Time- frequency Masking

Size: px
Start display at page:

Download "Time- frequency Masking"

Transcription

1 Time- Masking EECS 352: Machine Percep=on of Music & Audio Zafar Rafii, Winter 214 1

2 STFT The Short- Time Fourier Transform (STFT) is a succession of local Fourier Transforms (FT) Time signal Real spectrogram Imaginary spectrogram STFT j* window i Zafar Rafii, Winter 214 2

3 STFT If we used a window of N samples, the FT has N values, from to N- 1; e.g., if N = 8 Time signal Real spectrum Imaginary spectrum FT j* window i N values N values j* Zafar Rafii, Winter 214 3

4 STFT Frequency index is the DC component; it is always real (it is the sum of the =me values!) Time signal Real spectrum Imaginary spectrum FT j* window i j* Zafar Rafii, Winter 214 4

5 STFT Frequency indices from 1 to floor(n/2) are the unique complex values (a j*b) Time signal Real spectrum Imaginary spectrum FT j* window i j* Zafar Rafii, Winter 214 5

6 STFT Frequency indices from floor(n/2) to N- 1 are the mirrored complex conjugates (a - j*b) Time signal Real spectrum Imaginary spectrum FT j* window i j* Zafar Rafii, Winter 214 6

7 STFT If N is even, there is a pivot component at index N/2; it is always real! Time signal Real spectrum Imaginary spectrum FT j* window i j* Zafar Rafii, Winter 214 7

8 STFT Summary of the indices and values in the STFT (in colors!) N values = to N- 1 Frequency = DC component (always real) Real spectrogram j* Imaginary spectrogram Frequency 1 to floor(n/2) = unique complex values Frequency N/2 = pivot component (always real) Frequency floor(n/2) to N- 1 = mirrored complex conjugates Zafar Rafii, Winter 214 8

9 Spectrogram The (magnitude) spectrogram is the magnitude (absolute value) of the STFT Real spectrogram Imaginary spectrogram Magnitude spectrogram j* abs Zafar Rafii, Winter 214 9

10 Spectrogram For a complex number aj b, the absolute value is aj b = a 2 b 2 Real spectrum Imaginary spectrum Magnitude spectrum j* abs j* = Zafar Rafii, Winter 214 1

11 Spectrogram All the N values ( indices from to N- 1) are real and posihve (abs!) Real spectrum Imaginary spectrum Magnitude spectrum j* abs N values j* = Zafar Rafii, Winter

12 Spectrogram Frequency indices from to floor(n/2) are the unique values (with DC and pivot) Real spectrum Imaginary spectrum Magnitude spectrum j* abs j* = Zafar Rafii, Winter

13 Spectrogram Frequency indices from floor(n/2)1 to N- 1 are the mirrored values Real spectrum Imaginary spectrum Magnitude spectrum j* abs j* = Zafar Rafii, Winter

14 Spectrogram Since they are redundant, we can discard the values from floor(n/2)1 to N- 1 Real spectrum Imaginary spectrum Magnitude spectrum j* abs floor(n/2)1 unique values j* = Zafar Rafii, Winter

15 Spectrogram The spectrogram has therefore floor(n/2)1 unique values (with DC and pivot) Real spectrogram Imaginary spectrogram Magnitude spectrogram j* abs Zafar Rafii, Winter

16 Spectrogram Why the magnitude spectrogram? Easy to visualize (compare with the STFT) Magnitude informa=on more important Human ear less sensi=ve to phase Magnitude spectrogram Time signal Zafar Rafii, Winter

17 Spectrogram When you display a spectrogram in Matlab imagesc: data is scaled to use the full colormap 1*log1(V): magnitude spectrogram in db set(gca, YDir, normal ): y- axis from boiom to top Magnitude spectrogram Time signal Zafar Rafii, Winter

18 Spectrogram The signal cannot be reconstructed from the spectrogram (phase informa=on is missing!) Magnitude spectrogram??? Imaginary spectrogram Real spectrogram??? istft Time signal Zafar Rafii, Winter

