DC motor position control using fuzzy proportional-derivative controllers with different defuzzification methods

Size: px
Start display at page:

Download "DC motor position control using fuzzy proportional-derivative controllers with different defuzzification methods"

Transcription

1 TJFS: Turkish Journal of Fuzzy Systems (eissn: ) An Official Journal of Turkish Fuzzy Systems Association Vol.1, No.1, pp , DC motor position control using fuzzy proportional-derivative controllers with different defuzzification methods Manafeddin Namazov Cumhuriyet University, Faculty of Engineering, Department of Electrical & Electronics Engineering, Sivas, Turkey Onur Basturk* Cumhuriyet University, Faculty of Engineering, Department of Electrical & Electronics Engineering, Sivas, Turkey *Corresponding author Received: February 1, Revised: April 2, 2010 Accepted: May 26, 2010 Abstract This paper presents the design of a fuzzy control system to control the position of a DC motor. The motor was modelled and converted to a subsystem in Simulink. First, a crisp proportional-derivative (PD) controller was designed and tuned using a Simulink block instead of conventional tuning methods such as hand-tuning or Ziegler-Nichols frequency response method. Then a fuzzy proportional-derivative (FPD) controller was designed and system responses of FPDs with different defuzzification methods were investigated. A disturbance signal was also applied to the input of the control system. FPD controller succeeded to reject the disturbance signal without further tuning of the parameters whereby crisp PD controller failed. Keywords: Fuzzy logic, DC motor position control, Fuzzy proportional-derivative controller, Response optimization, Ziegler-Nichols method 1. Introduction Because of their high reliabilities, flexibilities and low costs, DC motors are widely used in industrial applications, robot manipulators and home appliances where speed and position control of motor are required. PID controllers are commonly used for motor control applications because of their simple structures and intuitionally comprehensible control algorithms. Controller parameters are generally tuned using hand-tuning or Ziegler-Nichols frequency response method. Both of these methods have successful results but long time and effort are required to obtain a satisfactory system 36

2 response. Two main problems encountered in motor control are the time-varying nature of motor parameters under operating conditions and existence of noise in system loop. Analysis and control of complex, nonlinear and/or time-varying systems is a challenging task using conventional methods because of uncertainties. Fuzzy set theory (Zadeh, 1965) which led to a new control method called Fuzzy Control which is able to cope with system uncertainties. One of the most important advantages of fuzzy control is that it can be successfully applied to control nonlinear complex systems using an operator experiences or control engineering knowledge without any mathematical model of the plant (Assilian, 1974), (Kickert, 1976). There are many papers about DC motor fuzzy control system design. Lin et. al. compared PID and FLC for position control and observed that FLC performed better than PID (Lin, 1994). Azevedo et. al. have shown that FLC is less sensitive than PID to load variations (Azevedo, 1993). Bal et. al. designed an FLC for an ultrasonic motor which has a different operation principle than electromagnetic motors (Bal, 2004). Mishra et. al. made a comparison between PID and FLC for servomotor control and described that PID parameters had to be tuned again under variations of plant parameters or noise wherever FLC parameters had not (Mishra, 1998). Kwon et. al. designed a PI controller for a brushless DC motor and built an adaptive fuzzy tuning system to modify the controller parameters under load variations during operation (Kwon, 2003). M.H. Zadeh et. al. explained that one of the best methods for control of a DC motor with time-varying parameters was fuzzy sliding mode control (Zadeh, 2006). Namazov et. al. designed a relay type fuzzy controller in control of double integrator systems which can be used to model many mechanical, hydraulic and electrical objects such as DC motors and observed that fuzzy controller was able to reject the noise signal applied to the input of system (Namazov, 2007). DC motor control is generally realized by adjusting the terminal voltage applied to the armature but other methods such as adjusting the field resistance, inserting a resistor in series with the armature circuit are also available (Chapman, 2005). Ziegler-Nichols frequency response method is usually used to adjust the parameters of the PID controllers. However, it is needed to get the system into the oscillation mode to realize the tuning procedure. But it s not always possible to get most of the technological plants into oscillation. The proposed approach uses both fuzzy controllers and response optimization method to obtain the approximate values of the controller parameters. Then the parameters may be slightly varied to obtain the user-defined performance of the real-time control system. Thus, it s an actual problem to design adaptive PID controllers without getting the system into the oscillation mode. The rest of this paper is organized as follows. In the next section, the mathematical model of a dc motor is used to obtain a transfer function between shaft position and applied armature voltage. This model is then built in MATLAB Simulink. In Section 3, design and tuning of proportional-integral-derivative (PID) controllers are reviewed and a crisp PD control system is designed in Simulink with the proposed design procedure. In Section 4, it s mentioned about the fuzzy logic controller design issues and a fuzzy proportional-derivative controller is designed with the proposed approach. Some of the 37

3 commonly used defuzzification methods are discussed and system responses with different defuzzification methods are compared. Finally disturbance rejection capabilities of the designed controllers are investigated. 2. DC motor model In armature control of separately excited DC motors, the voltage applied to the armature of the motor is adjusted without changing the voltage applied to the field. Figure 1 shows a separately excited DC motor equivalent model. Figure 1. DC motor model where armature voltage ( ) armature resistance ( ) armature inductance ( ) armature current ( ) back emf ( ) angular speed ( ) motor torque ( ) angular position of rotor shaft ( ) rotor inertia ( ) viscous friction coefficient ( ) torque constant ( ) back emf constant ( ) Let us combine the upper equations together: 38

4 Laplace transforms of (5) and (6) are: If current is obtained from (8) and substituted in (7) we have Then the relation between rotor shaft speed and applied armature voltage is represented by transfer function: The relation between position and speed is: Then the transfer function between shaft position and armature voltage at no-load is: Figure 2 shows the DC motor model built in Simulink. Motor model was converted to a 2-in 2-out subsystem. Input ports are armature voltage (Va) and load torque (Tload) and the output ports are angular speed in (w) and position (teta). 39

5 Figure 2. Simulink model A 3.70 kw, 240V, 1750 rpm DC motor with the below parameters was used: 3. Proportional-integral-derivative (PID) controller PID controllers are widely used in industrial control applications due to their simple structures, comprehensible control algorithms and low costs. Figure 3 shows the schematic model of a control system with a PID controller. Figure 3. PID control system Control signal is a linear combination of error, its integral and derivative. 40

