WAVELET TRANSFORM ANALYSIS OF PARTIAL DISCHARGE SIGNALS. B.T. Phung, Z. Liu, T.R. Blackburn and R.E. James

Size: px
Start display at page:

Download "WAVELET TRANSFORM ANALYSIS OF PARTIAL DISCHARGE SIGNALS. B.T. Phung, Z. Liu, T.R. Blackburn and R.E. James"

Transcription

1 WAVELET TRANSFORM ANALYSIS OF PARTIAL DISCHARGE SIGNALS B.T. Phung, Z. Liu, T.R. Blackburn and R.E. James School of Electrical Engineering and Telecommunications University of New South Wales, Australia Abstract: Partial discharge (PD) signals are short transient pulses which occur randomly. For such non-stationary signals, the wavelet transform (WT) is more suitable than the traditional Fourier transform (FT) as it provides information in both time and frequency domains. This paper investigates the WT technique as applied to PD signals, with particular reference to discharge measurements in high-voltage power cables. Laboratory tests were carried out to obtain the signal characteristics of various insulation defects and compared with on-site measurement results. Also it is shown that the WT method can be used to suppress noise and improve the time resolution of the PD pulse signal.. INTRODUCTION Electrical insulation plays a critical role in the performance of high-voltage apparatus. Power equipment failure is mostly due to the breakdown of the insulation. This in turn is often the consequence of gradual and cumulative damaging effects of partial discharges (PD) on the insulation over the years. The presence of partial discharges indicates some defect within the insulation of HV power equipment. Furthermore, the nature and type of the defects influence the PD pulse charactersitics. There are a number of diagnostic methods, such as statistical characterisation of the phase-resolved patterns, for PD identification [,2]. Recently, the wavelet transform (WT) has emerged as a powerful technique for analysing transient and suddenly changing signals. References [3-5] are some examples of its application in the area of power engineering. In this paper, the wavelet transform is utilised to characterise the PD signals with particular reference to on-line monitoring of high-voltage power cables [6]. The possibility of differentiating between internal discharges in the cable and external discharges such as coronas based on their wavelet characteristics is explored. Comparison with the conventional Fourier analysis is also provided. A number of different insulation defects in cables are tested in the laboratory. The results are compared with those from on-line measurements in the substations. For on-site testing, random background noise can significantly reduce the sensitivity of PD detection. The use of WT to denoise the signal is also investigated. 2. WAVELET TRANSFORM The well-known Fourier analysis decomposes a signal into consituent sinusoids of different frequencies (fundamental and harmonics). Such a transformation of the signal from the time domain to the frequency domain causes its time information to be lost. This is undesirable, particularly when the signal is non-stationary and its transitory characteristics are important. To overcome this problem, the Short-Time Fourier Transform (STFT) analyses the signal over a short time window at a time and the signal is mapped into a two-dimensional function of time and frequency. Wavelet analysis is an extension of STFT which allows variable-sized window and produces a timescale view of the signal (instead of time-frequency) [7]. In essence, the technique decomposes a signal into shifted and scaled versions of an original (or mother) wavelet. Shifting a wavelet means delaying or hastening its onset. Scaling a wavelet simply means stretching or compressing it. There is a correspondence between scaling and frequency. Low scale produces a compressed wavelet suitable for rapidly changing details and thus corresponds to high frequency. Similarly, high scale gives a stretched wavelet characterising slowly changing features and thus corresponds to low frequency.

2 The continuous wavelet transform (CWT) is mathematically expressed as folows: t b W ( a, b) = ψ. f ( t)dt a a where f(t) denotes the signal, ψ(t) the mother wavelet, a the scale (or frequency) parameter and b the time (or position) parameter. Typically, the wavelet used is an oscillatory irregular waveform of limited duration and has an average value of zero. The CWT generates many wavelet coefficients. The consituent wavelets of the original signal are obtained by multiplying each coefficient with the corresponding scaled and shifted wavelet. Computing the coefficient for every scale and position is time demanding. A more efficient but equally accurate scheme is to select nd positions based on powers of two. This is called the discrete wavelet transform (DWT). The Mallat algorithm is an implementation of the DWT using filters. Further mathematical details of wavelet analysis can be found in numerous textbooks, e.g. [7]. The computations in this paper made use of the Wavelet Toolbox [] which is a collections of functions run under the MatLab environment. 3. MEASUREMENT SETUP A number of kv and kv XLPE cable samples, about 2.5m long each, were tested in the laboratory. These cables were properly terminated with stress relief sleeves to prevent surface discharges at the ends. Fig.: Experimental setup in the laboratory. The experimental setup is shown in Fig.. The PD sensor is a current transformer with a soft ferrite toroidal core, suitable for wide-band measurement (0kHz-200MHz). It is inserted around the conductor that connects the cable sheath to Earth. Discharges in the cable will result in HF electrical pulses propagating through the earth conductor and thus can be detected with the clip-on CT. The output signal from the sensor is amplified, captured with a fast digital oscilloscope with long memory and transferred to the PC for processing. This monitoring system is called the CDA2 [2]. The overall detection bandwidth of the system is from 0kHz to 30MHz. Measurement in the laboratory also includes the conventional circuit using a blocking capacitor in series with a measuring impedance and the ERA discharge detector (Fig.). The same HF-CTs are used for on-site monitoring. Attachment and removal of the sensors can be easily carried out while the cables are energised. Fig.2 shows the sensors monitoring the three-phase 32kV XLPE cables in a sub-station. HF-CT sensor 32kV cable Fig.2: On-line monitoring of 32kV cables. 4. SIGNAL DE-NOISING The most challenging problem associated with on-site testing is signal corruption caused by the random background noise and interference from various sources such as corona discharges from sharp metallic protrusions, switching transients, coupling of signals between the three phases and pick-ups from radio transmission. Techniques to overcome some of these interference sources have been explored in [6]. For example, rejection of the coupled pulses from the neighbouring phases can be achieved by using simultaneous multi-channel recording and postprocessing software. The latter comprises phaseposition windowing and signal magnitude comparison. Filtering of the random background noise can be carried out using wavelet analysis. As an example, Fig.3(a) shows the original noisy signal which was recorded on-line at a 32kV sub-station. Here, the CDA2 monitoring system was able to detect the

