TA/TI survey. Phy Phy

Size: px
Start display at page:

Download "TA/TI survey. Phy Phy"

Transcription

1 TA/TI survey Phy Phy

2 Chapter 35 Diffraction and Polarization

3 Double- Slit Experiment destructive interference Two sources of light are coherent if they have the same frequency and maintain the same phase relationship. constructive interference

4 34-4 Intensity in the Double-Slit Interference Pattern Intensity as a function of angle

5 34-4 Intensity in the Double-Slit Interference Pattern

6 34-3 Coherence Two sources of waves are perfectly coherent if they emit waves with the same frequency and maintain the same phase relationship at all times. If the waves from the two sources have random phase with respect to each other over time the sources are incoherent.

7 Interference vs. Diffrac:on No one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical difference between them. The best we can do is to say that when there are only a few sources interfering, then the result is usually called interference, but if there is a large number of them the world diffraction is more often used. Richard P. Feynman Interference and diffraction arise from the same phenomenon the superposition of coherent waves of different phase. The bending of waves behind obstacles into the shadow region is an effect of diffraction.

8 Diffrac:on Pa<ern A computer simulation of a diffraction pattern of a single 4-wavelength-wide slit.

9 35-1 Diffraction by a Single Slit or Disk If light is a wave, it will diffract around a single slit or obstacle.

10 35-1 Diffraction by a Single Slit or Disk The resulting pattern of light and dark stripes is called a diffraction pattern. We are not always aware of diffraction because most sources of light in everyday life are not points.

11 Diffrac:on Pa<ern A computer simulation of the intensity pattern formed wave incident on a sphere.

12 Diffrac:on Pa<ern Computer simulation of the intensity pattern formed by a laser of λ = 663 nm incident on a square aperture of 20x20 µm, visible on a screen at 1 m from the aperture.

13 Diffrac:on Pa<ern A computer generated image of an Airy disk: far-field diffraction of a plane wave incident on a circular aperture

14 Diffrac:on by a Single Slit

15 Diffrac:on by a Single Slit Dsinθ = mλ, m = ±1,±2,... Minima

16 Diffrac:on by a Single Slit

17 35-1 Diffraction by a Single Slit or Disk This pattern arises because different points along a slit create wavelets that interfere with each other just as a double slit would.

18 Diffrac:on by a Single Slit Minima Dsinθ = mλ, m = ±1,±2,...

19 35-1 Diffraction by a Single Slit or Disk The minima of the single-slit diffraction pattern occur when

20 35-2 Intensity in Single-Slit Diffraction Pattern Light passing through a single slit can be divided into a series of narrower strips; each contributes the same amplitude to the total intensity on the screen, but the phases differ due to the differing path lengths: Δβ = kδx = 2π λ Δy sinθ. Phase difference from light coming from adjacent strips

21 35-2 Intensity in Single-Slit Diffraction Pattern Δβ = 2π λ Δy sinθ β = NΔβ = 2π λ (NΔy) sinθ β = 2π λ D sinθ E θ < E 0 β = 2π = 2π λ D sinθ

22 35-2 Intensity in Single-Slit Diffraction Pattern N Δy dy E θ = E 0 sinβ 2 β 2 β = 2π λ D sinθ E θ = 2r sin β 2 ; E 0 = rβ sinβ 2 I θ = I 0 β 2 2 I 0 is the intensity at θ = 0

23 35-3 Diffraction in the Double-Slit Experiment In Young s double-slit experiment we assumed infinitesimally narrow slits. This can never be the case for real slits and diffraction must be included. sinβ 2 E θ = E 0 E β 2 θ,0 = 2E 0 cos δ 2 β = 2π ; λ D sinθ δ = 2π λ d sinθ Diffraction factor Interference factor D D d sinβ 2 E θ,0 = 2E 0 β 2 cos δ 2 sinβ 2 I θ = I 0 β 2 2 cos δ 2 2

24 35-3 Diffraction in the Double-Slit Experiment

25 35-3 Diffraction in the Double-Slit Experiment D d D d = 0.50 mm; D = 0.04 mm d = 0.50 mm; D = 0.08 mm

26 35-4 Limits of Resolution; Circular Apertures Resolution is the distance at which a lens can barely distinguish two separate objects. Resolution is limited by aberrations and by diffraction. Aberrations can be minimized, but diffraction is unavoidable; it is due to the size of the lens compared to the wavelength of the light.