6 where = proportional gain = integral gain = derivative gain = integral time = derivative time If the controller is digital, then the derivative term may be replaced with a backward difference and the integral term may be replaced with a sum. For a small constant sampling time, (14) can be approximated as: 3.1 Tuning PID parameters PID controllers are usually tuned using hand-tuning or Ziegler-Nichols methods (Jantzen, 2007). Hand-tuning is generally used by experienced control engineers based on the rules shown in Table 1. But these rules are not always valid. For example if an integrator exists in the plant, then increasing results in a more stable control. Table 1. Hand-tuning rules A simple hand-tuning procedure is as follows: 1. Remove derivative and integral actions by setting and 2. Tune such that it gives the desired response except the final offset value from the set point 3. Increase slightly and adjust to dampen the overshoot 4. Tune such that final offset is removed 5. Repeat steps from 3 until is as large as possible 41

7 The disadvantage of this method is that it should take a long time to find the optimal values. Another method to tune PID parameters is Ziegler-Nichols frequency response method. The procedure is as follows: 1. Increase until system response oscillates with a constant amplitude and record that gain value as (ultimate gain) 2. Calculate the oscillation period and record it as 3. Tune parameters using Table 2 Table 2. Ziegler-Nichols rules Ziegler-Nichols frequency response method gives poor results especially for the systems with a time lag much greater than the dominating time constant (Jantzen, 2007). Damping is generally poor. Rules work better for PID controllers than PI controllers and it is not stated how to calculate the parameters for a PD controller. Another method proposed by Ziegler and Nichols is the reaction curve or step response method where the unit-step response of the plant is used to adjust parameters. But the plant must not involve any integrators or dominant complex conjugate poles for this method to apply (Ogata, 1997). 3.2 PD controller design A PD controller was designed to control the DC motor. Control signal of a PD controller is as follows: Controller parameters were tuned using Signal Constraint block of Simulink Response Optimization Toolbox instead of conventional methods. Signal Constraint is a block where response signals can be graphically constrained and model parameters should be automatically optimized to obtain the performance requirements (Mathworks, 2008). Performance criteria were specified as: Rise time Settling time Maximum overshoot Steady state error 42

8 The objective in control system design is to find a control signal that satisfies the performance requirements (Veremey). Assume that the mathematical model of the plant can be represented by a differential equation: where time vector -vector of state variables -control vector -disturbance vector Also assume that controller is represented by: where differential operator transfer matrix of the controller Assume that transfer matrix structure is known and vector of controller parameters to be tuned ( ) is also included in this structure. Determine a reasonable set which represents the behaviour of closed loop system at any time instant. It is obvious that this set should only be obtained by the choice of vector. Then the objective is to find an vector that satisfies the performance requirements. 3.3 Simulink implementation Figure 4 shows the PD control system designed in MATLAB Simulink where controller coefficients were adjusted using the Signal Constraint block. Integral coefficient of PID controller was set to zero (i.e. ). 43

9 Figure 4. Crisp PD control system Figure 5 shows the optimization process of controller parameters where and were obtained as, respectively. Figure 5. Optimization of PD parameters Overshoot is not desired especially in position control systems. It can be seen from Figure 5 that Signal Constraint block adjusted the parameters such that a very small overshoot occurs. Table 3 shows the values of the performance criteria obtained with the adjusted controller parameters. Table 3. Performance specifications for crisp PD control system 0.64s 0.88s 0.2% None 44

10 Figure 6 shows output and control signals of PD control system with adjusted parameters. 4. Fuzzy logic controller A fuzzy logic controller has four main components as shown in Figure 7: fuzzification interface, inference mechanism, rule base and defuzzification interface. FLCs are complex, nonlinear controllers. Therefore it s difficult to predict how the rise time, settling time or steady state error is affected when controller parameters or control rules are changed. On the contrary, PID controllers are simple, linear controllers which consist of linear combinations of three signals. Figure 6. Output and control signals for crisp PD control system 45

11 Figure 7. Fuzzy logic controller Implementation of an FLC requires the choice of four key factors (Mamdani, 1977): number of fuzzy sets that constitute linguistic variables, mapping of the measurements onto the support sets, control protocol that determines the controller behaviour and shape of membership functions. Thus, FLCs can be tuned not just by adjusting controller parameters but also by changing control rules, membership functions etc. Rule base, inference mechanism and defuzzification methods are the sources of nonlinearities in FLCs. But it s possible to construct a rule base with linear input-output characteristics. For an FLC to become a linear controller with a control signal where is error and is change of error, some conditions must be satisfied (Jantzen, 2007): 1. Support sets of input linguistic variables must be large enough so that input values stay in limits. 2. Linguistic values must consist of symmetric triangular fuzzy sets that intercept with neighbouring sets at a membership value of so that for any time instant, membership values add to Rule base must consist of -combinations of all fuzzy sets. 4. Output linguistic variables must consist of singleton fuzzy sets positioned at the sum of the peak positions of input fuzzy sets. 5. should be multiplication and defuzzification method must be centre of gravity (COGS). 4.1 FPD controller design Figure 8 shows an FPD controller that acts on the same signals with a PD controller but the control strategy is constructed as fuzzy rules (Jantzen, 2007). 46

12 Figure 8. FPD controller Control signal is a nonlinear function of error and change of error. Thus, where represents the control algorithm. A linear approximation should be obtained with a suitable choice: Then When we compare this equation with the control signal of a crisp PD controller, the relationship between gains of a PD controller and of an FPD controller is: Consequently, parameter values of a linear FPD controller may be determined from a tuned PD controller. Figure 9 shows the control system with an FPD controller. 47

13 Figure 9. Control system with an FPD controller 4.2 Defuzzification methods Defuzzification interface uses the implied fuzzy sets or the overall implied fuzzy set to obtain a crisp output value. There are many defuzzification methods but the most common methods are as follows: 1) Center of gravity (COG) 2) Bisector of area (BOA) 3) Smallest of maximum (SOM) 4) Mean of maximum (MOM) 5) Largest of maximum (LOM) For discrete sets COG is called center of gravity for singletons (COGS) where the crisp control value is the abscissa of the center of gravity of the fuzzy set. is calculated as follows: where is a point in the universe of the conclusion and is the membership value of the resulting conclusion set. For continuous sets summations are replaced by integrals. The bisector of area (BOA) defuzzification method calculates the abscissa of the vertical line that divides the area of the resulting membership function into two equal areas. For discrete sets, is the abscissa that minimizes Here is the index of the largest abscissa. BOA is a computationally complex method. 48

