DESIGNING AND IMPLEMENTATION OF AN OPTIMIZED PID CONTROLLER FOR LONGITUDINAL AUTOPILOT

Size: px
Start display at page:

Download "DESIGNING AND IMPLEMENTATION OF AN OPTIMIZED PID CONTROLLER FOR LONGITUDINAL AUTOPILOT"

Transcription

1 Advance Research Journal of Multi-Disciplinary Discoveries ISSN NO : DESIGNING AND IMPLEMENTATION OF AN OPTIMIZED PID ONTROLLER FOR LONGITUDINAL AUTOPILOT Original Research Article ISSN ODE: (Online (IV-EE/Impact Value: 38 (GIF Impact Factor: 174 opyright@ijf 17 Journal ode: ARJMD/EE/V-11/I-1/-5/MARH-17 ategory : ELETRIAL ENGINEERING Volume : 11 / hapter- V / Issue -1 (MARH Website: wwwjournalresearchijfcom Received: 6317 Accepted: 5317 Date of Publication: Page: 1-6 ABSTRAT This paper presents the design of an Aircraft model for Longitudinal Dynamics We formulated a design of inner and outer loop of an aircraft with and without optimization (PID controller for continuous and discrete controller by controlling the variables of an aircraft using a simulation loop of a MATLAB The different flight conditions were arrived using Orthogonal Array (OA based on different Aircraft weight, Altitude, Mach number configurations This attempts to span the aircrafts across the regimes in aircrafts flight envelope Performance against uncertainties also included like turbulence and variation of atmospheric conditions Index Terms : Attitude control, Aircraft navigation, PID controller, Discrete optimization, Pitch Attitude Hold Mode Name of the Author: Princy Randhawa Assistant Professor, Department of Mechatronics Engineering School of Automobile,Mechanical and Mechatronics Engineering, Manipal University Jaipur,Rajasthan (INDIA itation of the Article Randhawa P (17, March Designing and Implementation of an Optimized PID ontroller for Longitudinal Autopilot, Advance Research Journal of Multidisciplinary Discoveries11,- 5(17:1-6 ISSN An open access journal of International Journal Foundation wwwjournalresearchijfcom Page I 1

2 Advance Research Journal of Multi-Disciplinary Discoveries ISSN NO : I INTRODUTION An autopilot is a system used to control the trajectory of an aircraft without constant 'hands-on' control by a human operator being required The first aircraft autopilot was developed by Sperry orporation in 191The main aim of the autopilot is to track the desired goal There are several various control techniques available for the design of an autopilot like Frequency domain techniques: Root Locus, Bode Plot, Nyquist Plot, PID Design and for Time domain Techniques: Pole Place ment Technique, Eigen Structure Assignment, Optimal ontrol (LQR Design and Advance Techniques like Robust ontrol, Sliding Mode ontrol, Adaptive ontrol etc [] Every Technique has its advantages and Disadvantages so as to improve its performance new techniques has proposed In this paper presents the simplest technique using optimized PID controller for determining the stability of the modes of the autopilot In control law design there are thousands of different sets and combinations of altitude, velocity, etc In this we discuss about the method known as orthogonal array to reduce the no of sets II ONTROL LAW DESIGN OF AN AIRRAFT Xu Zu A n = u M u I n = B n= 1 X e Z e u M e X Z u M Z (1 u M Z u u M 1 1 q 1 g g cos sin u (4 (5 (6 To design a plant model through, we need a longitudinal equation For the dynamics of a longitudinal aircraft, we need variables which are (small deviations from operating point or trim conditions state (components Inputs u : velocity of aircraft along body axis α : angle of attack (the angle between the velocity vector and the x-axis of the aircraft : Angle between body axis and horizontal (up is positive q = : Angular velocity of aircraft (pitch rate ontrol or actuator inputs: e : Elevator angle ( e > is down If we introduce the longitudinal state variable vector x = [u α q ] (1 & the longitudinal control vector u (t = [ e ] ( These equations are equivalent to the system of firstorder equations In x(t = Ax( t Bu( t (3 y( t ( t Du( t x represents the time derivative of the state vector x, and the matrices appearing in this equation are x = I 1 1 n n n A x I B u (7 n On solving (4, (5, (6 and substitute in (7 then we get the approximation form of the linearized equations for longitudinal motions The various dimensional stability derivatives and control derivatives are related to their dimensionless aerodynamic coefficient The selected aircraft Boeing is flying in straight level flight at some altitude with a velocity and the compressibility effects are neglected On the basis of Boeing structures and its aerodynamic configuration, the longitudinal state space model established For this aircraft the values are given below After calculating all the coefficients in matrix A and matrix B, we substitute the values for stability and control coefficient derivatives as shown in table SNo Table 1: Longitudinal Derivatives Aerodynamic Stability Derivatives oefficients Q * S *(* D M * 1 Xu X Q * S *( D L 3 Zu 4 M Q * S * ( * L (1 Mach * L Q * S * ^ * M * Iy * u 5 Z Q * S *( D L 6 Z * Q * S * c * z 7 Q * S * Zq * Lq * 8 Mu Q* S * c * Mach * Iy * u 9 M 1 M q Q* S * c * Iy * u y Q* S * c * * I * u M mq DM ( Mach mm / An open access journal of International Journal Foundation Page I