19 Time- Masking Suppose we have a mixture of two sources: a music signal and a voice signal Music signal Voice signal Mixture signal Music spectrogram Voice spectrogram Mixture spectrogram Zafar Rafii, Winter

20 Time- Masking We assume that the sources are sparse = most of the =me- bins have null Music signal Voice signal energy Mixture signal Music spectrogram Voice spectrogram Mixture spectrogram Zafar Rafii, Winter 214 2

21 Time- Masking We assume that the sources are sparse = most of the =me- bins have null Music signal Voice signal energy Mixture signal Mostly low energy bins Music spectrogram Mostly low energy bins Voice spectrogram Mixture spectrogram Zafar Rafii, Winter

22 Time- Masking We assume that the sources are disjoint = their =me- bins do not overlap Music signal Voice signal Mixture signal Music spectrogram Voice spectrogram Mixture spectrogram Zafar Rafii, Winter

23 Time- Masking We assume that the sources are disjoint = their =me- bins do not overlap Music signal Voice signal Mixture signal Music spectrogram Voice spectrogram Not a lot of overlapping Mixture spectrogram Zafar Rafii, Winter

24 Time- Masking Assuming sparseness and disjointness, we can discriminate the bins between mixed sources Music signal Voice signal Mixture signal Music spectrogram Voice spectrogram Mixture spectrogram Zafar Rafii, Winter

25 Time- Masking Assuming sparseness and disjointness, we can discriminate the bins between mixed sources Music signal Voice signal Mixture signal Music spectrogram Voice spectrogram Source 1 = bright Source 2 = dark Mixture spectrogram Zafar Rafii, Winter

26 Time- Masking Bins that are likely to belong to one source are assigned to 1, the rest to = binary masking! Music signal Voice signal Binary mask 1 Source of interest Music spectrogram Interfering source Voice spectrogram Mixture spectrogram Zafar Rafii, Winter

27 Time- Masking By mul=plying the binary mask to the mixture spectrogram, we can preview the es=mate Binary mask Mixture spectrogram Masked spectrogram 1.x Zafar Rafii, Winter

28 Time- Masking However, we cannot derive the es=mate itself because we cannot invert a spectrogram! Binary mask Mixture spectrogram Masked spectrogram 1.x Music estimate Zafar Rafii, Winter

29 Time- Masking We mirror the redundant frequencies from the unique frequencies (without DC and pivot) Binary mask 1 Binary Binary mask mask 1 Zafar Rafii, Winter

30 Time- Masking We then apply this full binary mask to the STFT using a element- wise mul=plica=on Binary mask Imaginary spectrogram 1.x Real spectrogram Binary Binary mask mask 1 Zafar Rafii, Winter 214 3

31 Time- Masking The es=mate signal can now be reconstructed via inverse STFT Binary mask Masked imaginary Masked real 1 istft Music estimate Zafar Rafii, Winter

32 Time- Masking Sources are not really sparse or disjoint in =me- in the mixture Music signal Voice signal Mixture signal Music spectrogram Voice spectrogram Mixture spectrogram Zafar Rafii, Winter

33 Time- Masking Bins that are likely to belong to one source are close to 1, the rest close to = sop masking! Music signal Voice signal Soft mask 1 Source of interest Music spectrogram Interfering source Voice spectrogram Mixture spectrogram Zafar Rafii, Winter

34 Time- Masking Let s listen to the results! Music signal Mixture signal Music estimate mix demix Zafar Rafii, Winter

35 Ques=on How can we efficiently model a binary/som =me- mask for source separa=on?... To be con=nued Mixture spectrogram Soft mask 1??? Zafar Rafii, Winter

Rhythm Analysis in Music

Rhythm Analysis in Music Rhythm Analysis in Music EECS 352: Machine Percep;on of Music & Audio Zafar Rafii, Winter 24 Some Defini;ons Rhythm movement marked by the regulated succession of strong and weak elements, or of opposite