14 Another approach to obtain the crisp value is to choose the point with the highest membership. There may be several points in the overall implied fuzzy set which have maximum membership value. Therefore it s a common practice to calculate the mean value of these points. This method is called mean of maximum (MOM) and the crisp value is calculated as follows: Here is the (crisp) set of indices where reaches its maximum, and is its cardinality (the number of members). One can also choose the leftmost point among the points which have maximum membership to the overall implied fuzzy set. This method is called smallest of maximum (SOM) or the leftmost maximum (LM) defuzzification method. Crisp value is calculated as follows: Another possibility is to choose the rightmost point among the points which have maximum membership to the overall implied fuzzy set. This method is called largest of maximum (LOM) or the rightmost maximum (RM) defuzzification method where crisp value is calculated as: 4.3 Simulink implementation Inputs of FPD are error and change of error where the output is control. Input and output variables of FPD consist of seven fuzzy sets namely NB (negative big), NM (negative medium), NS (negative small), Z (zero), PS (positive small), PM (positive medium) and PB (positive big) as shown in Figure 10(a) and (b). Table 4 shows fuzzy rules. (a) Fuzzy input variables error and change of error (b) Fuzzy output variable output Figure 10. Fuzzy input-output variables 49

15 Table 4. Fuzzy rules Figure 11 shows the fuzzy PD control system designed in Simulink. Figure 11. Fuzzy PD control system Different defuzzification methods were used to obtain the control signal. Table 5 shows the tuned values of the controller parameters for different defuzzification methods. Table 5. Controller parameters for different defuzzification methods Method Bisector SOM MOM LOM Figure 12(a)-(d) shows the system responses and control signals for the fuzzy control systems with different defuzzification methods. Table 6 shows the values of the performance criteria for different defuzzification methods with the tuned controller parameters. 50

16 Disturbance rejection is important in controller design. The controller must be able to dampen out the effects of disturbance signals existing in the system loop. Therefore a disturbance signal (Gaussian type noise with zero mean and 0.05 variance) was applied to the input of the control system as shown in Figure 13. Figure 14 shows the applied disturbance signal and Figure 15 shows the system response and error signals. 5. Conclusions and future work Parameters of PD and FPD controllers were tuned using a Simulink block instead of conventional tuning methods. Initial values of parameters were defined as and the new parameter values were adjusted in just a few iterations as shown in Figure 5. Thus the time and effort for tuning parameters decreased considerably. Figure 12 and Table 6 show that different defuzzification methods result in different performance and parameters as well as different control signals. SOM defuzzification method had the best performance in this particular application. FPD controller rejected the disturbance signal without further tuning of the controller parameters. However, PD controller was unable to reject the disturbance signal and it failed to satisfy the performance requirements. This paper presents the optimization of the controller parameters via a Simulink block instead of conventional tuning methods. The performance criteria are defined in time domain where the transient response of the system to a step input was considered. As a future work, a fuzzy control system will be designed using various performance measures commonly encountered in optimal control theory (optimal time, optimal energy consumption etc.). After obtaining the controller parameters, soft-tuning fuzzy controllers will be designed to vary the parameters in a fuzzy interval. Thus, the variation of the controller parameters between maximum and minimum values will be considered as fuzzy. 51

17 (a) Bisector (b) SOM (c) MOM (d) LOM Figure 12. Output and control signals for different defuzzification methods Table 6. Performance specifications for fuzzy PD control system Method Bisector None 0.2 SOM None 0.2 MOM LOM

18 Figure 13. FPD control system with a disturbance signal at the input Figure 14. Disturbance signal Figure 15. System response and error References Assilian, S. and Mamdani, E.H., An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies, 7(1), 1-13, Azevedo, H.R., Brandao, S.F.M. and Mota Alves, J.B., A Fuzzy Logic Controller for dc Motor Position Control. IEEE 2nd International Workshop on Emerging Technologies and Factory Automation. Design and Operations of Intelligent Factories. Workshop Proceedings, 18-27,

19 Bal, G., Bekiroglu, E., Demirbas, S. and Colak, I., Fuzzy logic based DSP controlled servo position control for ultrasonic motor. Energy Conversion and Management, 45, , Chapman, S.J., Electric Machinery Fundamentals, 4th edition, New York: McGraw Hill, Jantzen, J., Foundations of Fuzzy Control, WS: John Wiley & Sons, Ltd., Kickert, W. J. M. and van Nauta Lemke, H. R., Application of a Fuzzy Controller in a Warm Water Plant. Automatica, 12(4), , Kwon, C.J., Han, W.Y., Kim, S.J. and Lee C.G., Speed controller with adaptive fuzzy tuning for BLDC motor drive under load variations. SICE Annual Conference, , Lin, P.H., Hwang, S. and Chou, J., Comparison on Fuzzy Logic and PID Controls for a DC Motor Position Controller. Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting, , Mamdani, E. H., Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Transactions on Computers, 26(12), , Mathworks Inc., Simulink Response Optimization Getting Started Guide, 3rd printing, Mishra, M.K., Kothari, A.G., Kothari, D.P. and Ghosh, A., Development of a Fuzzy Logic Controller for Servo Systems. IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control (TENCON '98), , Namazov, M., Samet, R. and Huseynov, R., Modelling and Simulation of the Fuzzy Relay Type Controller for Solving the Double Integrator Control Problems. Proceedings of 9th WSEAS International Conference on Automatic Control, Modeling&Simulation, 7-11, Ogata, K., Modern Control Engineering, 3rd edition, NJ: Prentice Hall, Veremey, E.I. and Pogojev, S.B., Nonlinear Control Design Blockset [Online] Available: Zadeh, L. A., Fuzzy Sets. Information and Control, 8, , Zadeh, M. H., Yazdian, A. and Mohamadian, M., Robust Position Control in DC Motor by Fuzzy Sliding Mode Control. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2006), ,

DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers With Different Defuzzification Methods

DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers With Different Defuzzification Methods IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. III (Jan Feb. 2015), PP 37-47 www.iosrjournals.org DC Motor Position Control

More information

Simulation of Optimal Speed Control for a DC Motor Using Conventional PID Controller and Fuzzy Logic Controller

Simulation of Optimal Speed Control for a DC Motor Using Conventional PID Controller and Fuzzy Logic Controller International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 3 (2013), pp. 181-188 International Research Publications House http://www. irphouse.com /ijict.htm Simulation

More information

Speed control of a DC motor using Controllers

Speed control of a DC motor using Controllers Automation, Control and Intelligent Systems 2014; 2(6-1): 1-9 Published online November 20, 2014 (http://www.sciencepublishinggroup.com/j/acis) doi: 10.11648/j.acis.s.2014020601.11 ISSN: 2328-5583 (Print);

More information

Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques

Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques Afshan Ilyas, Shagufta Jahan, Mohammad Ayyub Abstract:- This paper presents a method for tuning of conventional