3 Advance Research Journal of Multi-Disciplinary Discoveries ISSN NO : When the aircraft is in status (H=3g, Mach=35, Velocity=11497m/s, Altitude= 7mThe altitude (Height and velocity will be varying but all the coefficient derivatives will remain constant A Modes of typical aircraft The natural response of most aircraft to longitudinal perturbations typically consists of two under- damped oscillatory modes having rather different time scales One of the modes has a relatively short period and is usually quite heavily damped; this is called the short period mode The other mode has a much longer period and is rather lightly damped; this is called the phugoid mode III DESIGN OF PITH ATTITUDE HOLD MODE There are basically two loops in the design: one inner loop (control loop and one outer loop which controls the top level guidance parameters such as heading or altitude known as (guidance loop The Pitch Attitude Hold mode (PAH controls the pitch angle by applying appropriate deflections of the elevator if the actual pitch angle differs from the desired reference value The pitch angle θ is fed back to damp the phugoid mode and to ensure that the desired pitch angle is maintained A proportional and integrating controller is applied in order to make sure that no steady-state errors in the pitch angle will remain As long as the error signal θ θ ref is not equal to zero, the signal from the integrator will increase, which leads to an increasing elevator deflection which eliminates the error Aircraft Boeing Parameters Altitude-H(metre 7 Flight Mach no(mach 35 True Speed-u(metre/sec Density(Newton/m^ Static pressure(newton/m^ 4161 Dynamic Pressure-Q(Newton/m^ 44 Weight(g 3 Wing area-s(metre^ 5196 Wing chord-c(metre 834 I y (slug/ft^ 33e+6 Pitch angle(θ(degree Longitudinal derivatives D (Drag variations along x axisrad 66 D (Reference Drag coefficient 1 L (Reference lift coefficient 111 DM L (Airplane lift curve sloperad 57 L q (Effect of pitch rate on liftrad 54 L e (Lift force due to elevator deflectionrad 338 mq (Damping in pitchrad -8 m (Static longitudinal stabilityrad -16 m L (Downwash lag on momentrad (Downwash lag on liftrad mm (Effect of slipstream and flexibility and thrust m e (Moment force due to elevator deflectionrad Error! Reference source not found Figure 1: Block diagram of the discrete pitch attitude hold mode Outer loop constitutes a feedback loop of pitch angle It can improve the damping of aircrafts long period motion Parameter selection of control law for the pitch angle control system consists of two parts: the first part is the feedback gain of the damping circuit (inner loop, the second part is the PID parameters in the pitch angle control signal of pitch angle 1 degree Table 1 shows the particular PID values of pitch attitude hold mode for different nine plant models without optimisation which uses trial and error method It is a time consuming method Table 3: Different PID values for different 9 Plant models (Without optimization Plant model Parameters (W=Weight (A=Altitude (M=Mach No W= A=1 M=5 W= A=6 M=45 W= A=1 M=65 W=3 A=1 M=45 W=3 A=6 M=65 W=3 A=1 M=5 W=4 A=1 M=65 W=4 A=6 M=5 W=4 A=1 M=45 Proportional Gain Integral Gain Derivative Gain An open access journal of International Journal Foundation Page I 3

4 Advance Research Journal of Multi-Disciplinary Discoveries ISSN NO : is very less and less overshoot the one we got from the unoptimised controller Figure 5 shows the aircraft closed loop step response for pitch attitude hold mode (with optimisation for-1 degree elevator step input From figure 5 and table shows that after optimisation, the response improves in respect of settling time, and overshoot of a system Figure : Longitudinal Aircraft closed loop step Response for pitch attitude hold mode (without optimization to 1-deg Elevator step Input The figure shows the response for pitch attitude hold mode using PID technique (without optimisation In that graph the settling time and overshoot was more in some plant models To reduce that, we use a technique called PID optimisation It is also known as automatic tuning IV DISRETE PID ONTROLLER (With Optimization For optimisation, we obtain a required response using the second order equation, we choose such a, and ξ value where we get the good step response with minimum overshoot and less settling time ^ s^ ^ Where ɷ= 15 and ξ=9 (8 Now take this as a transfer function, to optimize the PID controller parameters such as p, i, d by using f-min searchthis is chosen so that we get the best response Using these values we obtained a required graph against which all the other plant models will be compared so as we get optimised values of p, i, d It minimises the error between the required and obtained graph to match with the required one Figure 4: Block diagram of pitch attitude hold mode using optimization method V RESULTS P l a n t N o Discrete-ontroller (Before optimisation p i d Set tlin g Ti me (se c Discrete ontroller (After optimisation p i d Settli ng time( sec Table 4: omparison between Discrete and optimized values of PID Error! Reference source not found After optimisation we get the optimised values of p, i, d for all nine plant models The settling time thus obtained Figure 5: Longitudinal Aircraft closed loop step Response for pitch attitude hold mode for 1-deg Elevator step Input (after optimization An open access journal of International Journal Foundation Page I 4

5 Advance Research Journal of Multi-Disciplinary Discoveries ISSN NO : VI DESIGN OF FORWARD SPEED HOLD MODE It is used during cruise flight as a Mach hold mode Aircraft flies at constant Mach through automatic control of pitch angle by the elevator As the aircraft flies the fuel is burned and weight decreases, and speed tends to increase Speed increase detected by control system and corrected by elevator There are basically three loops in the design: two inner loops (control loop and one outer loop which controls the top level guidance parameters such as velocity (guidance loop In the block diagram, the initial speed is given as a unit step input (1m/secThe output is also coming as a step input which indicates the holding of forward speed mode Figure 7 shows the response of forward speed hold mode for unit step input velocity Table 3 shows the gain values for speed hold mode For this mode also we can use optimization technique to get better responses for all the models From the above section, we concluded that optimization have more advantages over without optimization Advantages of PID optimisation 1 The frequency response specifications (settling time, overshoot etc are improved as compared to conventional PID controller It is an automatic tuning method 3 The elevator angle deflection is within the limits (-8 degrees to 8 degrees Trade-offs for PID optimisation 1 The error computation Noise degradation in the derivative control 3 Over simplification and the loss of performance in the control law in the form of linear weighted sum 4 omplications brought by the integral control 5 No active Disturbance Rejection To overcome the trade-offs in PID optimisation, there are various techniques available for plant uncertainty, un-modelled dynamics and disturbance using Active Disturbance Rejection ontrol (ADR scheme that involves an observer design, alman filtering,various estimation techniques etc But still PID controller is more prevalent nowadays because it is the simplest design to develop which caters the problem of dynamics Figure 6: Block diagram of the discrete Forward speed hold mode VII ONLUSION We established the longitudinal equation based on small perturbation and designed the vertical control law of autopilot system of flight simulator using classical control technique More modern control design techniques will be involved in the full six degree of freedom linear autopilot design Make the design of controller based on the states These will be developed using the aircraft plant model Since the model used (Boeing 747 is a general model, and can construct the rnodel of many other aircraft in the same structure Robust autopilot control laws are designed for pitch attitude hold mode and Forwards Speed Hold mode in MATLAB Simulink such as PID (without optimisation, PID (with optimisation More models can be designed for different phases of flight which will define the different set/subsets of experiments with different values of p, i, and d Figure 7: Longitudinal Aircraft closed loop step Response for Forward speed hold mode for 1m/sec -step Input Plant model Proportional controller ( p Integral ontroller ( i Derivative ontroller ( d Table 5: Different PID values for Forward Speed Hold Mode REFERENES [1] Gao jian-shu, Li-Jing, Design and optimisation of autopilot system offlight simulator 1 International conference on optoelectronics and Image processing [] David A Mcaughey Introduction to Aircraft Stability and ontrol ourse Notes for M&AE 57 Sibley School of Mechanical & Aerospace Engineering ornell University Ithaca, New York [3] Princy Randhawa, Vijay Shanthagiri, oncept of Operations to System Design and Development-An Integrated System for Aircraft Mission Feasibility Analysis Using ST Engine, Matlab and Labview 15 International Journal of Instrumentation and ontrol Systems, Volume 5, pp 1-1 An open access journal of International Journal Foundation Page I 5

