Physics Regular 1617 Williams. Electric Current & Circuits

Size: px
Start display at page:

Download "Physics Regular 1617 Williams. Electric Current & Circuits"

Transcription

1 Physics Regular 1617 Williams Electric Current & Circuits 1

2 2

3 Drawing Schematics Not everyone is a great artist and everyone draws a little bit differently. To make it easier for everyone to understand how a circuit is supposed to be assembled, standard symbols for circuit components are used. Circuit "drawings" using these common symbols are called schematic. There are a rich number of symbols we could use, but since this is an introduction and since we won't use that many components, we only have to learn the ones below. Please follow along and draw them. They will serve as a nice reference. Single battery (or general voltage source) Double battery (two batteries in series; series means one follows right after the other) Resistor (a general, nonspecific, symbol) Light bulb (a specific kind of resistor) Wire (conducting wire) Ammeter (always draw series) Ohmmeter (always draw in parallel) Voltmeter (always draw in parallel) Drawing whole circuits (multiple symbols) 1. Draw a schematic for a: Single battery with two light bulbs in series. 2. Draw a schematic for a: Single battery with three light bulbs in series. Measure the voltage across the first resistor. 3. Draw a schematic for a: Double battery powering pencil sharpener (show a general resistor). Also, measure the current flowing through the resistor. 4. Draw a schematic for a: Double battery powering a light bulb. Measure current through the bulb and voltage and resistance (ohms) across the bulb. 3

4 Day 1 Circuit Goals 1. Verify circuit a. Make sure you have seven wires b. Paper belongs under board at all times c. Show how a PCB board is made ("printed" wires connect various spots) d. Show how springs connect wires e. Demonstrate how to NOT twist a resistor f. Multimeter i. Pick same number for your table each time and make sure turned off (doesn't turn off automatically, battery will die quickly) ii. Show three regions and prefixes (show AC we don't use) iii. Show black com port and red port (10A and VΩ) iv. Measure each battery at 1.5V, replace if under about 1.1 V v. Connect battery in series and show why adds voltage vi. Show 1 dot is not a reading (off scale) vii. Show continuity tester viii. Discuss why 10A is very low resistance and VΩ is very high resistance ix. Check continuity of each bulb, replace with other circuit if possible x. Add post-it note to your board, same number as your resistor xi. Measure cold resistance of bulb filament (MUCH higher when lit why?) xii. Show a battery using ammeter to find current (BRIEFLY, or drains battery quickly) xiii. Pass out weekend HW & work on (mandatory unless told otherwise ask teacher) 2. Use ammeter 3. Use ohmmeter 4. Create parallel and series circuits and understand: a. Series circuits have same current, but share voltage b. Parallel circuits have same voltage, but share current Day 2 Circuit Goals 1. Make wires a. Demonstrate, have one person from each row make a wire and everyone strip off one wire tip.later b. Note how this will be useful for Robot Project 2. Use ammeter a. Set up multimeter as ammeter b. Set up a circuit with a: single light bulb and 3 V EMF. i. Find the cold resistance of the bulb ii. Draw schematic and equipment diagram (use tablet to show). iii. Replace wire with ammeter. Measure current and voltage drop across bulb. iv. Compute power of bulb v. Compute the hot resistance of the bulb. How do they compare and why? (hint: bulb is HOT) vi. REMEMBER: To measure the current flowing through a wire, replace the wire with an ammeter.ammeters are always placed in series, NEVER in parallel Circuit Goals - Day 3 1. Two of same resistor in series and in parallel - do circuit and schematic diagrams for ALL a. Check resistance with ohmmeter for both b. Connect to two batteries in series (double battery) and check voltage drop in series and parallel c. Put resistor in series and in parallel with bulb...any difference in brightness? Why? 4