More information

Digital Control of MS-150 Modular Position Servo System

Digital Control of MS-150 Modular Position Servo System IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS-150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland

More information

Performance Based Comparison between Various Z-N Tuninng PID and Fuzzy logic PID Controller in Position Control System of DC Motor

Performance Based Comparison between Various Z-N Tuninng PID and Fuzzy logic PID Controller in Position Control System of DC Motor 72 Performance Based Comparison between Various Z-N Tuninng PID and Fuzzy logic PID Controller in Position Control System of DC Motor G.SUDHA 1 Assistant Professor / Electronics & Instrumentation Engineering

More information

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Osama Omer Adam Mohammed 1, Dr. Awadalla Taifor Ali 2 P.G. Student, Department of Control Engineering, Faculty of Engineering,

More information

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2492-2497 ISSN: 2249-6645 Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Praveen Kumar 1, Anurag Singh Tomer 2 1 (ME Scholar, Department of Electrical

More information

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller Philip A. Adewuyi Mechatronics Engineering Option, Department of Mechanical and Biomedical Engineering, Bells University

More information

Performance Based Comparison Between Various Z-N Tuninng PID And Fuzzy Logic PID Controller In Position Control System Of Dc Motor

Performance Based Comparison Between Various Z-N Tuninng PID And Fuzzy Logic PID Controller In Position Control System Of Dc Motor Performance Based Comparison Between Various Z-N Tuninng PID And Fuzzy Logic PID Controller In Position Control System Of Dc Motor Abstract G.SUDHA 1 Assistant Professor / Electronics & Instrumentation

More information

A Comparative Study on Speed Control of D.C. Motor using Intelligence Techniques

A Comparative Study on Speed Control of D.C. Motor using Intelligence Techniques International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 4 (2014), pp. 431-436 International Research Publication House http://www.irphouse.com A Comparative Study

More information

Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3

Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3 Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3 1 King Saud University, Riyadh, Saudi Arabia, muteb@ksu.edu.sa 2 King

More information

Control Of Three Phase BLDC Motor Using Fuzzy Logic Controller Anjali. A. R M-Tech in Powerelectronics & Drives,Calicut University

Control Of Three Phase BLDC Motor Using Fuzzy Logic Controller Anjali. A. R M-Tech in Powerelectronics & Drives,Calicut University Control Of Three Phase BLDC Motor Using Fuzzy Logic Controller Anjali. A. R M-Tech in Powerelectronics & Drives,Calicut University Abstract Brushless DC (BLDC) motor drives are becoming widely used in

More information

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS Kapil Ghuge 1, Prof. Manish Prajapati 2 Prof. Ashok Kumar Jhala 3 1 M.Tech Scholar, 2 Assistant Professor, 3 Head of Department, R.K.D.F.

More information

Development of a Fuzzy Logic Controller for Industrial Conveyor Systems

Development of a Fuzzy Logic Controller for Industrial Conveyor Systems American Journal of Science, Engineering and Technology 217; 2(3): 77-82 http://www.sciencepublishinggroup.com/j/ajset doi: 1.11648/j.ajset.21723.11 Development of a Fuzzy Logic Controller for Industrial

More information

SIMULINK MODELING OF FUZZY CONTROLLER FOR CANE LEVEL CONTROLLING

SIMULINK MODELING OF FUZZY CONTROLLER FOR CANE LEVEL CONTROLLING International Journal of Industrial Engineering & Technology (IJIET) ISSN 2277-4769 Vol. 3, Issue 1, Mar 2013, 43-50 TJPRC Pvt. Ltd. SIMULINK MODELING OF FUZZY CONTROLLER FOR CANE LEVEL CONTROLLING YOGESH

More information

USED OF FUZZY TOOL OR PID FOR SPEED CONTROL OF SEPRATELY EXCITED DC MOTOR

USED OF FUZZY TOOL OR PID FOR SPEED CONTROL OF SEPRATELY EXCITED DC MOTOR USED OF FUZZY TOOL OR PID FOR SPEED CONTROL OF SEPRATELY EXCITED DC MOTOR Amit Kumar Department of Electrical Engineering Nagaji Institute of Technology and Management Gwalior, India Prof. Rekha Kushwaha

More information

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION 92 CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION 4.1 OVERVIEW OF PI CONTROLLER Proportional Integral (PI) controllers have been developed due to the unique

More information

Fuzzy Controllers for Boost DC-DC Converters

Fuzzy Controllers for Boost DC-DC Converters IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 12-19 www.iosrjournals.org Fuzzy Controllers for Boost DC-DC Converters Neethu Raj.R 1, Dr.

More information

CHAPTER 4 FUZZY LOGIC CONTROLLER

CHAPTER 4 FUZZY LOGIC CONTROLLER 62 CHAPTER 4 FUZZY LOGIC CONTROLLER 4.1 INTRODUCTION Unlike digital logic, the Fuzzy Logic is a multivalued logic. It deals with approximate perceptive rather than precise. The effective and efficient

More information

Speed Control of Brushless DC Motor Using Fuzzy Based Controllers

Speed Control of Brushless DC Motor Using Fuzzy Based Controllers Speed Control of Brushless DC Motor Using Fuzzy Based Controllers Harith Mohan 1, Remya K P 2, Gomathy S 3 1 Harith Mohan, P G Scholar, EEE, ASIET Kalady, Kerala, India 2 Remya K P, Lecturer, EEE, ASIET

More information

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor International ournal for Modern Trends in Science and Technology Volume: 02, Issue No: 11, November 2016 http://www.ijmtst.com ISSN: 2455-3778 Comparative Analysis of PID, SMC, SMC with PID Controller

More information

A Brushless DC Motor Speed Control By Fuzzy PID Controller

A Brushless DC Motor Speed Control By Fuzzy PID Controller A Brushless DC Motor Speed Control By Fuzzy PID Controller M D Bhutto, Prof. Ashis Patra Abstract Brushless DC (BLDC) motors are widely used for many industrial applications because of their low volume,

More information

Comparative study of PID and Fuzzy tuned PID controller for speed control of DC motor

Comparative study of PID and Fuzzy tuned PID controller for speed control of DC motor Comparative study of PID and Fuzzy tuned PID controller for speed control of DC motor Mohammed Shoeb Mohiuddin Assistant Professor, Department of Electrical Engineering Mewar University, Chittorgarh, Rajasthan,

More information

IJITKM Special Issue (ICFTEM-2014) May 2014 pp (ISSN )