27 35-4 Limits of Resolution; Circular Apertures The diffraction pattern from a circular aperture produces the Airy disk with the radius of the central disk subtending an angle θ = 1.22 λ D

28 35-4 Limits of Resolution; Circular Apertures When light is focused using a lens of focal length f with a circular aperture of diameter D, the diameter of the focused spot is 2w = 2 θ f = 2 (1.22 λ D ) f

29 35-4 Limits of Resolution; Circular Apertures D 2w f When light is focused using a lens of focal length f with a circular aperture of diameter D, the diameter of the focused spot is 2w = 2 θ f = 2 (1.22 λ D ) f

30 35-4 Limits of Resolution; Circular Apertures A lens, because it has edges, acts like a round slit. The imagine of a point object consists of a circular central peak, called the diffraction spot or Airy disk and faint circular fringes.

31 35-4 Limits of Resolution; Circular Apertures The Rayleigh criterion states that two images are just resolvable when the center of one peak is over the first minimum of the other. θ = 1.22 λ D

32 Diffrac:on Limit; Resolu:on

33 35-4 Limits of Resolution; Circular Apertures Example 35-6: Eye resolution. You are in an airplane at an altitude of 10,000 m. If you look down at the ground, estimate the minimum separation s between objects that you could distinguish. Could you count cars in a parking lot? Consider only diffraction, and assume your pupil is about 3.0 mm in diameter and λ = 550 nm.

Single, Double And N-Slit Diffraction. B.Tech I

Single, Double And N-Slit Diffraction. B.Tech I Single, Double And N-Slit Diffraction B.Tech I Diffraction by a Single Slit or Disk If light is a wave, it will diffract around a single slit or obstacle. Diffraction by a Single Slit or Disk The resulting

More information

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference 34-7 Luminous Intensity The intensity of light as perceived depends not only on the actual intensity but also on the sensitivity of the eye at different

More information

Physics 202, Lecture 28

Physics 202, Lecture 28 Physics 202, Lecture 28 Today s Topics Michelson Interferometer iffraction Single Slit iffraction Multi-Slit Interference iffraction on Circular Apertures The Rayleigh Criterion Wave Superposition Using

More information

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1 Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction Phys 2435: Chap. 36, Pg 1 Single Slit New Topic Phys 2435: Chap. 36, Pg 2 Diffraction: bending of light around

More information

Physics 4. Diffraction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Diffraction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Diffraction Diffraction When light encounters an obstacle it will exhibit diffraction effects as the light bends around the object or passes through a narrow opening. Notice the alternating bright

More information

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich LECTURE 13 DIFFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 33-4 & 33-6 to 33-7 Single slit diffraction Two slit interference-diffraction Fraunhofer and Fresnel diffraction Diffraction

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

Chapter 28 Physical Optics: Interference and Diffraction

Chapter 28 Physical Optics: Interference and Diffraction Chapter 28 Physical Optics: Interference and Diffraction 1 Overview of Chapter 28 Superposition and Interference Young s Two-Slit Experiment Interference in Reflected Waves Diffraction Resolution Diffraction

More information

Lecture 15: Fraunhofer diffraction by a circular aperture

Lecture 15: Fraunhofer diffraction by a circular aperture Lecture 15: Fraunhofer diffraction by a circular aperture Lecture aims to explain: 1. Diffraction problem for a circular aperture 2. Diffraction pattern produced by a circular aperture, Airy rings 3. Importance

More information

Chapter 27. Interference and the Wave Nature of Light

Chapter 27. Interference and the Wave Nature of Light 7.1 The Principle of Linear Superposition Chapter 7 When two or more light waves pass through a given point, their electric fields combine according to the principle of superposition. Interference and

More information

Lecture Outline Chapter 28. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 28. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 28 Physics, 4 th Edition James S. Walker Chapter 28 Physical Optics: Interference and Diffraction Units of Chapter 28 Superposition and Interference Young s Two-Slit Experiment