5 Physics Circuit Project: Answering Robot Challenge for each student pair: Build a robot that has the ability to indicate which answer is correct when given special multiple choice review question cards that you make. Robot Guidelines: 1. Robot must indicate the correct answer by doing something obvious such as a light turns on, a sound buzzes, some part moves, etc Robots must be homemade- no toys, kits, or pre-made robotics. 3. Individual parts such as lights, buzzers may be purchased but most of robot should come from common inexpensive household items. 4. Robot should be made so its internal workings/wires can be inspected by teacher. 5. Best robots will have strong connections (wire nuts/solder), long flexible wires, at least 2 strong signals (probably in parallel), look unique & fun Performance (10 pts) Appearance (10 pts) Ease of use (10 pts) Cards (10 pts) Doesn't work no features very difficult 1 card = 2 points Needs assistance some details needs assistance 2 cards = 4 points Weak/intermittent Neutral Adequate 3 cards = 6 points Strong signal Attractive Reliable 4 cards = 8 points Multiple signals Excellent Enjoyable 5 cards = 10 points Grade = 100% * Total Points / 40, the best ones in class will get A+ (10/10) for any particular category About the cards: Make 5 cards having a multiple choice question and at least 3 answers. The questions should be your own, & helpful for finals. The card is made of 2 index cards stapled together. The front card has the question with an answer hole, and holes for answers A, B, C, D, etc. The front of the inside card has a piece of aluminum foil for the question and answer holes, as well as a longer piece of foil connecting the question hole to the correct answer hole. Sample wiring At right shows how to wire the inside of a question card. The grayed blocks represent conductive metal foil cut-outs. The circuit patter at left is wired so the correct choice is A. Tips: Try to get two strong signals for performance. Usual signals include: sound, motion, lights. Appearance should impress people and it should be obvious effort went into the appearance. Ease of use will require long, reasonable flexible arms. A user should be able to test all possible answers with the card on the table and without having to bend the robot body forward. At least one card per deck will be checked by me; additionally, cards will be checked by your peers. Make good questions with the correct answer. If I spot a wrong answer or a bad question, I will check that deck more carefully. 5

6 Physics Circuit Robot: Judgment Day! Your name or student ID: The robot project will also have a theme of some kind. The theme should be clever and creative and it should be carried out consistently within the robot and the question cards. It is expected that you will use class time wisely in this project and come up with meaningful questions. On presentation day, I will ask you to visit the various projects and see how useful they are in helping you to study and also how impressed you are with the quality of the various project. I want you to do this judging with your partner in order to encourage a discussion about the strengths and weaknesses of the projects. Guidelines 1. Robot must indicate the correct answer by doing something obvious such as a light turns on, a sound buzzes, some part moves, etc Robots must be homemade- no toys, kits, or pre-made robotics. Individual parts such as lights, buzzers may be purchased but most of robot should come from common inexpensive household items. 3. Robot should be made so its internal workings/wires can be inspected 4. Best robots will have strong connections (wire nuts/solder), long flexible 5. Wires, at least 2 strong signals (probably in parallel), look unique & fun Rubric Performance Appearance Ease of use Cards Doesn t work No features Difficult to use even with help Needs assistance Some details Needs assistance (hard to do by yourself) Weak or intermittent signal Neutral Can do by yourself, but challenging (short arms, etc.) Strong signal Attractive Reliable and reasonably easy to use Best in class/very impressive! Excellent Simple to use, so it s phun! 2 points per card up to 5 cards List in order the top 4 performing robots by categories. Please, don t include your own robot. Include name of at least one member of group. Place Performance Appearance Ease of use Cards Best in this category 2 nd best 3 rd best 4 th best All things considered. The best robot & 2 nd best robot overall were which ones and why do you think so? 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 Unit 06 Vocabulary and Equations Current Electricity & Circuits Vocabulary: previous vocabulary electric current, ampere, amp (A), Coulomb (C) electrical potential, voltage (V), electromotive force (emf) potential difference resistor, resistance (Ω), equivalent resistance, load power (W) Ohm's law, ohmic conventional current, drift velocity, drift speed cross sectional area circuit breaker, fuse, potentiometer direct current (DC), alternating current (AC) kilowatt-hour electric circuit, series circuit, parallel circuit resistors in series, resistors in parallel closed circuit, open circuit, short-circuit switch multimeter, COM port, conductivity tester wire, conductor, insulator circuit diagram, schematic, schematic symbols battery, positive terminal, negative terminal Symbols: V, ΔV, i, ΔQ, Δt, R, A, Ω, W, P Equations & constants: You get these on test: i = ΔQ/Δt ΔV = i R Equivalent resistance: Series R e = R 1 + R 2 Parallel 1/R e = 1/R 1 + 1/R 2 P = E/t P = iv P = V 2 /R Cost = rate x energy Resistor codes (use these, don t memorize them) Number Color Number Color 0 Black 5 Green 1 Brown 6 Blue 2 Red 7 Violet 3 Orange 8 Gray 4 Yellow 9 White NOT provided on test: 1 st digit/2 nd digit/# of zeros Unit Objectives - Williams 1. I understand all the vocabulary & math of this unit and all demos, videos, equations, and class assignments. 2. I remember objectives & vocabulary from previous units. 3. I know electrical potential (V), electrical potential energy, can distinguish them, and batteries provide energy for this 4. I understand conventional current, know current flow direction versus electron flow and know about drift speed 5. I know the difference between how quickly current starts to flow versus how fast electrons move 6. I understand resistance and how/why it's impacted by wire length, area and temperature 7. I know the wide variety of the human body's electrical resistance and its possible deadly consequences 8. I can contrast AC/DC and know North American AC's standards and common battery voltage standards 9. I know what an electrical panel, circuit breaker/fuse, and 120V/240 household voltages are and their dangers 10. I can use Ohm's law, equations of power, and equivalent resistance to solve problems 11. I understand and can compute circuit energy costs for local household rates 12. I know the function and operation of the multimeter and circuits we used and learned about in this class 13. I understand how a light bulb works including its entry and exit points for current 14. I know that it only makes sense to transport electrical energy over long distances using high voltages 15. I can draw/ recognize schematic symbols we use in class: emf (battery single/multiple), wire, resistor, switch 16. I can find R e for series, parallel and mixed circuits 17. I know computationally zero voltage drop occurs along wires and can solve complex circuit diagrams using R e 18. I understand the differences between light bulbs in series compared to light bulbs in parallel, including how brightly they shine, the power consumed, ΔV, and the consequence of losing one of those bulbs 19. I understand the consequences of additional resistors being added in parallel versus series 20. I can explain electrical analogies like how water/electricity/shopping lines are similar 21. When given a table with resistor stripe codes, I can use these codes to find the ohms of the resistor 22. I can use electrical test equipment and build circuits from both equipment and schematic diagrams (*from using) 23. I know where voltmeters, ammeters and ohmmeters go in circuits and understand why DuPage ROE Objectives 601. I can apply Ohm s Law I can recognize and analyze series and parallel circuits I can identify how to measure voltage and current with an appropriate meter I can calculate the power used by an electronic device. 15