6 Advance Research Journal of Multi-Disciplinary Discoveries ISSN NO : [4] Mohammad Fiuzy, Javad Haddadnia, Seyed amaleddin Mousavi Mashhadi, Designing an Optimal PID ontroller for ontrol the Plan s Height, Based on ontrol of Autopilot by using Evolutionary Algorithms, Journal of mathematics and computer Science [5] DE Bossert, and ohen PID and Fuzzy Logic Pitch Attitude Hold Systems for a Fighter Jet AIAA Journal of Guidance, Navigation, and ontrol onference and Exhibit, 5-8 August, Monterey, alifornia, ( [6] THS Li, and MY Shieh Design of a GA- based PID ontroller for Non Minimum Phase Systems Journal of Fuzzy Sets and Systems, Vol 111, No, pp , ( [7] V Rajinikanth and Latha Tuning and Retuning of PID ontroller for Unstable Systems Using Evolutionary Algorithm International Scholarly Research Network ISRN hemical Engineering Vol 5, No 3, pp 1-1, (1 [8] B ada, Y Ghazzawi, Robust PID ontroller Design for an UAVFlight ontrol System" Proceedings of the World ongress on Engineering and omputer Science 11 Vol II WES 11, October 19-1, 11, San Francisco, USA [9] amran Turkoglu, Ugur Ozdemir, Melike Nikbay, and Elbrous M Jafarov PID Parameter Optimization of an UAV Longitudinal Flight ontrol System World Academy of Science, Engineering and Technology International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:, No: 9, 8 [1] G Sudha and S N Deepa, Optimization for PID ontrol Parameters on Pitch ontrol of Aircraft Dynamics Based on Tuning Methods An International of Applied Mathematics and Information Sciences [11] Robert Nelson, Flight Stability and Automatic ontrol, McGraw-Hill, New York, Second Edition 1998 [1] QWang, and R F Stengel, Robust Nonlinear Flight ontrol of a High-Performance Aircraft, IEEE Transactions of ontrol Systems Technology 13, (5 [13] H Ang,G hong and LI Yun, PID ontrol System Analysis, Design, and Technology, IEEE Transactions of ontrol Systems Technology, 13 (5 [14] J Astrom and T Hagllund, PID controllers Theory, Design and Tuning, second edition, Instrument Society of America (1994 [15] Bada and YGhazzawi, Robust PID ontroller Design foran UAV Flight ontrol System, Proceedings of the World ongress on Engineering and omputer Science, (11 [16] SNDeepa, and G Sudha, Longitudinal ontrol of an Aircraft Using Artificial Intelligence, International Journal of Engineering and Technology (IJET 5, (14 [17] SNSivanandam and SNDeepa, ontrol System Engineering using MATLAB, VIAS publishing company Ltd, New Delhi, India (7 An open access journal of International Journal Foundation Page I 6

Artificial Neural Networks based Attitude Controlling of Longitudinal Autopilot for General Aviation Aircraft Nagababu V *1, Imran A 2

Artificial Neural Networks based Attitude Controlling of Longitudinal Autopilot for General Aviation Aircraft Nagababu V *1, Imran A 2 ISSN (Print) : 2320-3765 ISSN (Online): 2278-8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 7, Issue 1, January 2018 Artificial Neural Networks

More information

International Journal of Advance Engineering and Research Development. Aircraft Pitch Control System Using LQR and Fuzzy Logic Controller

International Journal of Advance Engineering and Research Development. Aircraft Pitch Control System Using LQR and Fuzzy Logic Controller Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3,Issue 5,May -216 e-issn : 2348-447 p-issn : 2348-646 Aircraft Pitch Control

More information

A New Perspective to Altitude Acquire-and- Hold for Fixed Wing UAVs

A New Perspective to Altitude Acquire-and- Hold for Fixed Wing UAVs Student Research Paper Conference Vol-1, No-1, Aug 2014 A New Perspective to Altitude Acquire-and- Hold for Fixed Wing UAVs Mansoor Ahsan Avionics Department, CAE NUST Risalpur, Pakistan mahsan@cae.nust.edu.pk

More information

UAV: Design to Flight Report

UAV: Design to Flight Report UAV: Design to Flight Report Team Members Abhishek Verma, Bin Li, Monique Hladun, Topher Sikorra, and Julio Varesio. Introduction In the start of the course we were to design a situation for our UAV's

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Longitudinal Control of an Aircraft Using Artificial Intelligence

Longitudinal Control of an Aircraft Using Artificial Intelligence Longitudinal Control of an Aircraft Using Artificial Intelligence S.N. Deepa 1, Sudha G 2 1 Associate Professor, 2 Research Scholar Anna University Regional Centre, Coimbatore, Tamilnadu, India 1 deepapsg@gmail.com,

More information

ARHVES FLIGHT TRANSPORTATION LABORATORY REPORT R88-1 JAMES LUCKETT STURDY. and. R. JOHN HANSMAN, Jr. ANALYSIS OF THE ALTITUDE TRACKING PERFORMANCE OF

ARHVES FLIGHT TRANSPORTATION LABORATORY REPORT R88-1 JAMES LUCKETT STURDY. and. R. JOHN HANSMAN, Jr. ANALYSIS OF THE ALTITUDE TRACKING PERFORMANCE OF ARHVES FLIGHT TRANSPORTATION LABORATORY REPORT R88-1 ANALYSIS OF THE ALTITUDE TRACKING PERFORMANCE OF AIRCRAFT-AUTOPILOT SYSTEMS IN THE PRESENCE OF ATMOSPHERIC DISTURBANCES JAMES LUCKETT STURDY and R.