More information

Physics 4C. Chapter 36: Diffraction. Diffraction. Diffraction. Diffraction

Physics 4C. Chapter 36: Diffraction. Diffraction. Diffraction. Diffraction Physics 4C Diffraction Chapter 36: Diffraction Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7 Slide 8 Slide 9 Slide 10 Slide 11 Slide 12 Slide 13 Slide 14 Slide 15 Slide 16 Slide 17 Slide 18 Slide

More information

Phy Ph s y 102 Lecture Lectur 22 Interference 1

Phy Ph s y 102 Lecture Lectur 22 Interference 1 Phys 102 Lecture 22 Interference 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference& diffraction Light as a ray Lecture 17 Introduction

More information

Chapters 11, 12, 24. Refraction and Interference of Waves

Chapters 11, 12, 24. Refraction and Interference of Waves Chapters 11, 12, 24 Refraction and Interference of Waves Beats Two overlapping waves with slightly different frequencies gives rise to the phenomena of beats. Beats The beat frequency is the difference

More information

Physical Optics. Diffraction.

Physical Optics. Diffraction. Physical Optics. Diffraction. Interference Young s interference experiment Thin films Coherence and incoherence Michelson interferometer Wave-like characteristics of light Huygens-Fresnel principle Interference.

More information

The Wave Nature of Light

The Wave Nature of Light The Wave Nature of Light Physics 102 Lecture 7 4 April 2002 Pick up Grating & Foil & Pin 4 Apr 2002 Physics 102 Lecture 7 1 Light acts like a wave! Last week we saw that light travels from place to place

More information

Lecture 2: Interference

Lecture 2: Interference Lecture 2: Interference λ S 1 d S 2 Lecture 2, p.1 Today Interference of sound waves Two-slit interference Lecture 2, p.2 Review: Wave Summary ( ) ( ) The formula y x,t = Acoskx ωt describes a harmonic

More information

Physics. Light Waves & Physical Optics

Physics. Light Waves & Physical Optics Physics Light Waves & Physical Optics Physical Optics Physical optics or wave optics, involves the effects of light waves that are not related to the geometric ray optics covered previously. We will use

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Episode 323: Diffraction

Episode 323: Diffraction Episode 323: Diffraction Note the spelling - double ff. The first recorded observation of diffraction was by Grimaldi in 1665. The shadows cast by light sources were not quite the same size as the anticipated

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. Just over two hundred years ago Thomas Young demonstrated the interference of light by illuminating two closely spaced narrow slits with light from a single light source.

More information

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

More information

PES 2130 Fall 2014, Spendier Lecture 23/Page 1

PES 2130 Fall 2014, Spendier Lecture 23/Page 1 PS 13 Fall 14, Spendier Lecture 3/Page 1 Lecture today: Chapter 35 Interference 1) Intensity in Double-Slit Interference ) Thin Film Interference Announcements: - Shortened office hours this Thursday (1-1:3am).

More information

In the Figure above, the fringe at point P on the screen will be:

In the Figure above, the fringe at point P on the screen will be: Coherent, monochromatic plane waves: In the Figure above, the fringe at point P on the screen will be: 1. An interference maximum 2. An interference minimum 3. Don t have a clue Answer: 2. Interference

More information

Exam 3--PHYS 2021M-Spring 2009

Exam 3--PHYS 2021M-Spring 2009 Name: Class: Date: Exam 3--PHYS 2021M-Spring 2009 Multiple Choice Identify the choice that best completes the statement or answers the question Each question is worth 2 points 1 Images made by mirrors

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Option G 4:Diffraction

Option G 4:Diffraction Name: Date: Option G 4:Diffraction 1. This question is about optical resolution. The two point sources shown in the diagram below (not to scale) emit light of the same frequency. The light is incident

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Practice Problems for Chapter 25-26

Practice Problems for Chapter 25-26 Practice Problems for Chapter 25-26 1. What are coherent waves? 2. Describe diffraction grating 3. What are interference fringes? 4. What does monochromatic light mean? 5. What does the Rayleigh Criterion

More information

AP B Webreview ch 24 diffraction and interference

AP B Webreview ch 24 diffraction and interference Name: Class: _ Date: _ AP B Webreview ch 24 diffraction and interference Multiple Choice Identify the choice that best completes the statement or answers the question.. In order to produce a sustained