16 06Current Electricity-Calendar Bold and underlined means put in journal notes Introduce circuits concepts with CCK (circuit construction kit, day 1) Electricity Introduction Notes (06-01) & drawing 1 Fr:11/04/16 schematics in packet H06-01 Get computers booting up Notes (06-02), parallel resistors and wire properties CCK day 2 with challenges (red/black leads, open and 2-LS Mo:11/07/16 closed circuit effects on dimness & complex challenges) H06-02 Notes (06-03), solving simple circuits. 3 Tu:11/08/16 CCK day 3 with challenges H06-03 Notes (06-04), circuit boards: care and use Circuit boards, pts: 15 pts: 5 pts participation (time spent wisely in class), 5 pts levels 1 & 2; 5 pts, last day quiz Circuit introduction, day 1, mastery level 1: meter settings & prove measurement of V and R 4 We:11/09/16 Introduce Moodle Q s H06-04 Circuit challenges, day 2: Notes (06-05), Resistor codes, equipment diags, bulb changes A few clix Some of packet day 2 goals; Peer helpers 5 Th:11/10/16 HW and Moodle time after checked H06-05 Day 3: Packet goals together A few clix Paper check (day 2) and first done become peer helpers Introduce Robot project & plan in groups 6 Fr:11/11/16 Any level 1 make ups? H06-06 Circuit challenges, day 4 (Level 2: Pairs: parallel and series bulbs including schematic and equipment diags) 7-LS Mo:11/14/16 HW/Moodle time H06-07 A few clix; Robot review, Circuit challenges, day 5, Last day for levels 1 and 2 Notes (06-06), fuses and electrical safety Moodle and HW time 8 Tu:11/15/16 Parent Participation H06-08 Study for electricity test A/B (individual) 5pt lab Quiz Moodle due day after 9 We:11/16/16 Circuit challenges, robot time, test review work test 10 Th:11/17/16 Electricity test Work on robot 11 Fr:11/18/16 Robot time, make-up tests, review HW Work on robot Finish up robot! 12 Mo:11/21/16 Robot time, Research due next Mo. 13 Tu:11/22/16 Robot project due! Pick out a turkey 14-ED We:11/23/16 Short day review activity with some points Eat yummy turkey Th:11/24/16 Fr:11/25/16 16

Current, resistance, and Ohm s law

Current, resistance, and Ohm s law Current, resistance, and Ohm s law Apparatus DC voltage source set of alligator clips 2 pairs of red and black banana clips 3 round bulb 2 bulb sockets 2 battery holders or 1 two-battery holder 2 1.5V

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

Lab 5: Real DC Circuits

Lab 5: Real DC Circuits Physics 2020, Fall 2010 Lab 5 page 1 of 7 Circle your lab day and time. Your name: Mon Tue Wed Thu Fri TA name: 8-10 10-12 12-2 2-4 4-6 INTRODUCTION Lab 5: Real DC Circuits The field of electronics has

More information

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Regents Physics Mr. Mellon Based on Chapter 22 and 23 Name Regents Physics Mr. Mellon Based on Chapter 22 and 23 Essential Questions What is current? How is it measured? What are the relationships for Ohm s Law? What device measures current and how is it

More information

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES 57 Name Date Partners Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES AMPS - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit.