3 presence of intermittent but very large discharges. After rejecting the inter-phase signal coupling, the CDA2 phase-resolved patterns clearly show the disturbance originating from the Yellow phase. The next step is to locate the source of the disturbance in that phase. This was done using the ultrasonic detector. The fault was found to be at the top of the HV bushing connected to the 32kV Yellow phase cable termination (see Fig.2) barely visible against the continuous random background noise as shown in Fig.3(a). Note that the horizontal axis corresponds to 0000 data points of 2ns sampling interval. To improve the accuracy of the propagation time measurement, wavelet decomposition can be used to remove the high-frequency noise from the signal. Successive approximations become less noisy as more high frequency information is filtered out. Thus this provides a simple method to de-noise the signal. Fig.3(b) shows the de-noised signal using level-5 approximation and Daubechies db3 wavelet. In comparison to the original signal, it is much cleaner and the reflected pulse can be clearly seen. The measured reflection time corresponds to twice the cable length. This indicates the fault is at the cable termination rather than inside the cable and thus agrees with the ultrasonic detector finding (a) (b) One disadvantage of the above method is that the fast changing features of the original signal is lost. Note the smoothing effect on the wavefront in Fig.3(b). This would reduce the accuracy of the measurement of the time delay between the first pulse and its reflection. An elegant alternative to overcome this problem is the technique called thresholding whereby the details are discarded only if the magnitudes exceed a certain limit. The procedure is to examine the details vectors of the wavelet decomposition, select the appropriate threshold coefficients and reconstruct the new details signals. The toolbox provides two calling functions: one to calculate the default threshold parameters and the other to perform the actual de-noising. Applying these functions, the result is shown in Fig.3(c). It retains well the sharp detail of the original but is somewhat noisier. It may be possible to improve the result by trying other thresholds Fig.3: (a) Original and (b,c) Denoised signals. If the reflected pulse can be detected, the PD location can also be confirmed by time-domain reflectometry. Due to signal attenuation by the cable (7m long), the reflected pulse is much smaller in magnitude. It is (c) 5. SIGNAL CHARACTERISATION Cables with external and internal discharges were tested in the laboratory. The results are plotted in Fig.4. Shown for each type of discharge are its timedomain waveform, magnitude and power spectra of the Fourier transform. Fig.4(a) corresponds to external corona discharge caused by a sharp protrusion on the HV conductor. The magnitude is about 70pC at applied voltage of 4kV. Fig.4(b) corresponds to external surface discharges with a magnitude of pc at 4kV. Although these discharge sources are external, they are very close to the cable (less than cm from the cable termination). Similarly, the characteristics of internal discharges

4 are shown in Figs.4(c) and 4(d). These correspond to surface discharges on the cable termination (90pC at 6kV) and internal discharges from a floating needle puncturing the cable insulation (0pC at 4kV). It can be seen that different types of fault generate somewhat different signatures. In particular, the last case appears to have more higher frequency content in the spectra. This characteristic may be utilised by the

5 (a) (b) 5 5 (c) Fig.4: Time domain waveforms and spectra of PD signals (laboratory tests) Fig.5: Time-scale view of the absolute CWT coeffcients for the signals in Fig.4. 5 (d)

6 (a) (b) 5 (c) Fig.6: Time domain waveforms and spectra of signals obtained from on-line monitoring (d) Fig.7: Time-scale view of the absolute CWT coefficients of the signals obtained from on-line monitoring.

7 monitoring system for interference rejection. On the other hand, very little difference can be seen with the other cases and thus it would be difficult to distinguish between external discharges and those occur at the cable termination. Fig.5 shows a different way to view the signals of Fig.4 in the time-scale where the absolute values of the CWT coefficients are plotted. Note that the smaller coefficients appear as darker pixels on the plot and vice versa. The low scale region corresponds to high frequency. In comparison, Fig.5(d) has the brightest band in this region which agrees with its Fourier equivalent shown in Fig.4(d). Fig.6 is a sample of some typical waveforms and spectra from on-line monitoring of 33kV cables in a substation. These cables are about 70m long each, connecting the main 33kV bus bars to a 32/33kV transformer. The largest PD magnitude is of the order of 2nC. It can be seen that Fig.6(b) is very similar to Fig.4(a) and thus one may conclude that it is external interference from corona discharges. Fig.6(a) and Fig.6(d) reveal a larger content of higher frequency components which match Fig.4(d) and thus indicating internal discharges. The case of Fig.6(c) is distinctly different. It is a slow wave, the spectrum peaks at about 4MHz. The corresponding time-scale view of Fig.6 is shown in Fig.7. The slow wave results in a uniformly dark band in the low scale region of Fig.7(c). 6. CONCLUSIONS In this paper, the PD signals were characterised using the traditional Fourier transform and the new technique of Wavelet transform. The time-scale presentation is an interesting and informative way to view the PD signals. Based on the analysis obtained thus far, it is thought that the application of WT results in no significant improvement in highlighting the subtle differences between the different types of PD signals (as compared to FT). On the other hand, it has been shown that the WT technique can be utilised to de-noise the PD signals and thus enhance the detection sensitivity.. REFERENCES [] R.E. James and B.T. Phung, "Development of Computer-Based Measurement Systems for Recording and Analysis of Partial Discharge Patterns", IEEE-DEI Trans., Vol.2, No.5, Oct. 5, pp.3-6. [2] B.T. Phung, Computer-based Partial Discharge Detection and Characterisation, Ph.D thesis, University of NSW, Australia, 7. [3] Y. Quan, N. Gao, G. Zhang and Z. Yan, Wavelet transform applying in partial discharge measurement, IEEE Int. Symp. On Electrical Insulation, Virginia, USA, June 7-0,, pp.42-. [4] P. Kang and D. Birtwhistle, Wavelet transform based envelope extraction for condition monitoring of power switching equipment, Australasian Universities Power Eng. Conf., Hobart, Sep.27-30,, pp [5] C.T. Wai, Q. Li and W.W.L. Keerthipala, Transformer inrush current investigation based on wavelet analysis, Australasian Universities Power Eng. Conf., Hobart, Sep.27-30,, pp [6] B.T. Phung, Z. Liu, T.R. Blackburn and R.E. James, On-line partial discharge measurement on HV power cables, th Int. Symp. on HV Engineering (ISH), London, Aug.23-27, 9. [7] C.K. Chui, An Introduction to Wavelets, Academic Press, 2. [] M. Misiti,, Y. Misiti, G. Oppenheim and J. Poggi, Wavelet Toolbox for Use with MatLab, The Math Works Inc., ACKNOWLEDGMENT The project on on-line condition monitoring of HV power cables is financially supported by Integral Energy. Assistance from its staff during site testings, in particular P. Taylor and J. Hickey, is gratefully acknowledged.