More information

Diffraction. modern investigations date from Augustin Fresnel

Diffraction. modern investigations date from Augustin Fresnel Diffraction Diffraction controls the detail you can see in optical instruments, makes holograms, diffraction gratings and much else possible, explains some natural phenomena Diffraction was discovered

More information

Wave Optics. Why is the sky blue? What causes the beautiful colors in a soap bubble or an oil

Wave Optics. Why is the sky blue? What causes the beautiful colors in a soap bubble or an oil HAPTER26 C. Return to Table of Contents Wave Optics Colors produced by a thin layer of oil on the surface of water result from constructive and destructive interference of light. Why is the sky blue? What

More information

Prac%ce Quiz 2. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

Prac%ce Quiz 2. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. Prac%ce Quiz 2 These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. A laser beam shines vertically upwards. What laser power is needed

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

Chapter Wave Optics. MockTime.com. Ans: (d)

Chapter Wave Optics. MockTime.com. Ans: (d) Chapter Wave Optics Q1. Which one of the following phenomena is not explained by Huygen s construction of wave front? [1988] (a) Refraction Reflection Diffraction Origin of spectra Q2. Which of the following

More information

PHYS 202. Lecture 18 Professor Stephen Thornton April 4, 2006

PHYS 202. Lecture 18 Professor Stephen Thornton April 4, 2006 PHYS 202 Lecture 18 Professor Stephen Thornton April 4, 2006 Reading Quiz: Can light, say visible light, bend around corners? 1) Yes. 2) Sometimes, but it depends on the wavelength. 3) Sometimes, but it

More information

Physics 1520, Spring 2013 Quiz 2, Form: A

Physics 1520, Spring 2013 Quiz 2, Form: A Physics 1520, Spring 2013 Quiz 2, Form: A Name: Date: Section 1. Exercises 1. The index of refraction of a certain type of glass for red light is 1.52. For violet light, it is 1.54. Which color of light,

More information

Physics 1C Lecture 27B

Physics 1C Lecture 27B Physics 1C Lecture 27B Single Slit Interference! Example! Light of wavelength 750nm passes through a slit 1.00μm wide. How wide is the central maximum in centimeters, in a Fraunhofer diffraction pattern

More information

This relates to the frequency by: Then the result for C in terms of the given quantities is:

This relates to the frequency by: Then the result for C in terms of the given quantities is: . An AM rao station broadcasts at a frequency f = 830 khz. You receive that broadcast using a simple LC circuit which has an inductor L=85.0 mh and a variable capacitor. a) (8 points) You tune your car

More information

PHY122 Physics for the Life Sciences II

PHY122 Physics for the Life Sciences II PHY122 Physics for the Life Sciences II Lecture 16 Waves and Interference HW 10 is due Sunday, 6 Nov. at 8:00 pm Make-ups for Labs 3,4,5 MUST be done this week (or else! As you all know since Day 1 of

More information

Exam 3--PHYS 102--S10

Exam 3--PHYS 102--S10 ame: Exam 3--PHYS 02--S0 Multiple Choice Identify the choice that best completes the statement or answers the question.. At an intersection of hospital hallways, a convex mirror is mounted high on a wall

More information

PHYS2002 Practice Exam 3 (Ch. 25, 26, & 27)

PHYS2002 Practice Exam 3 (Ch. 25, 26, & 27) PHYS2002 Practice Exam 3 (h. 25, 26, & 27) onstants Name: m m q q p e o = 1.67 = 9.11 = + 1.602 = 1.602 ε = 8.85 μ = 4π o p e c = 3 8 7 m/s 27 31 12 kg kg 19 19 2 / N m T m/a 2 The Electromagnetic Spectrum

More information

Modulation Transfer Function

Modulation Transfer Function Modulation Transfer Function The Modulation Transfer Function (MTF) is a useful tool in system evaluation. t describes if, and how well, different spatial frequencies are transferred from object to image.

More information

AS Physics Unit 5 - Waves 1

AS Physics Unit 5 - Waves 1 AS Physics Unit 5 - Waves 1 WHAT IS WAVE MOTION? The wave motion is a means of transferring energy from one point to another without the transfer of any matter between the points. Waves may be classified

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions designed to see whether you understand the main concepts in the chapter. 1. Red laser light shines on a double slit, creating a pattern

More information

LASER SAFETY. Lasers are part of everyday life and most households currently have them built in to many devices such as DVDs, CDs and computers.