More information

Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform

Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform Şeyma Akyürek, Gizem Sezin Özden, Emre Atlas, and Coşku Kasnakoğlu Electrical & Electronics Engineering, TOBB University

More information

Modeling And Pid Cascade Control For Uav Type Quadrotor

Modeling And Pid Cascade Control For Uav Type Quadrotor IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 15, Issue 8 Ver. IX (August. 2016), PP 52-58 www.iosrjournals.org Modeling And Pid Cascade Control For

More information

Flight Dynamics AE426

Flight Dynamics AE426 KING FAHD UNIVERSITY Department of Aerospace Engineering AE426: Flight Dynamics Instructor Dr. Ayman Hamdy Kassem What is flight dynamics? Is the study of aircraft motion and its characteristics. Is it

More information

The Design of the Longitudinal Autopilot for the LSU-05 Unmanned Aerial Surveillance Vehicle

The Design of the Longitudinal Autopilot for the LSU-05 Unmanned Aerial Surveillance Vehicle Journal of Physics: Conference Series PAPER OPEN ACCESS The Design of the Longitudinal Autopilot for the LSU-5 Unmanned Aerial Surveillance Vehicle To cite this article: Muhammad Fajar and Ony Arifianto

More information

Flight control system for a reusable rocket booster on the return flight through the atmosphere

Flight control system for a reusable rocket booster on the return flight through the atmosphere Flight control system for a reusable rocket booster on the return flight through the atmosphere Aaron Buysse 1, Willem Herman Steyn (M2) 1, Adriaan Schutte 2 1 Stellenbosch University Banghoek Rd, Stellenbosch

More information

Design of Missile Two-Loop Auto-Pilot Pitch Using Root Locus

Design of Missile Two-Loop Auto-Pilot Pitch Using Root Locus International Journal Of Advances in Engineering and Management (IJAEM) Page 141 Volume 1, Issue 5, November - 214. Design of Missile Two-Loop Auto-Pilot Pitch Using Root Locus 1 Rami Ali Abdalla, 2 Muawia

More information

Hardware-in-the-Loop Simulation for a Small Unmanned Aerial Vehicle A. Shawky *, A. Bayoumy Aly, A. Nashar, and M. Elsayed

Hardware-in-the-Loop Simulation for a Small Unmanned Aerial Vehicle A. Shawky *, A. Bayoumy Aly, A. Nashar, and M. Elsayed 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design. Frequency Domain Performance Specifications

CDS 101/110a: Lecture 8-1 Frequency Domain Design. Frequency Domain Performance Specifications CDS /a: Lecture 8- Frequency Domain Design Richard M. Murray 7 November 28 Goals:! Describe canonical control design problem and standard performance measures! Show how to use loop shaping to achieve a

More information

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

Position Control of DC Motor by Compensating Strategies

Position Control of DC Motor by Compensating Strategies Position Control of DC Motor by Compensating Strategies S Prem Kumar 1 J V Pavan Chand 1 B Pangedaiah 1 1. Assistant professor of Laki Reddy Balireddy College Of Engineering, Mylavaram Abstract - As the

More information

VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH

VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH H. H. TAHIR, A. A. A. AL-RAWI MECHATRONICS DEPARTMENT, CONTROL AND MECHATRONICS RESEARCH CENTRE, ELECTRONICS SYSTEMS AND

More information

Module 2: Lecture 4 Flight Control System

Module 2: Lecture 4 Flight Control System 26 Guidance of Missiles/NPTEL/2012/D.Ghose Module 2: Lecture 4 Flight Control System eywords. Roll, Pitch, Yaw, Lateral Autopilot, Roll Autopilot, Gain Scheduling 3.2 Flight Control System The flight control

More information

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor International ournal for Modern Trends in Science and Technology Volume: 02, Issue No: 11, November 2016 http://www.ijmtst.com ISSN: 2455-3778 Comparative Analysis of PID, SMC, SMC with PID Controller

More information

Robust Control Design for Rotary Inverted Pendulum Balance

Robust Control Design for Rotary Inverted Pendulum Balance Indian Journal of Science and Technology, Vol 9(28), DOI: 1.17485/ijst/216/v9i28/9387, July 216 ISSN (Print) : 974-6846 ISSN (Online) : 974-5645 Robust Control Design for Rotary Inverted Pendulum Balance

More information

CDS 101/110: Lecture 10-2 Loop Shaping Design Example. Richard M. Murray 2 December 2015

CDS 101/110: Lecture 10-2 Loop Shaping Design Example. Richard M. Murray 2 December 2015 CDS 101/110: Lecture 10-2 Loop Shaping Design Example Richard M. Murray 2 December 2015 Goals: Work through detailed loop shaping-based design Reading: Åström and Murray, Feedback Systems, Sec 12.6 Loop

More information

CHAPTER 5 AUTOMATIC LANDING SYSTEM

CHAPTER 5 AUTOMATIC LANDING SYSTEM 117 CHAPTER 5 AUTOMATIC LANDING SYSTEM 51 INTRODUCTION The ultimate aim of both military and commercial aviation is allweather operation To achieve this goal, it should be possible to land the aircraft

More information

FUZZY CONTROL FOR THE KADET SENIOR RADIOCONTROLLED AIRPLANE

FUZZY CONTROL FOR THE KADET SENIOR RADIOCONTROLLED AIRPLANE FUZZY CONTROL FOR THE KADET SENIOR RADIOCONTROLLED AIRPLANE Angel Abusleme, Aldo Cipriano and Marcelo Guarini Department of Electrical Engineering, Pontificia Universidad Católica de Chile P. O. Box 306,