Investigation of PD Detection on XLPE Cables

Investigation of PD Detection on XLPE Cables Investigation of PD Detection on XLPE Cables Hio Nam O, T.R. Blackburn and B.T. Phung School of Electrical Engineering and Telecommunications The University New South Wales, Australia Abstract- The insulation

More information

CONTINUOUS ON-LINE MONITORING OF PARTIAL DICHARGES IN HV DISTRIBUTION CABLES

CONTINUOUS ON-LINE MONITORING OF PARTIAL DICHARGES IN HV DISTRIBUTION CABLES CONTINUOUS ON-LINE MONITORING OF PARTIAL DICHARGES IN HV DISTRIBUTION CABLES Hao ZHANG, Transgrid, (Australia), hao.zhang@transgrid.com.au Zhao LIU, University of NSW, (Australia), z.liu@unsw.edu.au Toan

More information

Application of Wavelet Transform Technique for Extraction of Partial Discharge Signal in a Transformer

Application of Wavelet Transform Technique for Extraction of Partial Discharge Signal in a Transformer International Journal of Engineering Studies. ISSN 0975-6469 Volume 8, Number 2 (2016), pp. 247-258 Research India Publications http://www.ripublication.com Application of Wavelet Transform Technique for

More information

THE PROPAGATION OF PARTIAL DISCHARGE PULSES IN A HIGH VOLTAGE CABLE

THE PROPAGATION OF PARTIAL DISCHARGE PULSES IN A HIGH VOLTAGE CABLE THE PROPAGATION OF PARTIAL DISCHARGE PULSES IN A HIGH VOLTAGE CABLE Z.Liu, B.T.Phung, T.R.Blackburn and R.E.James School of Electrical Engineering and Telecommuniications University of New South Wales

More information

Multi-Resolution Wavelet Analysis for Chopped Impulse Voltage Measurements

Multi-Resolution Wavelet Analysis for Chopped Impulse Voltage Measurements Multi-Resolution Wavelet Analysis for Chopped Impulse Voltage Measurements EMEL ONAL Electrical Engineering Department Istanbul Technical University 34469 Maslak-Istanbul TURKEY onal@elk.itu.edu.tr http://www.elk.itu.edu.tr/~onal

More information

Non-intrusive Measurement of Partial Discharge and its Extraction Using Short Time Fourier Transform

Non-intrusive Measurement of Partial Discharge and its Extraction Using Short Time Fourier Transform > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Non-intrusive Measurement of Partial Discharge and its Extraction Using Short Time Fourier Transform Guomin Luo

More information

LEVEL DEPENDENT WAVELET SELECTION FOR DENOISING OF PARTIAL DISCHARGE SIGNALS SIMULATED BY DEP AND DOP MODELS

LEVEL DEPENDENT WAVELET SELECTION FOR DENOISING OF PARTIAL DISCHARGE SIGNALS SIMULATED BY DEP AND DOP MODELS International Journal of Industrial Electronics and Electrical Engineering, ISSN: 47-698 Volume-, Issue-9, Sept.-014 LEVEL DEPENDENT WAVELET SELECTION FOR DENOISING OF PARTIAL DISCHARGE SIGNALS SIMULATED

More information

WAVELET DE-NOISING AND ANALYSIS OF UHF PARTIAL DISCHARGES IN HIGH VOLTAGE POWER TRANSFORMER

WAVELET DE-NOISING AND ANALYSIS OF UHF PARTIAL DISCHARGES IN HIGH VOLTAGE POWER TRANSFORMER Volume, Issue 9, PP: - 9, FEB. WAVELET DE-NOISING AND ANALYSIS OF UHF PARTIAL DISCHARGES IN HIGH VOLTAGE POWER TRANSFORMER K V RAMPRASAD *. Professor, Dept of ECE, KALLAM HARANADHA REDDY INSTITUTE OF TECHNOLOGY,

More information

The University of New South Wales. School of Electrical Engineering and Telecommunications. High Voltage Systems ELEC9712. Appendix Partial Discharge

The University of New South Wales. School of Electrical Engineering and Telecommunications. High Voltage Systems ELEC9712. Appendix Partial Discharge The University of New South Wales School of Electrical Engineering and Telecommunications High Voltage Systems ELEC9712 Appendix Partial Discharge Content Introduction Quantities measured Test circuits

More information

Analysis of Partial Discharge Detection in Power Cable by WTST-NST Filter Technology

Analysis of Partial Discharge Detection in Power Cable by WTST-NST Filter Technology Proceedings of the th WSEAS International Conference on Automatic Control, Modelling and Simulation Analysis of Partial Discharge Detection in Power Cable by WTST-NST Filter Technology HUI WANG, CHENGJUN

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Using optical couplers to monitor the condition of electricity infrastructure S.G. Swingler, L. Hao, P.L. Lewin and D.J. Swaffield The Tony Davies High Voltage Laboratory, University of Southampton, Southampton

More information

Partial Discharge Source Classification and De-Noising in Rotating Machines Using Discrete Wavelet Transform and Directional Coupling Capacitor

Partial Discharge Source Classification and De-Noising in Rotating Machines Using Discrete Wavelet Transform and Directional Coupling Capacitor J. Electromagnetic Analysis & Applications, 2009, 2: 92-96 doi:10.4236/jemaa.2009.12014 Published Online June 2009 (www.scirp.org/journal/jemaa) 1 Partial Discharge Source Classification and De-Noising

More information

Detection, localization, and classification of power quality disturbances using discrete wavelet transform technique

Detection, localization, and classification of power quality disturbances using discrete wavelet transform technique From the SelectedWorks of Tarek Ibrahim ElShennawy 2003 Detection, localization, and classification of power quality disturbances using discrete wavelet transform technique Tarek Ibrahim ElShennawy, Dr.