LASER SAFETY. Lasers are part of everyday life and most households currently have them built in to many devices such as DVDs, CDs and computers. LASER SAFETY Lasers are part of everyday life and most households currently have them built in to many devices such as DVDs, CDs and computers. The most common use of lasers is in the scanners used in

More information

Unit Test Strand: The Wave Nature of Light

Unit Test Strand: The Wave Nature of Light 22K 11T 2A 3C Unit Test Strand: The Wave Nature of Light Expectations: E1. analyse technologies that use the wave nature of light, and assess their impact on society and the environment; E2. investigate,

More information

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 1 Announcements Week 14 Prepset due Fri at 8:30 am PS 11 due Week 14 Friday at 9 pm in boxes outside 26-152

More information

Vocabulary: Description: Materials: Objectives: Safety: Two 45-minute class periods (one for background and one for activity) Schedule:

Vocabulary: Description: Materials: Objectives: Safety: Two 45-minute class periods (one for background and one for activity) Schedule: Resolution Not just for the New Year Author(s): Alia Jackson Date Created: 07/31/2013 Subject: Physics Grade Level: 11-12 Standards: Standard 1: M1.1 Use algebraic and geometric representations to describe

More information

Fiber Optic Communications

Fiber Optic Communications Fiber Optic Communications ( Chapter 2: Optics Review ) presented by Prof. Kwang-Chun Ho 1 Section 2.4: Numerical Aperture Consider an optical receiver: where the diameter of photodetector surface area

More information

,, Last First Initial UNIVERSITY OF CALIFORNIA AT BERKELEY DEPARTMENT OF PHYSICS PHYSICS 7C FALL SEMESTER 2008 LEROY T. KERTH

,, Last First Initial UNIVERSITY OF CALIFORNIA AT BERKELEY DEPARTMENT OF PHYSICS PHYSICS 7C FALL SEMESTER 2008 LEROY T. KERTH 1 Solutions Name (please print),, Last First Initial Student Number UNIVERSITY OF CALIFORNIA AT BERKELEY DEPARTMENT OF PHYSICS PHYSICS 7C FALL SEMESTER 2008 LEROY T. KERTH First Midterm Examination October

More information

Phys214 Fall 2004 Midterm Form A

Phys214 Fall 2004 Midterm Form A 1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

More information

Fabrication of Probes for High Resolution Optical Microscopy

Fabrication of Probes for High Resolution Optical Microscopy Fabrication of Probes for High Resolution Optical Microscopy Physics 564 Applied Optics Professor Andrès La Rosa David Logan May 27, 2010 Abstract Near Field Scanning Optical Microscopy (NSOM) is a technique

More information

Chapter 4: Fourier Optics

Chapter 4: Fourier Optics Chapter 4: Fourier Optics P4-1. Calculate the Fourier transform of the function rect(2x)rect(/3) The rectangular function rect(x) is given b 1 x 1/2 rect( x) when 0 x 1/2 P4-2. Assume that ( gx (, )) G

More information

Diffraction and Interference of Water Waves

Diffraction and Interference of Water Waves Diffraction and Interference of Water Waves Diffraction of Waves Diffraction the bending and spreading of a wave when it passes through an opening or around an obstacle Examples: sound waves travel through

More information

Resolving Power of a Diffraction Grating

Resolving Power of a Diffraction Grating Resolving Power of a Diffraction Grating When measuring wavelengths, it is important to distinguish slightly different s. The ability of a grating to resolve the difference in wavelengths is given by the

More information

PHYS 241 FINAL EXAM December 11, 2006

PHYS 241 FINAL EXAM December 11, 2006 1. (5 points) Light of wavelength λ is normally incident on a diffraction grating, G. On the screen S, the central line is at P and the first order line is at Q, as shown. The distance between adjacent

More information

b) (4) If you could look at a snapshot of the waves, how far apart in space are two successive positive peaks of the electric field?