More information

Modeling of an Adaptive Controller for an Aircraft Roll Control System using PID, Fuzzy-PID and Genetic Algorithm

Modeling of an Adaptive Controller for an Aircraft Roll Control System using PID, Fuzzy-PID and Genetic Algorithm IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 1, Ver.II (Jan. - Feb.2016), PP 15-24 www.iosrjournals.org Modeling of an Adaptive

More information

IMPORTANCE OF TRANSIENT AERODYNAMIC DERIVATIVES FOR V-TAIL AIRCRAFT FLIGHT DYNAMIC DESIGN

IMPORTANCE OF TRANSIENT AERODYNAMIC DERIVATIVES FOR V-TAIL AIRCRAFT FLIGHT DYNAMIC DESIGN IMPORTANCE OF TRANSIENT AERODYNAMIC DERIVATIVES FOR V-TAIL AIRCRAFT FLIGHT DYNAMIC DESIGN Nur Amalina Musa*, Shuhaimi Mansor*, Airi Ali*, Wan Zaidi Wan Omar * *Faculty of Mechanical Engineering, Universiti

More information

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda Control Design for Servomechanisms 12 14 July 2005, Glasgow Detailed Training Course Agenda DAY 1 INTRODUCTION TO SYSTEMS AND MODELLING 9.00 Introduction The Need For Control - What Is Control? - Feedback

More information

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER Archana G C 1 and Reema N 2 1 PG Student [Electrical Machines], Department of EEE, Sree Buddha College

More information

MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering

MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering MTE 36 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering Laboratory #1: Introduction to Control Engineering In this laboratory, you will become familiar

More information

Boundary Controller Based on Fuzzy Logic Control for Certain Aircraft

Boundary Controller Based on Fuzzy Logic Control for Certain Aircraft Boundary Controller Based on Fuzzy Logic Control for Certain Aircraft YANG Wenjie DONG Jianjun QIAN Kun ANG Xiangping Department of Aerial Instrument and Electric Engineering The First Aeronautical Institute

More information

CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING

CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING Igor Arolovich a, Grigory Agranovich b Ariel University of Samaria a igor.arolovich@outlook.com, b agr@ariel.ac.il Abstract -

More information

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller Philip A. Adewuyi Mechatronics Engineering Option, Department of Mechanical and Biomedical Engineering, Bells University

More information

Optimal Control System Design

Optimal Control System Design Chapter 6 Optimal Control System Design 6.1 INTRODUCTION The active AFO consists of sensor unit, control system and an actuator. While designing the control system for an AFO, a trade-off between the transient

More information

QUADROTOR ROLL AND PITCH STABILIZATION USING SYSTEM IDENTIFICATION BASED REDESIGN OF EMPIRICAL CONTROLLERS

QUADROTOR ROLL AND PITCH STABILIZATION USING SYSTEM IDENTIFICATION BASED REDESIGN OF EMPIRICAL CONTROLLERS QUADROTOR ROLL AND PITCH STABILIZATION USING SYSTEM IDENTIFICATION BASED REDESIGN OF EMPIRICAL CONTROLLERS ANIL UFUK BATMAZ 1, a, OVUNC ELBIR 2,b and COSKU KASNAKOGLU 3,c 1,2,3 Department of Electrical

More information

Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter

Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter Item type Authors Citation Journal Article Bousbaine, Amar; Bamgbose, Abraham; Poyi, Gwangtim Timothy;

More information

Lecture 18 Stability of Feedback Control Systems

Lecture 18 Stability of Feedback Control Systems 16.002 Lecture 18 Stability of Feedback Control Systems May 9, 2008 Today s Topics Stabilizing an unstable system Stability evaluation using frequency responses Take Away Feedback systems stability can

More information

AC : A STUDENT-ORIENTED CONTROL LABORATORY US- ING PROGRAM CC

AC : A STUDENT-ORIENTED CONTROL LABORATORY US- ING PROGRAM CC AC 2011-490: A STUDENT-ORIENTED CONTROL LABORATORY US- ING PROGRAM CC Ziqian Liu, SUNY Maritime College Ziqian Liu received the Ph.D. degree from the Southern Illinois University Carbondale in 2005. He

More information

WING rock is a highly nonlinear aerodynamic phenomenon,

WING rock is a highly nonlinear aerodynamic phenomenon, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998 671 Suppression of Wing Rock of Slender Delta Wings Using a Single Neuron Controller Santosh V. Joshi, A. G. Sreenatha, and

More information

OF ATMOSPHERIC DISTURBANCES SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF. at the. February 1988

OF ATMOSPHERIC DISTURBANCES SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF. at the. February 1988 ANALYSIS OF THE ALTITUDE TRACKING PERFORMANCE OF AIRCRAFT-AUTOPILOT SYSTEMS IN THE PRESENCE OF ATMOSPHERIC DISTURBANCES by JAMES LUCKETT STURDY S.B., Massachusetts Institute of Technology (1986) SUBMITTED

More information

1, 2, 3,

1, 2, 3, AUTOMATIC SHIP CONTROLLER USING FUZZY LOGIC Seema Singh 1, Pooja M 2, Pavithra K 3, Nandini V 4, Sahana D V 5 1 Associate Prof., Dept. of Electronics and Comm., BMS Institute of Technology and Management

More information

Digital Control of MS-150 Modular Position Servo System

Digital Control of MS-150 Modular Position Servo System IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS-150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland

More information

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller International Journal of Emerging Trends in Science and Technology Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller Authors Swarup D. Ramteke 1, Bhagsen J. Parvat 2

More information

TRACK-FOLLOWING CONTROLLER FOR HARD DISK DRIVE ACTUATOR USING QUANTITATIVE FEEDBACK THEORY

TRACK-FOLLOWING CONTROLLER FOR HARD DISK DRIVE ACTUATOR USING QUANTITATIVE FEEDBACK THEORY Proceedings of the IASTED International Conference Modelling, Identification and Control (AsiaMIC 2013) April 10-12, 2013 Phuket, Thailand TRACK-FOLLOWING CONTROLLER FOR HARD DISK DRIVE ACTUATOR USING