More information

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

More information

Chapter 12 Electric Circuits

Chapter 12 Electric Circuits Conceptual Physics/ PEP Name: Date: Chapter 12 Electric Circuits Section Review 12.1 1. List one way electric current is similar to water current and one way it is different. 2. Draw a circuit diagram

More information

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND Make sure you read the background in Activity 3 before doing this activity. WIRING DIRECTIONS Materials per group of two: one or two D-cells

More information

Any path along which electrons can flow is a circuit A Battery and a Bulb

Any path along which electrons can flow is a circuit A Battery and a Bulb Any path along which electrons can flow is a circuit. Mechanical things seem to be easier to figure out for most people than electrical things. Maybe this is because most people have had experience playing

More information

I = q/ t units are C/s = A (ampere)

I = q/ t units are C/s = A (ampere) Physics I - Notes Ch. 19-20 Current, Resistance, and Electric Circuits Electromotive force (emf = ε = V; units are volts) charge pump ; source that maintains the potential difference (voltage) in a closed

More information

Electric Circuit Experiments

Electric Circuit Experiments Electric Circuit Experiments 1. Using the resistor on the 5-resistor block, vary the potential difference across it in approximately equal increments for eight different values (i.e. use one to eight D-

More information

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t Chapters 34 & 35: Electric Circuits NAME: Text: Chapter 34 Chapter 35 Think and Explain: 1-3, 6-8, 10 Think and Explain: 1-10 Think and Solve: 1-6 Think and Solve: 1-4 Vocabulary: Ohm s Law, resistance,

More information

Pre-Laboratory Assignment

Pre-Laboratory Assignment Measurement of Electrical Resistance and Ohm's Law PreLaboratory Assignment Read carefully the entire description of the laboratory and answer the following questions based upon the material contained

More information

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator Physics: 14. Current Electricity Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OP49 Test electrical conduction in a variety of materials,

More information

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt Electric Circuits Quantity Symbol Units Charge Q,q coulomb (C) Alternate Units Formula Electric Potential V volt (V) 1 V = 1 J/C V = E P /q V = W/q Work, energy W, E P joule (J) W = qv E P = qv Current

More information

DC Electric Circuits: Resistance and Ohm s Law

DC Electric Circuits: Resistance and Ohm s Law DC Electric Circuits: Resistance and Ohm s Law Goals and Introduction Our society is very reliant on electric phenomena, perhaps most so on the utilization of electric circuits. For much of our world to

More information

Physics 201 Laboratory: Analog and Digital Electronics. I-0. Introductory Notes

Physics 201 Laboratory: Analog and Digital Electronics. I-0. Introductory Notes Physics 201 Laboratory: Analog and Digital Electronics -0. ntroductory Notes Definitions of circuit and current. Current is the flow of charge. We may think of electrons flowing through a wire as a current

More information

Section A. Two resistors of 10 Ω and 15 Ω are connected in series to a battery of 6V. How can the values of current passing through them be compared?

Section A. Two resistors of 10 Ω and 15 Ω are connected in series to a battery of 6V. How can the values of current passing through them be compared? EXAM PRACTICE Past Year Board Questions CBSE-Class X Physics Electricity Section A (1 mark each) Question 1. Question 2. Question 3. Question 4. Question 5. Question 6. How is an ammeter connected in a

More information

8) Name three more types of circuits that we will not study in this class.