b) (4) If you could look at a snapshot of the waves, how far apart in space are two successive positive peaks of the electric field? General Physics II Exam 3 - Chs. 22 25 - EM Waves & Optics October 20, 206 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results with correct

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

Properties of optical instruments. Projection optical systems

Properties of optical instruments. Projection optical systems Properties of optical instruments Projection optical systems Instruments : optical systems designed for a specific function Projection systems: : real image (object real or at infinity) Examples: videoprojector,,

More information

Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Lecture 21. Physics 1202: Lecture 21 Today s Agenda Physics 1202: Lecture 21 Today s Agenda Announcements: Team problems today Team 14: Gregory Desautels, Benjamin Hallisey, Kyle Mcginnis Team 15: Austin Dion, Nicholas Gandza, Paul Macgillis-Falcon Homework

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 3 Fall 2005 Diffraction

More information

Slide 1 / 99. Electromagnetic Waves

Slide 1 / 99. Electromagnetic Waves Slide 1 / 99 Electromagnetic Waves Slide 2 / 99 The Nature of Light: Wave or Particle The nature of light has been debated for thousands of years. In the 1600's, Newton argued that light was a stream of

More information

OSCILLATIONS and WAVES

OSCILLATIONS and WAVES OSCILLATIONS and WAVES Oscillations Oscillations are vibrations which repeat themselves. EXAMPLE: Oscillations can be driven externally, like a pendulum in a gravitational field EXAMPLE: Oscillations can

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

PHYS General Physics II Lab Diffraction Grating

PHYS General Physics II Lab Diffraction Grating 1 PHYS 1040 - General Physics II Lab Diffraction Grating In this lab you will perform an experiment to understand the interference of light waves when they pass through a diffraction grating and to determine

More information

Interferencija i valna priroda svjetlosti. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Interferencija i valna priroda svjetlosti. Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Interferencija i valna priroda svjetlosti 27.1 The Principle of Linear Superposition When two or more light waves pass through a given point, their electric fields combine according to the principle of

More information

12/2/2010. Chapter 27 Interference and the Wave Nature of Light

12/2/2010. Chapter 27 Interference and the Wave Nature of Light //00 Chapter 7 Interference an the Wave Nature of Light This chapter we will concentrate on the wave properties of light. The wavelength of visible light is 750 nm to 380 nm. All waves obey the superposition

More information

Exam 4--PHYS 102--S15

Exam 4--PHYS 102--S15 Name: Class: Date: Exam 4--PHYS 102--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mirror produces an upright image. The object is 2 cm high; the

More information

OPAC 202 Optical Design and Instrumentation. Topic 3 Review Of Geometrical and Wave Optics. Department of

OPAC 202 Optical Design and Instrumentation. Topic 3 Review Of Geometrical and Wave Optics. Department of OPAC 202 Optical Design and Instrumentation Topic 3 Review Of Geometrical and Wave Optics Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Feb

More information

Activity 1: Diffraction of Light

Activity 1: Diffraction of Light Activity 1: Diffraction of Light When laser light passes through a small slit, it forms a diffraction pattern of bright and dark fringes (as shown below). The central bright fringe is wider than the others.

More information

PHYS320(O) ilab Experiment 4 Instructions Diffraction and Interference: Measurement of the Wavelength of Light

PHYS320(O) ilab Experiment 4 Instructions Diffraction and Interference: Measurement of the Wavelength of Light Objective: PHYS320(O) ilab Experiment 4 Instructions Diffraction and Interference: Measurement of the Wavelength of Light The purpose of this activity is to determine the wavelength of the light emitted

More information

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2 Page 1 of 12 Physics Week 13(Sem. 2) Name Light Chapter Summary Cont d 2 Lens Abberation Lenses can have two types of abberation, spherical and chromic. Abberation occurs when the rays forming an image

More information

6. OPTICS RAY OPTICS GIST. Reflection by convex and concave mirrors. a. Mirror formula, where u is the object distance, v is the image distance and f is v u f the focal length. v f v f b. Magnification

More information

Early Telescopes & Geometrical Optics. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Early Telescopes & Geometrical Optics. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. Early Telescopes & Geometrical Optics C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. 1 1.2. Image Formation Fig. 1. Snell s law indicates the bending of light at the interface of two

More information

Chapter 35. Interference. Optical Interference: Interference of light waves, applied in many branches of science.