More information

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System Journal of Advanced Computing and Communication Technologies (ISSN: 347-84) Volume No. 5, Issue No., April 7 Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System By S.Janarthanan,

More information

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR)

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR) Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR) Ajit Kumar Mittal M.TECH Student, B.I.T SINDRI Dhanbad, India Dr. Pankaj Rai Associate Professor, Department of Electrical

More information

Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller

Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller Mr. Omveer Singh 1, Shiny Agarwal 2, Shivi Singh 3, Zuyyina Khan 4, 1 Assistant Professor-EEE, GCET, 2 B.tech 4th

More information

Classical Control Design Guidelines & Tools (L10.2) Transfer Functions

Classical Control Design Guidelines & Tools (L10.2) Transfer Functions Classical Control Design Guidelines & Tools (L10.2) Douglas G. MacMartin Summarize frequency domain control design guidelines and approach Dec 4, 2013 D. G. MacMartin CDS 110a, 2013 1 Transfer Functions

More information

Vibration Control of Flexible Spacecraft Using Adaptive Controller.

Vibration Control of Flexible Spacecraft Using Adaptive Controller. Vol. 2 (2012) No. 1 ISSN: 2088-5334 Vibration Control of Flexible Spacecraft Using Adaptive Controller. V.I.George #, B.Ganesh Kamath #, I.Thirunavukkarasu #, Ciji Pearl Kurian * # ICE Department, Manipal

More information

A PHOTOVOLTAIC POWERED TRACKING SYSTEM FOR MOVING OBJECTS

A PHOTOVOLTAIC POWERED TRACKING SYSTEM FOR MOVING OBJECTS A PHOTOVOLTAI POWERED TRAKING SYSTEM FOR MOVING OBJETS İsmail H. Altaş* Adel M Sharaf ** e-mail: ihaltas@ktu.edu.tr e-mail: sharaf@unb.ca *: Karadeiz Technical University, Department of Electrical & Electronics

More information

WIND VELOCITY ESTIMATION WITHOUT AN AIR SPEED SENSOR USING KALMAN FILTER UNDER THE COLORED MEASUREMENT NOISE

WIND VELOCITY ESTIMATION WITHOUT AN AIR SPEED SENSOR USING KALMAN FILTER UNDER THE COLORED MEASUREMENT NOISE WIND VELOCIY ESIMAION WIHOU AN AIR SPEED SENSOR USING KALMAN FILER UNDER HE COLORED MEASUREMEN NOISE Yong-gonjong Par*, Chan Goo Par** Department of Mechanical and Aerospace Eng/Automation and Systems

More information

Development of an Experimental Testbed for Multiple Vehicles Formation Flight Control

Development of an Experimental Testbed for Multiple Vehicles Formation Flight Control Proceedings of the IEEE Conference on Control Applications Toronto, Canada, August 8-, MA6. Development of an Experimental Testbed for Multiple Vehicles Formation Flight Control Jinjun Shan and Hugh H.

More information

ISSN Vol.04,Issue.06, June-2016, Pages:

ISSN Vol.04,Issue.06, June-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.06, June-2016, Pages:1117-1121 Design and Development of IMC Tuned PID Controller for Disturbance Rejection of Pure Integrating Process G.MADHU KUMAR 1, V. SUMA

More information

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department,

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department, OPTIMAL TUNING PARAMETERS OF PROPORTIONAL INTEGRAL CONTROLLER IN FEEDBACK CONTROL SYSTEMS. Gamze İŞ 1, ChandraMouli Madhuranthakam 2, Erdoğan Alper 1, Ibrahim H. Mustafa 2,3, Ali Elkamel 2 1 Chemical Engineering

More information

Frequency Response Analysis and Design Tutorial

Frequency Response Analysis and Design Tutorial 1 of 13 1/11/2011 5:43 PM Frequency Response Analysis and Design Tutorial I. Bode plots [ Gain and phase margin Bandwidth frequency Closed loop response ] II. The Nyquist diagram [ Closed loop stability

More information

CDS 101/110: Lecture 8.2 PID Control

CDS 101/110: Lecture 8.2 PID Control CDS 11/11: Lecture 8.2 PID Control November 16, 216 Goals: Nyquist Example Introduce and review PID control. Show how to use loop shaping using PID to achieve a performance specification Discuss the use

More information

Design of Different Controller for Cruise Control System

Design of Different Controller for Cruise Control System Design of Different Controller for Cruise Control System Anushek Kumar 1, Prof. (Dr.) Deoraj Kumar Tanti 2 1 Research Scholar, 2 Associate Professor 1,2 Electrical Department, Bit Sindri Dhanbad, (India)

More information

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control Goals for this Lab Assignment: 1. Design a PD discrete control algorithm to allow the closed-loop combination

More information

Design of Compensator for Dynamical System

Design of Compensator for Dynamical System Design of Compensator for Dynamical System Ms.Saroja S. Chavan PimpriChinchwad College of Engineering, Pune Prof. A. B. Patil PimpriChinchwad College of Engineering, Pune ABSTRACT New applications of dynamical

More information

Load Frequency and Voltage Control of Two Area Interconnected Power System using PID Controller. Kavita Goswami 1 and Lata Mishra 2

Load Frequency and Voltage Control of Two Area Interconnected Power System using PID Controller. Kavita Goswami 1 and Lata Mishra 2 e t International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 722-726(2017) (Published by Research Trend, Website: www.researchtrend.net) ISSN No. (Print) : 0975-8364 ISSN No. (Online)

More information

Automatic Control Motion control Advanced control techniques

Automatic Control Motion control Advanced control techniques Automatic Control Motion control Advanced control techniques (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations (I) 2 Besides the classical

More information

A Searching Analyses for Best PID Tuning Method for CNC Servo Drive

A Searching Analyses for Best PID Tuning Method for CNC Servo Drive International Journal of Science and Engineering Investigations vol. 7, issue 76, May 2018 ISSN: 2251-8843 A Searching Analyses for Best PID Tuning Method for CNC Servo Drive Ferit Idrizi FMI-UP Prishtine,

More information

Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter To cite this article: M. H. Jafri et al 2017 IOP Conf.