More information

TRANSFORMS / WAVELETS

TRANSFORMS / WAVELETS RANSFORMS / WAVELES ransform Analysis Signal processing using a transform analysis for calculations is a technique used to simplify or accelerate problem solution. For example, instead of dividing two

More information

Removal of ocular artifacts from EEG signals using adaptive threshold PCA and Wavelet transforms

Removal of ocular artifacts from EEG signals using adaptive threshold PCA and Wavelet transforms Available online at www.interscience.in Removal of ocular artifacts from s using adaptive threshold PCA and Wavelet transforms P. Ashok Babu 1, K.V.S.V.R.Prasad 2 1 Narsimha Reddy Engineering College,

More information

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem Introduction to Wavelet Transform Chapter 7 Instructor: Hossein Pourghassem Introduction Most of the signals in practice, are TIME-DOMAIN signals in their raw format. It means that measured signal is a

More information

Suppression of Pulse Interference in Partial Discharge Measurement Based on Phase Correlation and Waveform Characteristics

Suppression of Pulse Interference in Partial Discharge Measurement Based on Phase Correlation and Waveform Characteristics Journal of Energy and Power Engineering 9 (215) 289-295 doi: 1.17265/1934-8975/215.3.8 D DAVID PUBLISHING Suppression of Pulse Interference in Partial Discharge Measurement Based on Phase Correlation and

More information

Introduction to Wavelets. For sensor data processing

Introduction to Wavelets. For sensor data processing Introduction to Wavelets For sensor data processing List of topics Why transform? Why wavelets? Wavelets like basis components. Wavelets examples. Fast wavelet transform. Wavelets like filter. Wavelets

More information

ANALYSIS OF PARTIAL DISCHARGE SIGNALS USING DIGITAL SIGNAL PROCESSING TECHNIQUES

ANALYSIS OF PARTIAL DISCHARGE SIGNALS USING DIGITAL SIGNAL PROCESSING TECHNIQUES ANALYSIS OF PARTIAL DISCHARGE SIGNALS USING DIGITAL SIGNAL PROCESSING TECHNIQUES A Thesis Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Technology in Power

More information

Selection of Mother Wavelet for Processing of Power Quality Disturbance Signals using Energy for Wavelet Packet Decomposition

Selection of Mother Wavelet for Processing of Power Quality Disturbance Signals using Energy for Wavelet Packet Decomposition Volume 114 No. 9 217, 313-323 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Selection of Mother Wavelet for Processing of Power Quality Disturbance

More information

IEEE Transactions on Power Delivery. 15(2) P.467-P

IEEE Transactions on Power Delivery. 15(2) P.467-P Title Author(s) Citation Detection of wide-band E-M signals emitted from partial discharge occurring in GIS using wavelet transform Kawada, Masatake; Tungkanawanich, Ampol; 河崎, 善一郎 ; 松浦, 虔士 IEEE Transactions

More information

ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS

ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS 1 FEDORA LIA DIAS, 2 JAGADANAND G 1,2 Department of Electrical Engineering, National Institute of Technology, Calicut, India

More information

ON-LINE PARTIAL DISCHARGE TESTING OF SOME OF THE WORST PERFORMING CIRCUITS ON A UTILITY DISTRIBUTION SYSTEM

ON-LINE PARTIAL DISCHARGE TESTING OF SOME OF THE WORST PERFORMING CIRCUITS ON A UTILITY DISTRIBUTION SYSTEM ON-LINE PARTIAL DISCHARGE TESTING OF SOME OF THE WORST PERFORMING CIRCUITS ON A UTILITY DISTRIBUTION SYSTEM D. Clark¹ R. Mackinlay² M. Seltzer-Grant² S. Goodfellow² Lee Renforth² Jamie McWilliam³ and Roger

More information

Digital Image Processing

Digital Image Processing In the Name of Allah Digital Image Processing Introduction to Wavelets Hamid R. Rabiee Fall 2015 Outline 2 Why transform? Why wavelets? Wavelets like basis components. Wavelets examples. Fast wavelet transform.

More information

Partial Discharge Patterns in High Voltage Insulation

Partial Discharge Patterns in High Voltage Insulation 22 IEEE International Conference on Power and Energy (PECon), 2-5 December 22, Kota Kinabalu Sabah, Malaysia Partial Discharge Patterns in High Voltage Insulation Hazlee Illias, Teo Soon Yuan, Ab Halim

More information

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999 Wavelet Transform From C. Valens article, A Really Friendly Guide to Wavelets, 1999 Fourier theory: a signal can be expressed as the sum of a series of sines and cosines. The big disadvantage of a Fourier

More information

A COMPARATIVE STUDY: FAULT DETECTION METHOD ON OVERHEAD TRANSMISSION LINE

A COMPARATIVE STUDY: FAULT DETECTION METHOD ON OVERHEAD TRANSMISSION LINE Volume 118 No. 22 2018, 961-967 ISSN: 1314-3395 (on-line version) url: http://acadpubl.eu/hub ijpam.eu A COMPARATIVE STUDY: FAULT DETECTION METHOD ON OVERHEAD TRANSMISSION LINE 1 M.Nandhini, 2 M.Manju,

More information

[Nayak, 3(2): February, 2014] ISSN: Impact Factor: 1.852

[Nayak, 3(2): February, 2014] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Classification of Transmission Line Faults Using Wavelet Transformer B. Lakshmana Nayak M.TECH(APS), AMIE, Associate Professor,

More information

Distribution System Faults Classification And Location Based On Wavelet Transform

Distribution System Faults Classification And Location Based On Wavelet Transform Distribution System Faults Classification And Location Based On Wavelet Transform MukeshThakre, Suresh Kumar Gawre & Mrityunjay Kumar Mishra Electrical Engg.Deptt., MANIT, Bhopal. E-mail : mukeshthakre18@gmail.com,

More information

Chapter 5. Signal Analysis. 5.1 Denoising fiber optic sensor signal

Chapter 5. Signal Analysis. 5.1 Denoising fiber optic sensor signal Chapter 5 Signal Analysis 5.1 Denoising fiber optic sensor signal We first perform wavelet-based denoising on fiber optic sensor signals. Examine the fiber optic signal data (see Appendix B). Across all

More information

NOISE REDUCTION OF PARTIAL DISCHARGE SIGNALS USING LINEAR PREDICTION AND WAVELET TRANSFORM

NOISE REDUCTION OF PARTIAL DISCHARGE SIGNALS USING LINEAR PREDICTION AND WAVELET TRANSFORM NOISE REDUCTION OF PARTIAL DISCHARGE SIGNALS USING LINEAR PREDICTION AND WAVELET TRANSFORM Babak Badrzadeh and S.M.Shahrtash Department of electrical engineering Iran University of Science and Technology

More information

Fault Location Technique for UHV Lines Using Wavelet Transform

Fault Location Technique for UHV Lines Using Wavelet Transform International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 1 (2013), pp. 77-88 International Research Publication House http://www.irphouse.com Fault Location Technique for UHV Lines

More information

Partial Discharge Measurement and Monitoring on High Voltage XLPE Cables

Partial Discharge Measurement and Monitoring on High Voltage XLPE Cables 21, rue d Artois, F-75008 PARIS AUCKLAND 2013 http : //www.cigre.org Partial Discharge Measurement and Monitoring on High Voltage XLPE Cables Michael Krüger, Rene Hummel, Stefan Böhler, OMICRON Austria

More information

Sound pressure level calculation methodology investigation of corona noise in AC substations