8) Name three more types of circuits that we will not study in this class. Name Concepts:( power ) 1) What is power? 2) What are the three equations for electrical power? 3) What are two units for power? 4) What does the power company sell its customers? 5) What is the unit sold

More information

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 3 Ohm s Law 3.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 kω, 2.7 kω, 5.1 kω, 10 kω, two, Decade Resistor Box, potentiometer, 10 kω Thermistor, Multimeter Owner s Manual

More information

ENGR 120 LAB #2 Electronic Tools and Ohm s Law

ENGR 120 LAB #2 Electronic Tools and Ohm s Law ENGR 120 LAB #2 Electronic Tools and Ohm s Law Objectives Understand how to use a digital multi-meter, power supply and proto board and apply that knowledge to constructing circuits to demonstrate ohm

More information

EE283 Laboratory Exercise 1-Page 1

EE283 Laboratory Exercise 1-Page 1 EE283 Laboratory Exercise # Basic Circuit Concepts Objectives:. To become familiar with the DC Power Supply unit, analog and digital multi-meters, fixed and variable resistors, and the use of solderless

More information

Voltage, Current and Resistance

Voltage, Current and Resistance Voltage, Current and Resistance Foundations in Engineering WV Curriculum, 2002 Foundations in Engineering Content Standards and Objectives 2436.8.3 Explain the relationship between current, voltage, and

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

II. Experimental Procedure

II. Experimental Procedure Ph 122 July 27, 2006 Ohm's Law http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory In this lab we will make detailed measurements on one resistor to see if it obeys Ohm's law. We will also verify the

More information

ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits ENGR 1181 Lab 3: Circuits - - Lab Procedure - Report Guidelines 2 Overview of Circuits Lab: The Circuits Lab introduces basic concepts of electric circuits such as series and parallel circuit, used in

More information

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The 1 Lab 1a Input and Output Impedance Fig. 1: (a) Complicated circuit. (b) Its Thévenin equivalent Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The circuit

More information

The following symbols are used in electric circuits:

The following symbols are used in electric circuits: Circuit Electricity The following symbols are used in electric circuits: Four devices are commonly used in the laboratory to study Ohm s law: the battery, the voltmeter, the ammeter and a resistance. The

More information

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes Module 1, Lesson 2 Introduction to electricity 45 minutes Student Purpose of this lesson Explanations of fundamental quantities of electrical circuits, including voltage, current and resistance. Use a

More information

DC Circuits PHYS 501 Homework 2

DC Circuits PHYS 501 Homework 2 DC Circuits PHYS 501 Homework 2 NAME: (partner if any: ) In-class Laboratory. Worth 12 points. A "circuit" is a circular (completed) path from the red or "+" side of a voltage source through various "circuit

More information

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature Electric Current and Circuits Electrons will flow if there is a difference in electric pressure. Electric pressure is called Potential, and is measured in Volts. If there is no difference in pressure from

More information

Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits

Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits Early Booklet E.C.: + 1 Unit 3.C Hwk. Pts.: / 36 Unit 3.C Lab Pts.: / 50 Late, Incomplete, No Work, No Units Fees?

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

Lab 4 Ohm s Law and Resistors

Lab 4 Ohm s Law and Resistors ` Lab 4 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

More information

(a) In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of emf. 6V. A P [2] ...

(a) In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of emf. 6V. A P [2] ... High Demand Questions QUESTIONSHEET 1 (a) In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of emf. 6V. A P Q Calculate the current that passes through

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

PHY132 Summer 2010 Ohm s Law

PHY132 Summer 2010 Ohm s Law PHY132 Summer 2010 Ohm s Law Introduction: In this lab, we will examine the concepts of electrical resistance and resistivity. Text Reference Young & Freedman 25.2-3. Special equipment notes: 1. Note the

More information

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

OHM'S LAW AND RESISTANCE NETWORKS OBJECT 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

Lab. I Electrical Measurements, Serial and Parallel Circuits

Lab. I Electrical Measurements, Serial and Parallel Circuits Name (last, first) ECE 2100 ID Lab. I Electrical Measurements, Serial and Parallel Circuits Pre-Lab Important note: this is the pre-lab of Lab I. You can type in the answers, or print out and write in

More information

Current Electricity. What is Current Electricity? Electrical Circuits Electrochemical Cells. Wet, Dry and Fuel Cells

Current Electricity. What is Current Electricity? Electrical Circuits Electrochemical Cells. Wet, Dry and Fuel Cells Current Electricity What is Current Electricity? Electrical Circuits Electrochemical Cells Wet, Dry and Fuel Cells Current Electricity Current Electricity continuous flow of electrons in a closed circuit

More information

Chapter 2: Electricity

Chapter 2: Electricity Chapter 2: Electricity Lesson 2.1 Static Electricity 1 e.g. a polythene rod Lesson 2.3 Electric current 1 I = Q / t = 80 / 16 = 5 A 2 t = Q / I = 96 / 6 = 16 s 1b e.g. a metal wire 2 If static charge begins

More information

Resistance and Ohm s law

Resistance and Ohm s law Resistance and Ohm s law Objectives Characterize materials as conductors or insulators based on their electrical properties. State and apply Ohm s law to calculate current, voltage or resistance in an

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Resistance and Ohm s Law Textbook pages 290 301 Section 8.3 Summary Before You Read Do you think electrons can move through all conducting substances equally well? Give your reasons why or why not on the

More information

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance.