IJITKM Special Issue (ICFTEM-2014) May 2014 pp (ISSN ) IJITKM Special Issue (ICFTEM-214) May 214 pp. 148-12 (ISSN 973-4414) Analysis Fuzzy Self Tuning of PID Controller for DC Motor Drive Neeraj kumar 1, Himanshu Gupta 2, Rajesh Choudhary 3 1 M.Tech, 2,3 Astt.Prof.,

More information

Position Control of DC Motor by Compensating Strategies

Position Control of DC Motor by Compensating Strategies Position Control of DC Motor by Compensating Strategies S Prem Kumar 1 J V Pavan Chand 1 B Pangedaiah 1 1. Assistant professor of Laki Reddy Balireddy College Of Engineering, Mylavaram Abstract - As the

More information

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method Engr. Joseph, E. A. 1, Olaiya O. O. 2 1 Electrical Engineering Department, the Federal Polytechnic, Ilaro, Ogun State,

More information

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Abstract: PWM Inverters need an internal current feedback loop to maintain desired CURRENT REGULATION OF PWM INVERTER USING STATIONARY FRAME REGULATOR B. JUSTUS RABI and Dr.R. ARUMUGAM, Head of the Department of Electrical and Electronics Engineering, Anna University, Chennai 600 025.

More information

Simulink Based Model for Analysing the Ziegler Nichols Tuning Algorithm as applied on Speed Control of DC Motor

Simulink Based Model for Analysing the Ziegler Nichols Tuning Algorithm as applied on Speed Control of DC Motor Simulink Based Model for Analysing the Ziegler Nichols Tuning Algorithm as applied on Speed Control of DC Motor Bhaskar Lodh PG Student [Electrical Engineering], Dept. of EE, Bengal Institute of Technology

More information

CHAPTER 6. CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW

CHAPTER 6. CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW 130 CHAPTER 6 CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW 6.1 INTRODUCTION Vibration control of rotating machinery is tougher and a challenging challengerical technical problem.

More information

Simulation of Synchronous Machine in Stability Study for Power System: Garri Station as a Case Study

Simulation of Synchronous Machine in Stability Study for Power System: Garri Station as a Case Study Simulation of Synchronous Machine in Stability Study for Power System: Garri Station as a Case Study Bahar A. Elmahi. Industrial Research & Consultancy Center, baharelmahi@yahoo.com Abstract- This paper

More information

Speed Control of DC Motor Using Fuzzy Logic Application

Speed Control of DC Motor Using Fuzzy Logic Application 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Speed Control of DC Motor Using Fuzzy Logic Application

More information

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM J. Arulvadivu, N. Divya and S. Manoharan Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, Tamilnadu,

More information

ISSN: [IDSTM-18] Impact Factor: 5.164

ISSN: [IDSTM-18] Impact Factor: 5.164 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY SPEED CONTROL OF DC MOTOR USING FUZZY LOGIC CONTROLLER Pradeep Kumar 1, Ajay Chhillar 2 & Vipin Saini 3 1 Research scholar in

More information

DESIGNING POWER SYSTEM STABILIZER FOR MULTIMACHINE POWER SYSTEM USING NEURO-FUZZY ALGORITHM

DESIGNING POWER SYSTEM STABILIZER FOR MULTIMACHINE POWER SYSTEM USING NEURO-FUZZY ALGORITHM DESIGNING POWER SYSTEM STABILIZER FOR MULTIMACHINE POWER SYSTEM 55 Jurnal Teknologi, 35(D) Dis. 2001: 55 64 Universiti Teknologi Malaysia DESIGNING POWER SYSTEM STABILIZER FOR MULTIMACHINE POWER SYSTEM

More information

Speed Control of BLDC Motor-A Fuzzy Logic Approach

Speed Control of BLDC Motor-A Fuzzy Logic Approach National conference on Engineering Innovations and Solutions (NCEIS 2018) International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume

More information

CONTROLLER DESIGN ON ARX MODEL OF ELECTRO-HYDRAULIC ACTUATOR

CONTROLLER DESIGN ON ARX MODEL OF ELECTRO-HYDRAULIC ACTUATOR Journal of Fundamental and Applied Sciences ISSN 1112-9867 Research Article Special Issue Available online at http://www.jfas.info MODELING AND CONTROLLER DESIGN ON ARX MODEL OF ELECTRO-HYDRAULIC ACTUATOR

More information

Fuzzy auto-tuning for a PID controller

Fuzzy auto-tuning for a PID controller Fuzzy auto-tuning for a PID controller Alain Segundo Potts 1, Basilio Thomé de Freitas Jr 2. and José Carlos Amaro 2 1 Department of Telecommunication and Control. University of São Paulo. Brazil. e-mail:

More information

FUZZY LOGIC CONTROL FOR NON-LINEAR MODEL OF THE BALL AND BEAM SYSTEM

FUZZY LOGIC CONTROL FOR NON-LINEAR MODEL OF THE BALL AND BEAM SYSTEM 11th International DAAAM Baltic Conference INDUSTRIAL ENGINEERING 20-22 nd April 2016, Tallinn, Estonia FUZZY LOGIC CONTROL FOR NON-LINEAR MODEL OF THE BALL AND BEAM SYSTEM Moezzi Reza & Vu Trieu Minh

More information

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Application of Fuzzy Logic Controller in Shunt Active Power Filter IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Application of Fuzzy Logic Controller in Shunt Active Power Filter Ketan

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design of Self-tuning PID controller using Fuzzy Logic for Level Process P D Aditya Karthik *1, J Supriyanka 2 *1, 2 Department

More information

Fuzzy Logic Based Speed Control System Comparative Study

Fuzzy Logic Based Speed Control System Comparative Study Fuzzy Logic Based Speed Control System Comparative Study A.D. Ghorapade Post graduate student Department of Electronics SCOE Pune, India abhijit_ghorapade@rediffmail.com Dr. A.D. Jadhav Professor Department

More information

Design and Implementation of Fuzzy Sliding Mode Controller for Switched Reluctance Motor

Design and Implementation of Fuzzy Sliding Mode Controller for Switched Reluctance Motor Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, 9- March, 8, Hong Kong Design and Implementation of Fuzzy Sliding Mode Controller for Switched Reluctance

More information

POSITION CONTROL OF DCMOTOR USING SELF-TUNING FUZZY PID CONTROLLER

POSITION CONTROL OF DCMOTOR USING SELF-TUNING FUZZY PID CONTROLLER POSITION CONTROL OF DCMOTOR USING SELF-TUNING FUZZY PID CONTROLLER PRAKORNCHAI PHONRATTANASAK, 2 PIPAT DURONGDUMRONGCHAI, 3 VINAI KHAMTAWEE, 4 KITTISAK DEEYA, 5 TAWAN KHUNTOTHOM North Eastern University,

More information

Permanent Magnet Brushless DC Motor Control Using Hybrid PI and Fuzzy Logic Controller

Permanent Magnet Brushless DC Motor Control Using Hybrid PI and Fuzzy Logic Controller ISSN 39 338 April 8 Permanent Magnet Brushless DC Motor Control Using Hybrid PI and Fuzzy Logic Controller G. Venu S. Tara Kalyani Assistant Professor Professor Dept. of Electrical & Electronics Engg.