Sound pressure level calculation methodology investigation of corona noise in AC substations International Conference on Advanced Electronic Science and Technology (AEST 06) Sound pressure level calculation methodology investigation of corona noise in AC substations,a Xiaowen Wu, Nianguang Zhou,

More information

PARTIAL DISCHARGE MEASUREMENTS ON GENERATORS USING A NOISE GATING SYSTEM

PARTIAL DISCHARGE MEASUREMENTS ON GENERATORS USING A NOISE GATING SYSTEM Abstract PARTIAL DISCHARGE MEASUREMENTS ON GENERATORS USING A NOISE GATING SYSTEM Q. SU Department of Electrical & Computer Systems Engineering Monash University, Clayton VIC 3168 Email: qi.su@eng.monash.edu.au

More information

WAVELET SIGNAL AND IMAGE DENOISING

WAVELET SIGNAL AND IMAGE DENOISING WAVELET SIGNAL AND IMAGE DENOISING E. Hošťálková, A. Procházka Institute of Chemical Technology Department of Computing and Control Engineering Abstract The paper deals with the use of wavelet transform

More information

APPLICATION OF DISCRETE WAVELET TRANSFORM TO FAULT DETECTION

APPLICATION OF DISCRETE WAVELET TRANSFORM TO FAULT DETECTION APPICATION OF DISCRETE WAVEET TRANSFORM TO FAUT DETECTION 1 SEDA POSTACIOĞU KADİR ERKAN 3 EMİNE DOĞRU BOAT 1,,3 Department of Electronics and Computer Education, University of Kocaeli Türkiye Abstract.

More information

PD Solutions. On-Line PD Measurement Devices

PD Solutions. On-Line PD Measurement Devices On-Line PD Measurement Devices 1. Longshot Device (see Figure 1) The measurement system applied is based around the wideband (0-400 MHz) HVPD- Longshot partial discharge test unit which utilizes a high-speed

More information

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999 Wavelet Transform From C. Valens article, A Really Friendly Guide to Wavelets, 1999 Fourier theory: a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is

More information

Coherence and time-frequency analysis of impulse voltage and current measurements

Coherence and time-frequency analysis of impulse voltage and current measurements Coherence and time-frequency analysis of impulse voltage and current measurements Jelena Dikun Electrical Engineering Department, Klaipeda University, Klaipeda, Lithuania Emel Onal Electrical Engineering

More information

SENSITIVITY ASPECTS OF ON-LINE PD DIAGNOSIS OF MV POWER CABLES

SENSITIVITY ASPECTS OF ON-LINE PD DIAGNOSIS OF MV POWER CABLES SENSITIVITY ASPECTS OF ON-LINE PD DIAGNOSIS OF MV POWER CABLES Frank WESTER, Edward GULSKI, Johan SMIT, Edwin GROOT*, Mark VAN VLIET* Delft University of Technology The Netherlands * NUON The Netherlands

More information

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network International Journal of Electrical Engineering. ISSN 974-2158 Volume 4, Number 3 (211), pp. 299-39 International Research Publication House http://www.irphouse.com Wavelet Transform for Classification

More information

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network International Journal of Smart Grid and Clean Energy Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network R P Hasabe *, A P Vaidya Electrical Engineering

More information

Prediction of Transient Transfer Functions at Cable-Transformer Interfaces

Prediction of Transient Transfer Functions at Cable-Transformer Interfaces 1 Prediction of Transient Transfer Functions at Cable-Transformer Interfaces Joe Y. Zhou, Member, IEEE and Steven A. Boggs, Fellow, IEEE Joe Zhou participated in this work while completing his Ph.D. at

More information

Analysis of Propagation Paths of Partial Discharge Acoustic Emission Signals

Analysis of Propagation Paths of Partial Discharge Acoustic Emission Signals Analysis of Propagation Paths of Partial Discharge Acoustic Emission Signals Prathamesh Dhole, Tanmoy Sinha, Sumeet Nayak, Prasanta Kundu, N.K.Kishore Abstract Transformers are one of the most important

More information

ADDITIVE SYNTHESIS BASED ON THE CONTINUOUS WAVELET TRANSFORM: A SINUSOIDAL PLUS TRANSIENT MODEL

ADDITIVE SYNTHESIS BASED ON THE CONTINUOUS WAVELET TRANSFORM: A SINUSOIDAL PLUS TRANSIENT MODEL ADDITIVE SYNTHESIS BASED ON THE CONTINUOUS WAVELET TRANSFORM: A SINUSOIDAL PLUS TRANSIENT MODEL José R. Beltrán and Fernando Beltrán Department of Electronic Engineering and Communications University of

More information

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/17s/

More information

Power System Failure Analysis by Using The Discrete Wavelet Transform

Power System Failure Analysis by Using The Discrete Wavelet Transform Power System Failure Analysis by Using The Discrete Wavelet Transform ISMAIL YILMAZLAR, GULDEN KOKTURK Dept. Electrical and Electronic Engineering Dokuz Eylul University Campus Kaynaklar, Buca 35160 Izmir

More information

EXPERIMENTAL INVESTIGATION OF A TRANSIENT INDUCED VOLTAGE TO AN OVERHEAD CONTROL CABLE FROM A GROUNDING CIRCUIT

EXPERIMENTAL INVESTIGATION OF A TRANSIENT INDUCED VOLTAGE TO AN OVERHEAD CONTROL CABLE FROM A GROUNDING CIRCUIT EXPERIMENTAL INVESTIGATION OF A TRANSIENT INDUCED VOLTAGE TO AN OVERHEAD CONTROL CABLE FROM A GROUNDING CIRCUIT Akihiro AMETANI, Tomomi OKUMURA, Naoto NAGAOKA, Nobutaka, MORI Doshisha University - Japan

More information

Application of The Wavelet Transform In The Processing of Musical Signals

Application of The Wavelet Transform In The Processing of Musical Signals EE678 WAVELETS APPLICATION ASSIGNMENT 1 Application of The Wavelet Transform In The Processing of Musical Signals Group Members: Anshul Saxena anshuls@ee.iitb.ac.in 01d07027 Sanjay Kumar skumar@ee.iitb.ac.in

More information

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES 49 CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES 3.1 INTRODUCTION The wavelet transform is a very popular tool for signal processing and analysis. It is widely used for the analysis

More information

Application of Wavelet Transform to Process Electromagnetic Pulses from Explosion of Flexible Linear Shaped Charge

Application of Wavelet Transform to Process Electromagnetic Pulses from Explosion of Flexible Linear Shaped Charge 21 3rd International Conference on Computer and Electrical Engineering (ICCEE 21) IPCSIT vol. 53 (212) (212) IACSIT Press, Singapore DOI: 1.7763/IPCSIT.212.V53.No.1.56 Application of Wavelet Transform