More information

STUDY OF FIXED WING AIRCRAFT DYNAMICS USING SYSTEM IDENTIFICATION APPROACH

STUDY OF FIXED WING AIRCRAFT DYNAMICS USING SYSTEM IDENTIFICATION APPROACH STUDY OF FIXED WING AIRCRAFT DYNAMICS USING SYSTEM IDENTIFICATION APPROACH A.Kaviyarasu 1, Dr.A.Saravan Kumar 2 1,2 Department of Aerospace Engineering, Madras Institute of Technology, Anna University,

More information

Digital Autoland Control Laws Using Quantitative Feedback Theory and Direct Digital Design

Digital Autoland Control Laws Using Quantitative Feedback Theory and Direct Digital Design JOURNAL OF GUIDANCE, CONROL, AND DYNAMICS Vol., No., September October 7 Digital Autoland Control Laws Using Quantitative Feedback heory and Direct Digital Design homas Wagner and John Valasek exas A&M

More information

Development of a Fuzzy Logic Controller for Industrial Conveyor Systems

Development of a Fuzzy Logic Controller for Industrial Conveyor Systems American Journal of Science, Engineering and Technology 217; 2(3): 77-82 http://www.sciencepublishinggroup.com/j/ajset doi: 1.11648/j.ajset.21723.11 Development of a Fuzzy Logic Controller for Industrial

More information

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System PAPER ID: IJIFR / V1 / E10 / 031 www.ijifr.com ijifr.journal@gmail.com ISSN (Online): 2347-1697 An Enlightening Online Open Access, Refereed & Indexed Journal of Multidisciplinary Research Simulation and

More information

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID

More information

Intelligent Learning Control Strategies for Position Tracking of AC Servomotor

Intelligent Learning Control Strategies for Position Tracking of AC Servomotor Intelligent Learning Control Strategies for Position Tracking of AC Servomotor M.Vijayakarthick 1 1Assistant Professor& Department of Electronics and Instrumentation Engineering, Annamalai University,

More information

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Osama Omer Adam Mohammed 1, Dr. Awadalla Taifor Ali 2 P.G. Student, Department of Control Engineering, Faculty of Engineering,

More information

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Vivek Kumar Bhatt 1, Dr. Sandeep Bhongade 2 1,2 Department of Electrical Engineering, S. G. S. Institute of Technology

More information

AIRCRAFT CONTROL AND SIMULATION

AIRCRAFT CONTROL AND SIMULATION AIRCRAFT CONTROL AND SIMULATION AIRCRAFT CONTROL AND SIMULATION Third Edition Dynamics, Controls Design, and Autonomous Systems BRIAN L. STEVENS FRANK L. LEWIS ERIC N. JOHNSON Cover image: Space Shuttle

More information

Position Control of AC Servomotor Using Internal Model Control Strategy

Position Control of AC Servomotor Using Internal Model Control Strategy Position Control of AC Servomotor Using Internal Model Control Strategy Ahmed S. Abd El-hamid and Ahmed H. Eissa Corresponding Author email: Ahmednrc64@gmail.com Abstract: This paper focuses on the design

More information

Fuzzy Logic Based Speed Control System Comparative Study

Fuzzy Logic Based Speed Control System Comparative Study Fuzzy Logic Based Speed Control System Comparative Study A.D. Ghorapade Post graduate student Department of Electronics SCOE Pune, India abhijit_ghorapade@rediffmail.com Dr. A.D. Jadhav Professor Department

More information

The Pitch Control Algorithm of Wind Turbine Based on Fuzzy Control and PID Control

The Pitch Control Algorithm of Wind Turbine Based on Fuzzy Control and PID Control Energy and Power Engineering, 2013, 5, 6-10 doi:10.4236/epe.2013.53b002 Published Online May 2013 (http://www.scirp.org/journal/epe) The Pitch Control Algorithm of Wind Turbine Based on Fuzzy Control and

More information

A LOS Guidance Law for Path Following of an Aircraft Using Fuzzy Self-Tuning PID Controller

A LOS Guidance Law for Path Following of an Aircraft Using Fuzzy Self-Tuning PID Controller , pp.177-181 http://dx.doi.org/10.14257/astl.2016.138.36 A LOS Guidance Law for Path Following of an Aircraft Using Fuzzy Self-Tuning PID Controller Seong-Hyeok Park 1, Won-Hyuck Choi 2, Min-Seok Jie 2,1

More information

ENGG4420 END OF CHAPTER 1 QUESTIONS AND PROBLEMS

ENGG4420 END OF CHAPTER 1 QUESTIONS AND PROBLEMS CHAPTER 1 By Radu Muresan University of Guelph Page 1 ENGG4420 END OF CHAPTER 1 QUESTIONS AND PROBLEMS September 25 12 12:45 PM QUESTIONS SET 1 1. Give 3 advantages of feedback in control. 2. Give 2 disadvantages

More information

Comparative Study of PID and FOPID Controller Response for Automatic Voltage Regulation

Comparative Study of PID and FOPID Controller Response for Automatic Voltage Regulation IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 09 (September. 2014), V5 PP 41-48 www.iosrjen.org Comparative Study of PID and FOPID Controller Response for

More information

Estimation of State Variables of Active Suspension System using Kalman Filter

Estimation of State Variables of Active Suspension System using Kalman Filter International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 5161 217 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Estimation

More information

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Comparative Analysis of Air Conditioning System Using PID and Neural Network Controller

Comparative Analysis of Air Conditioning System Using PID and Neural Network Controller International Journal of Scientific and Research Publications, Volume 3, Issue 8, August 2013 1 Comparative Analysis of Air Conditioning System Using PID and Neural Network Controller Puneet Kumar *, Asso.Prof.