More information

Comparison of Fuzzy PID Controller with Conventional PID Controller in Controlling the Speed of a Brushless DC Motor

Comparison of Fuzzy PID Controller with Conventional PID Controller in Controlling the Speed of a Brushless DC Motor Comparison of Fuzzy PID Controller with Conventional PID Controller in Controlling the Speed of a Brushless DC Motor S. Sunisith 1, Lizi Joseph 2,M. Saritha 3 sunisith@gmail.com, lizialex06@gmail.com,

More information

AN APPROACH TO IMPROVE THE PERFORMANCE OF A POSITION CONTROL DC MOTOR BY USING DIGITAL CONTROL SYSTEM

AN APPROACH TO IMPROVE THE PERFORMANCE OF A POSITION CONTROL DC MOTOR BY USING DIGITAL CONTROL SYSTEM ISSN (Online) : 2454-7190 ISSN 0973-8975 AN APPROACH TO IMPROVE THE PERFORMANCE OF A POSITION CONTROL DC MOTOR BY USING DIGITAL CONTROL SYSTEM By 1 Debargha Chakraborty, 2 Binanda Kishore Mondal, 3 Souvik

More information

Cantonment, Dhaka-1216, BANGLADESH

Cantonment, Dhaka-1216, BANGLADESH International Conference on Mechanical, Industrial and Energy Engineering 2014 26-27 December, 2014, Khulna, BANGLADESH ICMIEE-PI-140153 Electro-Mechanical Modeling of Separately Excited DC Motor & Performance

More information

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume, Number, 2 Pages 3-24 Jordan Journal of Electrical Engineering ISSN (Print): 249-96, ISSN (Online): 249-969 Analysis of Brushless DC Motor with Trapezoidal Back EMF using MATLAB Taha A. Hussein

More information

Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO

Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO B. Udaya Kumar 1, Dr. M. Ramesh Patnaik 2 1 Associate professor, Dept of Electronics and Instrumentation,

More information

Comparisons of Different Controller for Position Tracking of DC Servo Motor

Comparisons of Different Controller for Position Tracking of DC Servo Motor Comparisons of Different Controller for Position Tracking of DC Servo Motor Shital Javiya 1, Ankit Kumar 2 Assistant Professor, Dept. of IC, Atmiya Institute of Technology & Science, Rajkot, Gujarat, India

More information

PERFORMANCE STUDIES OF INTEGRATED FUZZY LOGIC CONTROLLER FOR BRUSHLESS DC MOTOR DRIVES USING ADVANCED SIMULATION MODEL

PERFORMANCE STUDIES OF INTEGRATED FUZZY LOGIC CONTROLLER FOR BRUSHLESS DC MOTOR DRIVES USING ADVANCED SIMULATION MODEL ISSN: 2229-6956(ONLINE) DOI: 10.21917/ijsc.2011.0039 ICTACT JOURNAL ON SOFT COMPUTING: SPECIAL ISSUE ON FUZZY IN INDUSTRIAL AND PROCESS AUTOMATION, JULY 2011, VOLUME: 02, ISSUE: 01 PERFORMANCE STUDIES

More information

1. Governor with dynamics: Gg(s)= 1 2. Turbine with dynamics: Gt(s) = 1 3. Load and machine with dynamics: Gp(s) = 1

1. Governor with dynamics: Gg(s)= 1 2. Turbine with dynamics: Gt(s) = 1 3. Load and machine with dynamics: Gp(s) = 1 Load Frequency Control of Two Area Power System Using PID and Fuzzy Logic 1 Rajendra Murmu, 2 Sohan Lal Hembram and 3 A.K. Singh 1 Assistant Professor, 2 Reseach Scholar, Associate Professor 1,2,3 Electrical

More information

A PHOTOVOLTAIC POWERED TRACKING SYSTEM FOR MOVING OBJECTS

A PHOTOVOLTAIC POWERED TRACKING SYSTEM FOR MOVING OBJECTS A PHOTOVOLTAI POWERED TRAKING SYSTEM FOR MOVING OBJETS İsmail H. Altaş* Adel M Sharaf ** e-mail: ihaltas@ktu.edu.tr e-mail: sharaf@unb.ca *: Karadeiz Technical University, Department of Electrical & Electronics

More information

ISSN: [Appana* et al., 5(10): October, 2016] Impact Factor: 4.116

ISSN: [Appana* et al., 5(10): October, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FUZZY LOGIC CONTROL BASED PID CONTROLLER FOR STEP DOWN DC-DC POWER CONVERTER Dileep Kumar Appana *, Muhammed Sohaib * Lead Application

More information

SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC MOTOR

SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC MOTOR ISSN: 2229-6956(ONLINE) DOI: 10.21917/ijsc.2012.0049 ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2012, VOLUME: 02, ISSUE: 03 SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC

More information

Closed loop performance investigation of various controllers based chopper fed DC drive in marine applications

Closed loop performance investigation of various controllers based chopper fed DC drive in marine applications Indian Journal of Geo Marine Sciences Vol. 46 (5), May 217, pp. 144-151 Closed loop performance investigation of various s based chopper fed DC drive in marine applications S.Selvaperumal *, P.Nedumal

More information

Analysis and Design of Conventional Controller for Speed Control of DC Motor -A MATLAB Approach

Analysis and Design of Conventional Controller for Speed Control of DC Motor -A MATLAB Approach C. S. Linda Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Analysis and Design of Conventional Controller for Speed Control of DC Motor -A MATLAB Approach C. S. Linda,

More information

REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL. M. Mohebbi 1*, M. Hashemi 1

REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL. M. Mohebbi 1*, M. Hashemi 1 International Journal of Technology (2016) 1: 141-148 ISSN 2086-9614 IJTech 2016 REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL M. Mohebbi 1*, M. Hashemi 1 1 Faculty of

More information

An Expert System Based PID Controller for Higher Order Process

An Expert System Based PID Controller for Higher Order Process An Expert System Based PID Controller for Higher Order Process K.Ghousiya Begum, D.Mercy, H.Kiren Vedi Abstract The proportional integral derivative (PID) controller is the most widely used control strategy

More information

OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIVE USING INTELLIGENT CONTROLLERS

OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIVE USING INTELLIGENT CONTROLLERS OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIE USING INTELLIGENT CONTROLLERS J.N.Chandra Sekhar 1 and Dr.G. Marutheswar 2 1 Department of EEE, Assistant Professor, S University College of Engineering,

More information

High Efficiency DC/DC Buck-Boost Converters for High Power DC System Using Adaptive Control

High Efficiency DC/DC Buck-Boost Converters for High Power DC System Using Adaptive Control American-Eurasian Journal of Scientific Research 11 (5): 381-389, 2016 ISSN 1818-6785 IDOSI Publications, 2016 DOI: 10.5829/idosi.aejsr.2016.11.5.22957 High Efficiency DC/DC Buck-Boost Converters for High

More information

Fuzzy Logic Controller on DC/DC Boost Converter

Fuzzy Logic Controller on DC/DC Boost Converter 21 IEEE International Conference on Power and Energy (PECon21), Nov 29 - Dec 1, 21, Kuala Lumpur, Malaysia Fuzzy Logic Controller on DC/DC Boost Converter N.F Nik Ismail, Member IEEE,Email: nikfasdi@yahoo.com

More information

Some Tuning Methods of PID Controller For Different Processes

Some Tuning Methods of PID Controller For Different Processes International Conference on Information Engineering, Management and Security [ICIEMS] 282 International Conference on Information Engineering, Management and Security 2015 [ICIEMS 2015] ISBN 978-81-929742-7-9

More information

MEM01: DC-Motor Servomechanism

MEM01: DC-Motor Servomechanism MEM01: DC-Motor Servomechanism Interdisciplinary Automatic Controls Laboratory - ME/ECE/CHE 389 February 5, 2016 Contents 1 Introduction and Goals 1 2 Description 2 3 Modeling 2 4 Lab Objective 5 5 Model

More information

Position Control of Servo Systems using PID Controller Tuning with Soft Computing Optimization Techniques

Position Control of Servo Systems using PID Controller Tuning with Soft Computing Optimization Techniques Position Control of Servo Systems using PID Controller Tuning with Soft Computing Optimization Techniques P. Ravi Kumar M.Tech (control systems) Gudlavalleru engineering college Gudlavalleru,Andhra Pradesh,india

More information

Design of Joint Controller for Welding Robot and Parameter Optimization

Design of Joint Controller for Welding Robot and Parameter Optimization 97 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 2017 Guest Editors: Zhuo Yang, Junjie Ba, Jing Pan Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-49-5; ISSN 2283-9216 The Italian

More information

A Fuzzy Sliding Mode Controller for a Field-Oriented Induction Motor Drive

A Fuzzy Sliding Mode Controller for a Field-Oriented Induction Motor Drive A Fuzzy Sliding Mode Controller for a Field-Oriented Induction Motor Drive Dr K B Mohanty, Member Department of Electrical Engineering, National Institute of Technology, Rourkela, India This paper presents

More information

ISSN: (Online) Volume 2, Issue 1, January 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 1, January 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 1, January 2014 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com Fuzzy

More information

A Fuzzy Knowledge-Based Controller to Tune PID Parameters

A Fuzzy Knowledge-Based Controller to Tune PID Parameters Session 2520 A Fuzzy Knowledge-Based Controller to Tune PID Parameters Ali Eydgahi, Mohammad Fotouhi Engineering and Aviation Sciences Department / Technology Department University of Maryland Eastern

More information

is the angular velocity (speed) and friction in rotor of motor is very small (can be neglected) so Bm = 0.

is the angular velocity (speed) and friction in rotor of motor is very small (can be neglected) so Bm = 0. Application case 1 Part 1: Fuzzy controller design The objective of this case study is to perform the speed control of a separately excited DC motor (figure 1) using fuzzy logic controller (FLC). The controller

More information

A PLC-based Self-tuning PI-Fuzzy Controller for Linear and Non-linear Drives Control

A PLC-based Self-tuning PI-Fuzzy Controller for Linear and Non-linear Drives Control A PLC-based Self-tuning PI-Fuzzy Controller for Linear and Non-linear Drives Control Muhammad Arrofiq *1, Nordin Saad *2 Universiti Teknologi PETRONAS Tronoh, Perak, Malaysia muhammad_arrofiq@utp.edu.my

More information

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control 1 Deepa Shivshant Bhandare, 2 Hafiz Shaikh and 3 N. R. Kulkarni 1,2,3 Department of Electrical Engineering,

More information

Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic Nasser Mohamed Ramli, Mohamad Syafiq Mohamad 1 Abstract Many types of controllers were applied on the continuous

More information

Al-Rafidain Engineering Vol.16 No IntroRducti eceiveodn7 Dec Accepted 3 July 2007

Al-Rafidain Engineering Vol.16 No IntroRducti eceiveodn7 Dec Accepted 3 July 2007 مضبب FLC K I K p و PID المرجع. إن إشارة ) PI تم استبدال. للا بقاء على إشارة الا خراج تحت أن K D للسرعة).. Fuzzy logic control (FLC) is one of the most successful applications of fuzzy set theory, introduced

More information

Temperature Control of Water Tank Level System by

Temperature Control of Water Tank Level System by Temperature Control of Water Tank Level System by using Fuzzy PID Controllers B. Varalakshmi 1 and T. Bhaskaraiah 2 1 PG Scholar, SIETK, Puttur, India 2 Assistant Professor, SIETK, Puttur, India Abstract-

More information

Implementation of Fuzzy Controller to Magnetic Levitation System

Implementation of Fuzzy Controller to Magnetic Levitation System IX Control Instrumentation System Conference (CISCON - 2012), 16-17 November 2012 201 Implementation of Fuzzy Controller to Magnetic Levitation System Amit Kumar Choudhary, S.K. Nagar and J.P. Tiwari Abstract---

More information

Sp-eed Control of Brushless DC Motor Using Genetic Algorithim Based Fuzzy Controller*

Sp-eed Control of Brushless DC Motor Using Genetic Algorithim Based Fuzzy Controller* Proceedings of the 2004 nternational Conference on ntelligent Mechatronics and Automation Chengdu,China August 2004 Sp-eed Control of Brushless DC Motor Using Genetic Algorithim Based Fuzzy Controller*

More information

A PID Controlled Real Time Analysis of DC Motor

A PID Controlled Real Time Analysis of DC Motor A PID Controlled Real Time Analysis of DC Motor Saurabh Dubey 1, Dr. S.K. Srivastava 2 Research Scholar, Dept. of Electrical Engineering, M.M.M Engineering College, Gorakhpur, India 1 Associate Professor,