More information

Practical aspects of PD localization for long length Power Cables

Practical aspects of PD localization for long length Power Cables Practical aspects of PD localization for long length Power Cables M. Wild, S. Tenbohlen University of Stuttgart Stuttgart, Germany manuel.wild@ieh.uni-stuttgart.de E. Gulski, R. Jongen onsite hv technology

More information

Eddy-Current Signal Interpretation Using Fuzzy Logic Artificial Intelligence Technique

Eddy-Current Signal Interpretation Using Fuzzy Logic Artificial Intelligence Technique IV Conferencia Panamericana de END Buenos Aires Octubre 2007 Eddy-Current Signal Interpretation Using Fuzzy Logic Artificial Intelligence Technique Luiz Antonio Negro Martin Lopez The University Center

More information

Basics of Partial Discharge. Prepared for 2015 Phenix RSM Meeting January 2015

Basics of Partial Discharge. Prepared for 2015 Phenix RSM Meeting January 2015 Basics of Partial Discharge Prepared for 2015 Phenix RSM Meeting January 2015 Definitions and History Standard Definitions Fundamentally, what is a Partial Discharge An electric discharge which only partially

More information

Ferroresonance Signal Analysis with Wavelet Transform on 500 kv Transmission Lines Capacitive Voltage Transformers

Ferroresonance Signal Analysis with Wavelet Transform on 500 kv Transmission Lines Capacitive Voltage Transformers Signal Analysis with Wavelet Transform on 500 kv Transmission Lines Capacitive Voltage Transformers I Gusti Ngurah Satriyadi Hernanda, I Made Yulistya Negara, Adi Soeprijanto, Dimas Anton Asfani, Mochammad

More information

World Journal of Engineering Research and Technology WJERT

World Journal of Engineering Research and Technology WJERT wjert, 017, Vol. 3, Issue 4, 406-413 Original Article ISSN 454-695X WJERT www.wjert.org SJIF Impact Factor: 4.36 DENOISING OF 1-D SIGNAL USING DISCRETE WAVELET TRANSFORMS Dr. Anil Kumar* Associate Professor,

More information

Partial Discharge Monitoring and Diagnosis of Power Generator

Partial Discharge Monitoring and Diagnosis of Power Generator Partial Discharge Monitoring and Diagnosis of Power Generator Gao Wensheng Institute of High Voltage & insulation tech. Electrical Eng. Dept., Tsinghua University Wsgao@tsinghua.edu.cn Currently preventive

More information

Transmitter Identification Experimental Techniques and Results

Transmitter Identification Experimental Techniques and Results Transmitter Identification Experimental Techniques and Results Tsutomu SUGIYAMA, Masaaki SHIBUKI, Ken IWASAKI, and Takayuki HIRANO We delineated the transient response patterns of several different radio

More information

Nonlinear Filtering in ECG Signal Denoising

Nonlinear Filtering in ECG Signal Denoising Acta Universitatis Sapientiae Electrical and Mechanical Engineering, 2 (2) 36-45 Nonlinear Filtering in ECG Signal Denoising Zoltán GERMÁN-SALLÓ Department of Electrical Engineering, Faculty of Engineering,

More information

LabVIEW Based Condition Monitoring Of Induction Motor

LabVIEW Based Condition Monitoring Of Induction Motor RESEARCH ARTICLE OPEN ACCESS LabVIEW Based Condition Monitoring Of Induction Motor 1PG student Rushikesh V. Deshmukh Prof. 2Asst. professor Anjali U. Jawadekar Department of Electrical Engineering SSGMCE,

More information

INVESTIGATION ON THE TECHNOLOGIES FOR DEFECT LOCALIZATION AND CHARACTERIZATION ON MEDIUM VOLTAGE UNDERGROUND LINES

INVESTIGATION ON THE TECHNOLOGIES FOR DEFECT LOCALIZATION AND CHARACTERIZATION ON MEDIUM VOLTAGE UNDERGROUND LINES INVESTIGATION ON THE TECHNOLOGIES FOR DEFECT LOCALIZATION AND CHARACTERIZATION ON MEDIUM VOLTAGE UNDERGROUND LINES Gonzalo MAIZ, Iberdrola Distribución, (Spain), gmaiz@iberdrola.es Armando RODRIGO, Instituto

More information

CONDITION MONITORING OF MEDIUM VOLTAGE ELECTRICAL CABLES BY MEANS OF PARTIAL DISCHARGE MEASUREMENTS

CONDITION MONITORING OF MEDIUM VOLTAGE ELECTRICAL CABLES BY MEANS OF PARTIAL DISCHARGE MEASUREMENTS 136 CONDITION MONITORING OF MEDIUM VOLTAGE ELECTRICAL CABLES BY MEANS OF PARTIAL DISCHARGE MEASUREMENTS H. van Jaarsveldt* and R. Gouws** School of Electrical, Electronic and Computer Engineering, North-West

More information

Partial Discharge Signal Denoising by Discrete Wavelet Transformation

Partial Discharge Signal Denoising by Discrete Wavelet Transformation EPI International Journal of Engineering Vol. 1, No. 1, February 2018, pp. 76-82 DOI: 10.25042/epi-ije.022018.12 ISSN:2615-5109 Partial Discharge Signal Denoising by Discrete Wavelet Transformation Trinurkalid

More information

Wavelet analysis to detect fault in Clutch release bearing

Wavelet analysis to detect fault in Clutch release bearing Wavelet analysis to detect fault in Clutch release bearing Gaurav Joshi 1, Akhilesh Lodwal 2 1 ME Scholar, Institute of Engineering & Technology, DAVV, Indore, M. P., India 2 Assistant Professor, Dept.

More information

KEYWORDS On-line diagnostics, cable termination, partial discharge (PD), ultra-high frequency (UHF), sensitivity check.

KEYWORDS On-line diagnostics, cable termination, partial discharge (PD), ultra-high frequency (UHF), sensitivity check. 2, rue d Artois, F-758 PARIS B-2 CIGRE 28 http : //www.cigre.org Application of UHF method for on-line PD diagnostics of cable terminations T. KLEIN Pfisterer Kontaktsysteme GmbH Germany D. DENISSOV, W.