Chapter 35. Interference. Optical Interference: Interference of light waves, applied in many branches of science. Chapter 35 Interference 35.1: What is the physics behind interference? Optical Interference: Interference of light waves, applied in many branches of science. Fig. 35-1 The blue of the top surface of a

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS. GUI Simulation Diffraction: Focused Beams and Resolution for a lens system

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS. GUI Simulation Diffraction: Focused Beams and Resolution for a lens system DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS GUI Simulation Diffraction: Focused Beams and Resolution for a lens system Ian Cooper School of Physics University of Sydney ian.cooper@sydney.edu.au DOWNLOAD

More information

Physics 9 Wednesday, February 1, 2012

Physics 9 Wednesday, February 1, 2012 Physics 9 Wednesday, February 1, 2012 learningcatalytics.com class session ID: 542970 Today: repeat soap bubble; measure λ for laser Today: telescope, human eye Friday: first of 3 days on fluids (liquids,

More information

Lab 10 - MICROWAVE AND LIGHT INTERFERENCE

Lab 10 - MICROWAVE AND LIGHT INTERFERENCE 179 Name Date Partners Lab 10 - MICROWAVE AND LIGHT INTERFERENCE Amazing pictures of the microwave radiation from the universe have helped us determine the universe is 13.7 billion years old. This picture

More information

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

More information

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 1051-232 Imaging Systems Laboratory II Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 Abstract. In the last lab, you saw that coherent light from two different locations

More information

Study on Imaging Quality of Water Ball Lens

Study on Imaging Quality of Water Ball Lens 2017 2nd International Conference on Mechatronics and Information Technology (ICMIT 2017) Study on Imaging Quality of Water Ball Lens Haiyan Yang1,a,*, Xiaopan Li 1,b, 1,c Hao Kong, 1,d Guangyang Xu and1,eyan

More information

Exam 4--PHYS 102--S15

Exam 4--PHYS 102--S15 Name: Class: Date: Exam 4--PHYS 02--S5 Multiple Choice Identify the choice that best completes the statement or answers the question.. A mirror produces an upright image. The object is 8 cm high and to

More information

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ.

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. PhysicsndMathsTutor.com 28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. 9702/1/M/J/02 X microwave transmitter S 1 S 2

More information

Diffraction of a Circular Aperture

Diffraction of a Circular Aperture DiffractionofaCircularAperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront

More information

Cardinal Points of an Optical System--and Other Basic Facts

Cardinal Points of an Optical System--and Other Basic Facts Cardinal Points of an Optical System--and Other Basic Facts The fundamental feature of any optical system is the aperture stop. Thus, the most fundamental optical system is the pinhole camera. The image

More information

Physics 2020 Lab 9 Wave Interference

Physics 2020 Lab 9 Wave Interference Physics 2020 Lab 9 Wave Interference Name Section Tues Wed Thu 8am 10am 12pm 2pm 4pm Introduction Consider the four pictures shown below, showing pure yellow lights shining toward a screen. In pictures

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy. (Image: T. Wittman, Scripps) Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

More information

Lecture 9. Wave Optics

Lecture 9. Wave Optics Lecture 9 Wave Optics You may ignore! Lloyd s Mirror Liquid Crystals Wave%Op(cs% The%wave%nature%of%light%is%needed%to%explain% various%phenomena.% Interference% Diffrac(on% Polariza(on% The%par(cle%nature%of%light%was%the%basis%for%

More information

Average: Standard Deviation: Max: 99 Min: 40

Average: Standard Deviation: Max: 99 Min: 40 1 st Midterm Exam Average: 83.1 Standard Deviation: 12.0 Max: 99 Min: 40 Please contact me to fix an appointment, if you took less than 65. Chapter 33 Lenses and Op/cal Instruments Units of Chapter 33

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

HUYGENS PRINCIPLE AND INTERFERENCE

HUYGENS PRINCIPLE AND INTERFERENCE HUYGENS PRINCIPLE AND INTERFERENCE VERY SHORT ANSWER QUESTIONS Q-1. Can we perform Double slit experiment with ultraviolet light? Q-2. If no particular colour of light or wavelength is specified, then

More information