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance. Vocabulary Term Electric Current Definition Electric Circuit Open Circuit Conductors Insulators Ohm s Law Current Voltage Resistance Electrical Power Series Circuit Parallel Circuit Page 1 Symbols Used

More information

Series and Parallel Resistors

Series and Parallel Resistors Series and Parallel Resistors Today you will investigate how connecting resistors in series and in parallel affects the properties of a circuit. You will assemble several circuits and measure the voltage

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

Episode 108: Resistance

Episode 108: Resistance Episode 108: Resistance The idea of resistance should be familiar (although perhaps not secure) from pre-16 science course, so there is no point pretending that this is an entirely new concept. A better

More information

Chapters 34: Ohm s Law

Chapters 34: Ohm s Law Text: Chapter 34 Think and Explain: 1-3, 6-8, 10 Think and Solve: 1-6 Chapters 34: Ohm s Law Vocabulary: Ohm s Law, resistance, resistivity, superconductor, current, amps, volts, ohms, kw-h, AC, DC Equations:

More information

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014 ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014 In this lesson we: Lesson Description Discuss the application of Ohm s Law Explain the series and parallel connection of resistors Discuss the effect of internal

More information

ELEXBO. Electrical - Experimentation Box

ELEXBO. Electrical - Experimentation Box ELEXBO Electrical - Experimentation Box 1 Table of contents 2 Introduction...3 Basics...3 The current......4 The voltage...6 The resistance....9 Measuring resistance...10 Summary of the electrical values...11

More information

Electrical Measurements

Electrical Measurements Electrical Measurements INTRODUCTION In this section, electrical measurements will be discussed. This will be done by using simple experiments that introduce a DC power supply, a multimeter, and a simplified

More information

Activity Electrical Circuits Simulation

Activity Electrical Circuits Simulation Activity 1.2.3 Electrical Circuits Simulation Introduction Since the late 1800s, engineers have designed systems to utilize electrical energy due to its ability to be converted, stored, transmitted, and

More information

Resistive Circuits. Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

Resistive Circuits. Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS NAME: NAME: SID: SID: STATION NUMBER: LAB SECTION: Resistive Circuits Pre-Lab: /46 Lab: /54 Total: /100 Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

More information

Technician License Course Chapter 3. Lesson Plan Module 4 Electricity

Technician License Course Chapter 3. Lesson Plan Module 4 Electricity Technician License Course Chapter 3 Lesson Plan Module 4 Electricity Fundamentals of Electricity Radios are powered by electricity and radio signals are a form of electrical energy. A basic understanding

More information

Chapters 35: Electric Circuits

Chapters 35: Electric Circuits Text: Chapter 35 Think and Explain: 1-10 Think and Solve: 1-4 Chapters 35: Electric Circuits NME: Vocabulary: ammeter, voltmeter, series, parallel, equivalent resistance, circuit, short circuit, open circuit

More information

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS ANALOG Metering devices Provides monotonous (continuous) movement. ELECTRICAL MEASURING INSTRUMENTS ANALOG METERS A d Arsonval galvanometer (Moving

More information

Experiment 3 Ohm s Law

Experiment 3 Ohm s Law Experiment 3 Ohm s Law The goals of Experiment 3 are: To identify resistors based upon their color code. To construct a two-resistor circuit using proper wiring techniques. To measure the DC voltages and

More information

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law DC Circuits and Ohm s Law Contents Part I: Objective Part II: Introduction Part III: Apparatus and Setup Part IV: Measurements Part V: Analysis Part VI: Summary and Conclusions Part I: Objective In this

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Need to know info: Resistance and Ohm s Law 1. slows down the flow of electrons and transforms electrical energy. 2. is measured in ohms.we calculate resistance by applying a voltage and measuring the

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 5 Resistance and Ohm s Law EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the notion of resistance, and know how to measure this parameter using an ohmmeter.

More information

AC/DC ELECTRONICS LABORATORY

AC/DC ELECTRONICS LABORATORY Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model EM-8656 012-05892A 1/96 AC/DC ELECTRONICS LABORATORY 1995 PASCO scientific

More information

Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers.

Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers. Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers. Understanding circuits helps you to use them, and to use them safely.

More information

DC Circuits. Date: Introduction

DC Circuits. Date: Introduction Group # Date: Names: DC Circuits Introduction In this experiment you will examine how to make simple DC measurements that involve current, voltage, and resistance. The current I through a resistor R with

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits PSI AP Physics B Name Multiple-Choice 1. The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change? (A) 2 (B) 4 (C)

More information

EGR Laboratory 1 - Introduction to Circuit Analysis

EGR Laboratory 1 - Introduction to Circuit Analysis EGR 215 Laboratory 1 Introduction to Circuit Analysis Authors D. Wilson, R.D. Christie, W.R. Lynes, K.F. Böhringer, M. Ostendorf of the University of Washington Objectives At the end of this lab, you will

More information

Chapter 13. Electric Circuits

Chapter 13. Electric Circuits Chapter 13 Electric Circuits Lower Potential Battery (EMF - E) - + Higher Potential Bulb (Resistor) Wires (No Change in Potential) EMF (Voltage Source) _ + Resistor Working Circuits For a circuit to work,

More information

Experiment 1: Circuits Experiment Board

Experiment 1: Circuits Experiment Board 01205892C AC/DC Electronics Laboratory Experiment 1: Circuits Experiment Board EQUIPMENT NEEDED: AC/DC Electronics Lab Board: Wire Leads Dcell Battery Graph Paper Purpose The purpose of this lab is to

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

EE Laboratory 4 - First Order Circuits *** Due in recitation on the week of June 2-6, 2008 ***

EE Laboratory 4 - First Order Circuits *** Due in recitation on the week of June 2-6, 2008 *** Page 1 EE 15 - - First Order Circuits *** Due in recitation on the week of June -6, 008 *** Authors R.D. Christie Objectives At the end of this lab, you will be able to: Confirm the steady state model

More information

Circuit Analysis Laboratory Workbook

Circuit Analysis Laboratory Workbook Circuit Analysis Laboratory Workbook Synthesis Lectures on Electrical Engineering Editor Richard C. Dorf, University of California, Davis Circuit Analysis Laboratory Workbook Teri L. Piatt and Kyle E.

More information

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals D.C Electricity Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple electric cell. The Electric Battery

More information

Ohm's Law and the Measurement of Resistance

Ohm's Law and the Measurement of Resistance Ohm's Law and the Measurement of Resistance I. INTRODUCTION An electric current flows through a conductor when a potential difference is placed across its ends. The potential difference is generally in

More information

SECTION 2 Basic Electric Circuits. UNIT 6 Series Circuits

SECTION 2 Basic Electric Circuits. UNIT 6 Series Circuits SECTION 2 Basic Electric Circuits UNIT 6 Series Circuits OUTLINE 6-1 Series Circuits 6-2 Voltage Drops in a Series Circuit 6-3 Resistance in a Series Circuit 6-4 Calculating Series Circuit Values 6-5 Solving

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

General Lab Notebook instructions (from syllabus)

General Lab Notebook instructions (from syllabus) Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 k, 2.7 k, 5.1 k, 10 k, two Decade Resistor Box, potentiometer, 10 k Thermistor, Multimeter Owner s Manual General

More information

AP Physics - Problem Drill 14: Electric Circuits

AP Physics - Problem Drill 14: Electric Circuits AP Physics - Problem Drill 14: Electric Circuits No. 1 of 10 1. Identify the four electric circuit symbols. (A) 1. AC power 2. Battery 3. Light Bulb 4. Resistor (B) 1. Ammeter 2. Resistor 3. AC Power 4.

More information

Science 9 Electricity Objectives Greene s Study Guide

Science 9 Electricity Objectives Greene s Study Guide Electricity Objective By the end of this unit, students are expected to be able to #1. explain the production of static electrical charges in some common - recognize that electricity is an integral part

More information

Unit 6 ~ Learning Guide Name:

Unit 6 ~ Learning Guide Name: Unit 6 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

CBSE TEST PAPER-01 CLASS - X Science (Electricity and its Effects)

CBSE TEST PAPER-01 CLASS - X Science (Electricity and its Effects) CBSE TEST PAPER-01 CLASS - X Science (Electricity and its Effects) 1. Which two circuit components are connected in parallel in the following circuit diagram? - >. < < 2. A metallic conductor has loosely