More information

Corona noise on the 400 kv overhead power line - measurements and computer modeling

Corona noise on the 400 kv overhead power line - measurements and computer modeling Corona noise on the 400 kv overhead power line - measurements and computer modeling A. MUJČIĆ, N.SULJANOVIĆ, M. ZAJC, J.F. TASIČ University of Ljubljana, Faculty of Electrical Engineering, Digital Signal

More information

Introduction to Wavelets Michael Phipps Vallary Bhopatkar

Introduction to Wavelets Michael Phipps Vallary Bhopatkar Introduction to Wavelets Michael Phipps Vallary Bhopatkar *Amended from The Wavelet Tutorial by Robi Polikar, http://users.rowan.edu/~polikar/wavelets/wttutoria Who can tell me what this means? NR3, pg

More information

New Features of IEEE Std Digitizing Waveform Recorders

New Features of IEEE Std Digitizing Waveform Recorders New Features of IEEE Std 1057-2007 Digitizing Waveform Recorders William B. Boyer 1, Thomas E. Linnenbrink 2, Jerome Blair 3, 1 Chair, Subcommittee on Digital Waveform Recorders Sandia National Laboratories

More information

EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS. C. Ceretta, R. Gobbo, G. Pesavento

EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS. C. Ceretta, R. Gobbo, G. Pesavento Sept. 22-24, 28, Florence, Italy EFFECT OF INTEGRATION ERROR ON PARTIAL DISCHARGE MEASUREMENTS ON CAST RESIN TRANSFORMERS C. Ceretta, R. Gobbo, G. Pesavento Dept. of Electrical Engineering University of

More information

TIME FREQUENCY ANALYSIS OF TRANSIENT NVH PHENOMENA IN VEHICLES

TIME FREQUENCY ANALYSIS OF TRANSIENT NVH PHENOMENA IN VEHICLES TIME FREQUENCY ANALYSIS OF TRANSIENT NVH PHENOMENA IN VEHICLES K Becker 1, S J Walsh 2, J Niermann 3 1 Institute of Automotive Engineering, University of Applied Sciences Cologne, Germany 2 Dept. of Aeronautical

More information

Enhancement of Speech Signal by Adaptation of Scales and Thresholds of Bionic Wavelet Transform Coefficients

Enhancement of Speech Signal by Adaptation of Scales and Thresholds of Bionic Wavelet Transform Coefficients ISSN (Print) : 232 3765 An ISO 3297: 27 Certified Organization Vol. 3, Special Issue 3, April 214 Paiyanoor-63 14, Tamil Nadu, India Enhancement of Speech Signal by Adaptation of Scales and Thresholds

More information

Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction

Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735. Volume 5, Issue 5 (Mar. - Apr. 213), PP 6-65 Ensemble Empirical Mode Decomposition: An adaptive

More information

Characterization of Voltage Sag due to Faults and Induction Motor Starting

Characterization of Voltage Sag due to Faults and Induction Motor Starting Characterization of Voltage Sag due to Faults and Induction Motor Starting Dépt. of Electrical Engineering, SSGMCE, Shegaon, India, Dépt. of Electronics & Telecommunication Engineering, SITS, Pune, India

More information

Wavelet Transform Based Islanding Characterization Method for Distributed Generation

Wavelet Transform Based Islanding Characterization Method for Distributed Generation Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET 6) Wavelet Transform Based Islanding Characterization Method for Distributed Generation O. A.

More information

Detection and Localization of Power Quality Disturbances Using Space Vector Wavelet Transform: A New Three Phase Approach

Detection and Localization of Power Quality Disturbances Using Space Vector Wavelet Transform: A New Three Phase Approach Detection and Localization of Power Quality Disturbances Using Space Vector Wavelet Transform: A New Three Phase Approach Subhash V. Murkute Dept. of Electrical Engineering, P.E.S.C.O.E., Aurangabad, INDIA

More information

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) International Conference on Information Sciences Machinery Materials and Energy (ICISMME 2015) Research on the visual detection device of partial discharge visual imaging precision positioning WANG Tian-zheng

More information

Partial Discharge Classification Using Acoustic Signals and Artificial Neural Networks

Partial Discharge Classification Using Acoustic Signals and Artificial Neural Networks Proc. 2018 Electrostatics Joint Conference 1 Partial Discharge Classification Using Acoustic Signals and Artificial Neural Networks Satish Kumar Polisetty, Shesha Jayaram and Ayman El-Hag Department of

More information

ANALYSIS OF PARTIAL DISCHARGE SIGNALS USING STOCKWELL TRANSFORM

ANALYSIS OF PARTIAL DISCHARGE SIGNALS USING STOCKWELL TRANSFORM ANALYSIS OF PARTIAL DISCHARGE SIGNALS USING STOCKWELL TRANSFORM A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology in Industrial Electronics Submitted by

More information

IMPROVING THE MATERIAL ULTRASONIC CHARACTERIZATION AND THE SIGNAL NOISE RATIO BY THE WAVELET PACKET

IMPROVING THE MATERIAL ULTRASONIC CHARACTERIZATION AND THE SIGNAL NOISE RATIO BY THE WAVELET PACKET 17th World Conference on Nondestructive Testing, 25-28 Oct 28, Shanghai, China IMPROVING THE MATERIAL ULTRASONIC CHARACTERIZATION AND THE SIGNAL NOISE RATIO BY THE WAVELET PACKET Fairouz BETTAYEB 1, Salim

More information

A DUAL TREE COMPLEX WAVELET TRANSFORM CONSTRUCTION AND ITS APPLICATION TO IMAGE DENOISING

A DUAL TREE COMPLEX WAVELET TRANSFORM CONSTRUCTION AND ITS APPLICATION TO IMAGE DENOISING A DUAL TREE COMPLEX WAVELET TRANSFORM CONSTRUCTION AND ITS APPLICATION TO IMAGE DENOISING Sathesh Assistant professor / ECE / School of Electrical Science Karunya University, Coimbatore, 641114, India

More information

1. INTRODUCTION. (1.b) 2. DISCRETE WAVELET TRANSFORM

1. INTRODUCTION. (1.b) 2. DISCRETE WAVELET TRANSFORM Identification of power quality disturbances using the MATLAB wavelet transform toolbox Resende,.W., Chaves, M.L.R., Penna, C. Universidade Federal de Uberlandia (MG)-Brazil e-mail: jwresende@ufu.br Abstract:

More information

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications Carlos Macià-Sanahuja and Horacio Lamela-Rivera Optoelectronics and Laser Technology group, Universidad

More information

Online Localisation of Partial Discharge Using Pulse Propagation Parameters in Medium Voltage Cable Network

Online Localisation of Partial Discharge Using Pulse Propagation Parameters in Medium Voltage Cable Network 2015 17th UKSIM-AMSS International Conference on Modelling and Simulation Online Localisation of Partial Discharge Using n Parameters in Medium Voltage Cable Network Tauqeer Ahmed Shaikh, Abdulrehman Al-Arainy,

