetic Waves Slide 1 / 99 Electromagnetic Waves Slide 2 / 99 The Nature of Light: Wave or Particle The nature of light has been debated for thousands of years. In the 1600's, Newton argued that light was a stream of

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear mathematical relationship between them.

Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear mathematical relationship between them. The Sound of Music Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear mathematical relationship between them. How is music formed? By STANDING WAVES Formed due to

More information

Single-Slit Diffraction. = m, (Eq. 1)

Single-Slit Diffraction. = m, (Eq. 1) Single-Slit Diffraction Experimental Objectives To observe the interference pattern formed by monochromatic light passing through a single slit. Compare the diffraction patterns of a single-slit and a

More information

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit.

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit. ACTIVITY 12 AIM To observe diffraction of light due to a thin slit. APPARATUS AND MATERIAL REQUIRED Two razor blades, one adhesive tape/cello-tape, source of light (electric bulb/ laser pencil), a piece

More information

Chapter PREPTEST: SHM & WAVE PROPERTIES

Chapter PREPTEST: SHM & WAVE PROPERTIES 2 4 Chapter 13-14 PREPTEST: SHM & WAVE PROPERTIES Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A load of 45 N attached to a spring that is hanging vertically

More information

Compiled by: A. Olivier

Compiled by: A. Olivier Other books in this series Warning!! All rights reserved according to the South African copyright act. No part of this book may be reproduced by photocopying or any other method without written permission

More information