More information

A new fuzzy self-tuning PD load frequency controller for micro-hydropower system

A new fuzzy self-tuning PD load frequency controller for micro-hydropower system IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS A new fuzzy self-tuning PD load frequency controller for micro-hydropower system Related content - A micro-hydropower system model

More information

Intelligent Fuzzy-PID Hybrid Control for Temperature of NH3 in Atomization Furnace

Intelligent Fuzzy-PID Hybrid Control for Temperature of NH3 in Atomization Furnace 289 Intelligent Fuzzy-PID Hybrid Control for Temperature of NH3 in Atomization Furnace Assistant Professor, Department of Electrical Engineering B.H.S.B.I.E.T. Lehragaga Punjab technical University Jalandhar

More information

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER Archana G C 1 and Reema N 2 1 PG Student [Electrical Machines], Department of EEE, Sree Buddha College

More information

SVM-DTC OF AN INDUCTION MOTOR BASED ON VOLTAGE AND STATOR FLUX ANGLE USING FUZZY LOGIC CONTROLLER

SVM-DTC OF AN INDUCTION MOTOR BASED ON VOLTAGE AND STATOR FLUX ANGLE USING FUZZY LOGIC CONTROLLER SVM-DTC OF AN INDUCTION MOTOR BASED ON VOLTAGE AND STATOR FLUX ANGLE USING FUZZY LOGIC CONTROLLER T.Sravani 1, S.Sridhar 2 1PG Student(Power & Industrial Drives), Department of EEE, JNTU Anantapuramu,

More information

Comparison of Adaptive Neuro-Fuzzy based PSS and SSSC Controllers for Enhancing Power System Oscillation Damping

Comparison of Adaptive Neuro-Fuzzy based PSS and SSSC Controllers for Enhancing Power System Oscillation Damping AMSE JOURNALS 216-Series: Advances C; Vol. 71; N 1 ; pp 24-38 Submitted Dec. 215; Revised Feb. 17, 216; Accepted March 15, 216 Comparison of Adaptive Neuro-Fuzzy based PSS and SSSC Controllers for Enhancing

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

Single Phase Shunt Active Filter Simulation Based On P-Q Technique Using PID and Fuzzy Logic Controllers for THD Reduction

Single Phase Shunt Active Filter Simulation Based On P-Q Technique Using PID and Fuzzy Logic Controllers for THD Reduction ISSN 2278 0211 (Online) Single Phase Shunt Active Filter Simulation Based On P-Q Technique Using PID and Fuzzy Logic Controllers for THD Reduction A. Mrudula M.Tech. Power Electronics, TKR College Of Engineering

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 Special 11(5): pages 129-137 Open Access Journal Comparison of

More information

Investigations of Fuzzy Logic Controller for Sensorless Switched Reluctance Motor Drive

Investigations of Fuzzy Logic Controller for Sensorless Switched Reluctance Motor Drive IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 1 Ver. I (Jan Feb. 2016), PP 30-35 www.iosrjournals.org Investigations of Fuzzy

More information

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda Control Design for Servomechanisms 12 14 July 2005, Glasgow Detailed Training Course Agenda DAY 1 INTRODUCTION TO SYSTEMS AND MODELLING 9.00 Introduction The Need For Control - What Is Control? - Feedback

More information

ADJUSTMENT OF PARAMETERS OF PID CONTROLLER USING FUZZY TOOL FOR SPEED CONTROL OF DC MOTOR

ADJUSTMENT OF PARAMETERS OF PID CONTROLLER USING FUZZY TOOL FOR SPEED CONTROL OF DC MOTOR ADJUSTMENT OF PARAMETERS OF PID CONTROLLER USING FUZZY TOOL FOR SPEED CONTROL OF DC MOTOR Raman Chetal 1, Divya Gupta 2 1 Department of Electrical Engineering,Baba Banda Singh Bahadur Engineering College,

More information

Open Access Design of Diesel Engine Adaptive Active Disturbance Rejection Speed Controller

Open Access Design of Diesel Engine Adaptive Active Disturbance Rejection Speed Controller Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 05, 7, 49-433 49 Open Access Design of Diesel Engine Adaptive Active Disturbance Rejection Speed

More information

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller International Journal of Emerging Trends in Science and Technology Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller Authors Swarup D. Ramteke 1, Bhagsen J. Parvat 2

More information

Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller

Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller Mr. Omveer Singh 1, Shiny Agarwal 2, Shivi Singh 3, Zuyyina Khan 4, 1 Assistant Professor-EEE, GCET, 2 B.tech 4th

More information

Comparative analysis of Conventional MSSMC and Fuzzy based MSSMC controller for Induction Motor

Comparative analysis of Conventional MSSMC and Fuzzy based MSSMC controller for Induction Motor American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

International Journal of Innovations in Engineering and Science

International Journal of Innovations in Engineering and Science International Journal of Innovations in Engineering and Science INNOVATIVE RESEARCH FOR DEVELOPMENT Website: www.ijiesonline.org e-issn: 2616 1052 Volume 1, Issue 1 August, 2018 Optimal PID Controller

More information

High Frequency Soft Switching Boost Converter with Fuzzy Logic Controller

High Frequency Soft Switching Boost Converter with Fuzzy Logic Controller High Frequency Soft Switching Boost Converter with Fuzzy Logic Controller 1 Anu Vijay, 2 Karthickeyan V, 3 Prathyusha S PG Scholar M.E- Control and Instrumentation Engineering, EEE Department, Anna University

More information

Implementation of Proportional and Derivative Controller in a Ball and Beam System

Implementation of Proportional and Derivative Controller in a Ball and Beam System Implementation of Proportional and Derivative Controller in a Ball and Beam System Alexander F. Paggi and Tooran Emami United States Coast Guard Academy Abstract This paper presents a design of two cascade

More information

Resistance Furnace Temperature Control System Based on OPC and MATLAB

Resistance Furnace Temperature Control System Based on OPC and MATLAB 569257MAC0010.1177/0020294015569257Resistance Furnace Temperature Control System Based on and MATLABResistance Furnace Temperature Control System Based on and MATLAB research-article2015 Themed Paper Resistance

More information

II. PROPOSED CLOSED LOOP SPEED CONTROL OF PMSM BLOCK DIAGRAM

II. PROPOSED CLOSED LOOP SPEED CONTROL OF PMSM BLOCK DIAGRAM Closed Loop Speed Control of Permanent Magnet Synchronous Motor fed by SVPWM Inverter Malti Garje 1, D.R.Patil 2 1,2 Electrical Engineering Department, WCE Sangli Abstract This paper presents very basic

More information