More information

Digital Signal Processing for the Detection and Location of Acoustic and Electric Signals from Partial Discharges

Digital Signal Processing for the Detection and Location of Acoustic and Electric Signals from Partial Discharges , June 30 - July 2, 2010, London, U.K. Digital Signal Processing for the Detection and Location of Acoustic and Electric Signals from Partial Discharges Jesus Rubio-Serrano, Member, IAENG, Julio E. Posada

More information

The Application of Partial Discharge Measurement and Location on CGIS

The Application of Partial Discharge Measurement and Location on CGIS International Journal on Electrical Engineering and Informatics Volume 4, Number 3, October 2012 The Application of Partial Discharge Measurement and Location on CGIS Min-Yen Chiu¹, Keng-Wei Liang¹, Chang-Hsing

More information

Wavelet Transform for Bearing Faults Diagnosis

Wavelet Transform for Bearing Faults Diagnosis Wavelet Transform for Bearing Faults Diagnosis H. Bendjama and S. Bouhouche Welding and NDT research centre (CSC) Cheraga, Algeria hocine_bendjama@yahoo.fr A.k. Moussaoui Laboratory of electrical engineering

More information

Advancements in online partial discharge monitoring and assessment of MV through EHV Substation assets

Advancements in online partial discharge monitoring and assessment of MV through EHV Substation assets Advancements in online partial discharge monitoring and assessment of MV through EHV Substation assets Abstract: For decades it has been recognized that partial discharge assessment is an excellent method

More information

Instantaneous Baseline Damage Detection using a Low Power Guided Waves System

Instantaneous Baseline Damage Detection using a Low Power Guided Waves System Instantaneous Baseline Damage Detection using a Low Power Guided Waves System can produce significant changes in the measured responses, masking potential signal changes due to structure defects [2]. To

More information

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME Signal Processing for Power System Applications Triggering, Segmentation and Characterization of the Events (Week-12) Gazi Üniversitesi, Elektrik ve Elektronik Müh.

More information

technology, Algiers, Algeria.

technology, Algiers, Algeria. NON LINEAR FILTERING OF ULTRASONIC SIGNAL USING TIME SCALE DEBAUCHEE DECOMPOSITION F. Bettayeb 1, S. Haciane 2, S. Aoudia 2. 1 Scientific research center on welding and control, Algiers, Algeria, 2 University

More information

POWER QUALITY MONITORING - PLANT INVESTIGATIONS

POWER QUALITY MONITORING - PLANT INVESTIGATIONS Technical Note No. 5 January 2002 POWER QUALITY MONITORING - PLANT INVESTIGATIONS This Technical Note discusses power quality monitoring, what features are required in a power quality monitor and how it

More information

International Journal of Digital Application & Contemporary research Website: (Volume 1, Issue 7, February 2013)

International Journal of Digital Application & Contemporary research Website:   (Volume 1, Issue 7, February 2013) Performance Analysis of OFDM under DWT, DCT based Image Processing Anshul Soni soni.anshulec14@gmail.com Ashok Chandra Tiwari Abstract In this paper, the performance of conventional discrete cosine transform

More information

HIGH IMPEDANCE FAULT DETECTION AND CLASSIFICATION OF A DISTRIBUTION SYSTEM G.Narasimharao

HIGH IMPEDANCE FAULT DETECTION AND CLASSIFICATION OF A DISTRIBUTION SYSTEM G.Narasimharao Vol. 1 Issue 5, July - 2012 HIGH IMPEDANCE FAULT DETECTION AND CLASSIFICATION OF A DISTRIBUTION SYSTEM G.Narasimharao Assistant professor, LITAM, Dhulipalla. ABSTRACT: High impedance faults (HIFs) are,

More information

DWT ANALYSIS OF SELECTED TRANSIENT AND NOTCHING DISTURBANCES

DWT ANALYSIS OF SELECTED TRANSIENT AND NOTCHING DISTURBANCES XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 29, Lisbon, Portugal DWT ANALYSIS OF SELECTED TRANSIENT AND NOTCHING DISTURBANCES Mariusz Szweda Gdynia Mari University, Department

More information

Detection of Fault in Fixed Series Compensated Transmission Line during Power Swing Using Wavelet Transform

Detection of Fault in Fixed Series Compensated Transmission Line during Power Swing Using Wavelet Transform International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 24 Detection of Fault in Fixed Series Compensated Transmission Line during Power Swing Using Wavelet Transform Rohan

More information

Lecture Fundamentals of Data and signals

Lecture Fundamentals of Data and signals IT-5301-3 Data Communications and Computer Networks Lecture 05-07 Fundamentals of Data and signals Lecture 05 - Roadmap Analog and Digital Data Analog Signals, Digital Signals Periodic and Aperiodic Signals

More information

FAULT DETECTION AND DIAGNOSIS OF HIGH SPEED SWITCHING DEVICES IN POWER INVERTER

FAULT DETECTION AND DIAGNOSIS OF HIGH SPEED SWITCHING DEVICES IN POWER INVERTER FAULT DETECTION AND DIAGNOSIS OF HIGH SPEED SWITCHING DEVICES IN POWER INVERTER R. B. Dhumale 1, S. D. Lokhande 2, N. D. Thombare 3, M. P. Ghatule 4 1 Department of Electronics and Telecommunication Engineering,

More information

EE216B: VLSI Signal Processing. Wavelets. Prof. Dejan Marković Shortcomings of the Fourier Transform (FT)

EE216B: VLSI Signal Processing. Wavelets. Prof. Dejan Marković Shortcomings of the Fourier Transform (FT) 5//0 EE6B: VLSI Signal Processing Wavelets Prof. Dejan Marković ee6b@gmail.com Shortcomings of the Fourier Transform (FT) FT gives information about the spectral content of the signal but loses all time

More information

EVALUATION AND COMPARISON OF ON-LINE PD DETECTION METHODS FOR HIGH-VOLTAGE POWER CABLE

EVALUATION AND COMPARISON OF ON-LINE PD DETECTION METHODS FOR HIGH-VOLTAGE POWER CABLE EVALUATION AND COMPARISON OF ON-LINE PD DETECTION METHODS FOR HIGH-VOLTAGE POWER CABLE Ju-Chu Hsieh 1, Cheng-Chi Tai 1, Ching-Chau Su 1, Chien-Yi Chen 1, Ting-Cheng Huang 1, Yu-Hsun Lin 2 1 Department

More information