More information

DC Circuits, Ohm's Law and Multimeters Physics 246

DC Circuits, Ohm's Law and Multimeters Physics 246 DC Circuits, Ohm's Law and Multimeters Physics 246 Theory: In this lab we will learn the use of multimeters, verify Ohm s law, and study series and parallel combinations of resistors and capacitors. For

More information

The Art of Electrical Measurements

The Art of Electrical Measurements The Art of Electrical Measurements Purpose: Introduce fundamental electrical test and measurement tools and the art of making electrical measurements. Equipment Required Prelab 1 Digital Multimeter 1 -

More information

+ A Supply B. C Load D

+ A Supply B. C Load D 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

ELECTRIC Circuits Test

ELECTRIC Circuits Test ELECTRIC Circuits Test Name: /50 Multiple Choice (1 mark each) ( 13 marks) 1. Circle the best answer for each of the multiple choice questions below: Quantity measured Units used 1 -- potential difference

More information

Electric Circuits. Part One: Electric Circuits

Electric Circuits. Part One: Electric Circuits Electric Circuits Part One: Electric Circuits Lab Demo Video: Charges and the electroscope Create charges and identify attractive and repulsive forces View Julius Sumner Miller electrostatics videos to

More information

a) b) c) d) 0.01.

a) b) c) d) 0.01. 1. A galvanometer is an electromechanical device, it concerts: a) Mechanical energy into electrical energy. b) Electrical energy into mechanical energy. c) Elastic energy into electrical energy. d) Electromagnetic

More information

2007 The McGraw-Hill Companies, Inc. All rights reserved.

2007 The McGraw-Hill Companies, Inc. All rights reserved. Chapter 2 Resistors Topics Covered in Chapter 2 2-1: Types of Resistors 2-2: Resistor Color Coding 2-3: Variable Resistors 2-4: Rheostats and Potentiometers 2-5: Power Ratings of Resistors 2-6: Resistor

More information

Activity Electrical Circuits Simulation

Activity Electrical Circuits Simulation Activity 1.2.3 Electrical Circuits Simulation Introduction Since the late 1800s, engineers have designed systems to utilize electrical energy due to its ability to be converted, stored, transmitted, and

More information

Unit 23: DIRECT CURRENT CIRCUITS* Estimated classroom time: Two 100 minute sessions

Unit 23: DIRECT CURRENT CIRCUITS* Estimated classroom time: Two 100 minute sessions Name Section Date Unit 23: DIRECT CURRENT CIRCUITS* Estimated classroom time: Two 100 minute sessions OBJECTIVES I have a strong resistance to understanding the relationship between voltage and current.

More information

REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A. Topic and Description NIDA Lesson CARD #

REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A. Topic and Description NIDA Lesson CARD # REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A KS01-EE104A Direct current circuits T1 Topic and Description NIDA Lesson CARD # Basic electrical concepts encompassing: electrotechnology industry static and current

More information

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms ELECTRC CRCUTS PREEW Conventional current is the flow of positive charges though a closed circuit. The current through a resistance and the voltage which produces it are related by Ohm s law. Power is

More information

Electric Circuit I Lab Manual. Session # 1

Electric Circuit I Lab Manual. Session # 1 Electric Circuit I Lab Manual Session # 1 Lab Policies 1. Each lab session lasts 90 min and starts promptly. A brief introduction with demo may be given by the instructor at the beginning of the lab. Everybody

More information

Exam Practice Problems (3 Point Questions)

Exam Practice Problems (3 Point Questions) Exam Practice Problems (3 Point Questions) Below are practice problems for the three point questions found on the exam. These questions come from past exams as well additional questions created by faculty.

More information

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 21 Electric Current and Direct-Current Circuit Chapter 21 Electric Current and Direct-Current Circuit Outline 21-1 Electric Current 21-2 Resistance and Ohm s Law 21-3 Energy and Power in Electric Circuit 21-4 Resistance in Series and Parallel 21-5

More information

Pre-Lab for Batteries and Bulbs

Pre-Lab for Batteries and Bulbs Pre-Lab for Batteries and Bulbs Complex circuits composed of resistors can be simplified by using the concept of equivalent resistors. For example if resistors R 1, R 2, and R 3 are connected in series,

More information

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1 Digital Multimeters ON / OFF power switch Continuity / Diode Test Function Resistance Function Ranges from 200Ω to 200MΩ Transistor Test Function DC Current Function Ranges from 2mA to 20A. AC Current

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 1 REPORT MEASUREMENT DEVICES Group # 1. 2. 3. 4. Student Name ID EXPERIMENT 1 MEASUREMENT

More information