More information

DC Motor Speed Control Using Machine Learning Algorithm

DC Motor Speed Control Using Machine Learning Algorithm DC Motor Speed Control Using Machine Learning Algorithm Jeen Ann Abraham Department of Electronics and Communication. RKDF College of Engineering Bhopal, India. Sanjeev Shrivastava Department of Electronics

More information

A NEURAL CONTROLLER FOR ON BOARD TRACKING PLATFORM

A NEURAL CONTROLLER FOR ON BOARD TRACKING PLATFORM A NEURAL CONTROLLER FOR ON BOARD TRACKING PLATFORM OCTAVIAN GRIGORE- MÜLER 1 Key words: Airborne warning and control systems (AWACS), Incremental motion controller, DC servomotors with low inertia induce,

More information

ARIES: Aerial Reconnaissance Instrumental Electronics System

ARIES: Aerial Reconnaissance Instrumental Electronics System ARIES: Aerial Reconnaissance Instrumental Electronics System Marissa Van Luvender *, Kane Cheung, Hao Lam, Enzo Casa, Matt Scott, Bidho Embaie #, California Polytechnic University Pomona, Pomona, CA, 92504

More information

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM J. Arulvadivu, N. Divya and S. Manoharan Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, Tamilnadu,

More information

Modeling and Control of a Robot Arm on a Two Wheeled Moving Platform Mert Onkol 1,a, Cosku Kasnakoglu 1,b

Modeling and Control of a Robot Arm on a Two Wheeled Moving Platform Mert Onkol 1,a, Cosku Kasnakoglu 1,b Applied Mechanics and Materials Vols. 789-79 (15) pp 735-71 (15) Trans Tech Publications, Switzerland doi:1.8/www.scientific.net/amm.789-79.735 Modeling and Control of a Robot Arm on a Two Wheeled Moving

More information

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

The J2 Universal Tool-Kit - Linear Analysis with J2 Classical

The J2 Universal Tool-Kit - Linear Analysis with J2 Classical The J2 Universal Tool-Kit - Linear Analysis with J2 Classical AIRCRAFT MODELLING AND PERFORMANCE PREDICTION SOFTWARE Key Aspects INTRODUCTION Why Linear Analysis? J2 Classical J2 CLASSICAL AS PART OF THE

More information

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2492-2497 ISSN: 2249-6645 Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Praveen Kumar 1, Anurag Singh Tomer 2 1 (ME Scholar, Department of Electrical

More information

EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - II Time Response Analysis Two marks 1. What is transient response? The transient response is the response of the system when the system

More information

NEURAL NETWORK BASED LOAD FREQUENCY CONTROL FOR RESTRUCTURING POWER INDUSTRY

NEURAL NETWORK BASED LOAD FREQUENCY CONTROL FOR RESTRUCTURING POWER INDUSTRY Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 1, March, 2012, pp. 40 47. Copyright c 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 NEURAL NETWORK BASED LOAD FREQUENCY CONTROL

More information

Flight Control Laboratory

Flight Control Laboratory Dept. of Aerospace Engineering Flight Dynamics and Control System Course Flight Control Laboratory Professor: Yoshimasa Ochi Associate Professor: Nobuhiro Yokoyama Flight Control Laboratory conducts researches

More information

Sensor Data Fusion Using Kalman Filter

Sensor Data Fusion Using Kalman Filter Sensor Data Fusion Using Kalman Filter J.Z. Sasiade and P. Hartana Department of Mechanical & Aerospace Engineering arleton University 115 olonel By Drive Ottawa, Ontario, K1S 5B6, anada e-mail: jsas@ccs.carleton.ca

More information

Structure Specified Robust H Loop Shaping Control of a MIMO Electro-hydraulic Servo System using Particle Swarm Optimization

Structure Specified Robust H Loop Shaping Control of a MIMO Electro-hydraulic Servo System using Particle Swarm Optimization Structure Specified Robust H Loop Shaping Control of a MIMO Electrohydraulic Servo System using Particle Swarm Optimization Piyapong Olranthichachat and Somyot aitwanidvilai Abstract A fixedstructure controller

More information

INTELLIGENT ACTIVE FORCE CONTROL APPLIED TO PRECISE MACHINE UMP, Pekan, Pahang, Malaysia Shah Alam, Selangor, Malaysia ABSTRACT

INTELLIGENT ACTIVE FORCE CONTROL APPLIED TO PRECISE MACHINE UMP, Pekan, Pahang, Malaysia Shah Alam, Selangor, Malaysia ABSTRACT National Conference in Mechanical Engineering Research and Postgraduate Studies (2 nd NCMER 2010) 3-4 December 2010, Faculty of Mechanical Engineering, UMP Pekan, Kuantan, Pahang, Malaysia; pp. 540-549

More information

Stability and Control Test and Evaluation Process Improvements through Judicious Use of HPC Simulations (3348)

Stability and Control Test and Evaluation Process Improvements through Judicious Use of HPC Simulations (3348) Stability and Control Test and Evaluation Process Improvements through Judicious Use of HPC Simulations (3348) James D Clifton USAF SEEK EAGLE Office jamesclifton@eglinafmil C Justin Ratcliff USAF SEEK

More information

Labview Based Gain scheduled PID Controller for a Non Linear Level Process Station

Labview Based Gain scheduled PID Controller for a Non Linear Level Process Station IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 05-11 www.iosrjournals.org Labview Based Gain scheduled PID Controller for a Non Linear Level

More information

Helicopter Pitch Control System

Helicopter Pitch Control System Helicopter Pitch Control System Nenad Popovich, Christian R. Bonaobra Abstract The helicopter was subjected to a few different optimization methods such as Root Locus, Ziegler-Nichols Tuning method, Systematic

More information

Implementation of Proportional and Derivative Controller in a Ball and Beam System

Implementation of Proportional and Derivative Controller in a Ball and Beam System Implementation of Proportional and Derivative Controller in a Ball and Beam System Alexander F. Paggi and Tooran Emami United States Coast Guard Academy Abstract This paper presents a design of two cascade

More information

A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b

A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b 1, 2 Calnetix, Inc 23695 Via Del Rio Yorba Linda, CA 92782, USA a lzhu@calnetix.com, b lhawkins@calnetix.com

More information