More information

REpeating Pattern Extraction Technique (REPET)

REpeating Pattern Extraction Technique (REPET) REpeating Pattern Extraction Technique (REPET) EECS 32: Machine Perception of Music & Audio Zafar RAFII, Spring 22 Repetition Repetition is a fundamental element in generating and perceiving structure

More information

Rhythm Analysis in Music

Rhythm Analysis in Music Rhythm Analysis in Music EECS 352: Machine Perception of Music & Audio Zafar Rafii, Winter 24 Some Definitions Rhythm movement marked by the regulated succession of strong and weak elements, or of opposite

More information

Multiple Sound Sources Localization Using Energetic Analysis Method

Multiple Sound Sources Localization Using Energetic Analysis Method VOL.3, NO.4, DECEMBER 1 Multiple Sound Sources Localization Using Energetic Analysis Method Hasan Khaddour, Jiří Schimmel Department of Telecommunications FEEC, Brno University of Technology Purkyňova

More information

ONLINE REPET-SIM FOR REAL-TIME SPEECH ENHANCEMENT

ONLINE REPET-SIM FOR REAL-TIME SPEECH ENHANCEMENT ONLINE REPET-SIM FOR REAL-TIME SPEECH ENHANCEMENT Zafar Rafii Northwestern University EECS Department Evanston, IL, USA Bryan Pardo Northwestern University EECS Department Evanston, IL, USA ABSTRACT REPET-SIM

More information

Signal Analysis. Young Won Lim 2/10/18

Signal Analysis. Young Won Lim 2/10/18 Signal Analysis Copyright (c) 2016 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Rhythm Analysis in Music

Rhythm Analysis in Music Rhythm Analysis in Music EECS 352: Machine Perception of Music & Audio Zafar RAFII, Spring 22 Some Definitions Rhythm movement marked by the regulated succession of strong and weak elements, or of opposite

More information

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT-based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed by Friday, March 14, at 3 PM or the lab will be marked

More information

Lab 3 FFT based Spectrum Analyzer

Lab 3 FFT based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed prior to the beginning of class on the lab book submission

More information

Signal Analysis. Young Won Lim 2/9/18

Signal Analysis. Young Won Lim 2/9/18 Signal Analysis Copyright (c) 2016 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

FFT analysis in practice

FFT analysis in practice FFT analysis in practice Perception & Multimedia Computing Lecture 13 Rebecca Fiebrink Lecturer, Department of Computing Goldsmiths, University of London 1 Last Week Review of complex numbers: rectangular

More information

Short Time Fourier Transform *

Short Time Fourier Transform * OpenStax-CNX module: m10570 1 Short Time Fourier Transform * Ivan Selesnick This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0 1 Short Time Fourier Transform

More information

Short-Time Fourier Transform and Its Inverse

Short-Time Fourier Transform and Its Inverse Short-Time Fourier Transform and Its Inverse Ivan W. Selesnick April 4, 9 Introduction The short-time Fourier transform (STFT) of a signal consists of the Fourier transform of overlapping windowed blocks

More information

Filter Banks I. Prof. Dr. Gerald Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany. Fraunhofer IDMT

Filter Banks I. Prof. Dr. Gerald Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany. Fraunhofer IDMT Filter Banks I Prof. Dr. Gerald Schuller Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany 1 Structure of perceptual Audio Coders Encoder Decoder 2 Filter Banks essential element of most

More information

Audio Imputation Using the Non-negative Hidden Markov Model

Audio Imputation Using the Non-negative Hidden Markov Model Audio Imputation Using the Non-negative Hidden Markov Model Jinyu Han 1,, Gautham J. Mysore 2, and Bryan Pardo 1 1 EECS Department, Northwestern University 2 Advanced Technology Labs, Adobe Systems Inc.

More information

EE 464 Short-Time Fourier Transform Fall and Spectrogram. Many signals of importance have spectral content that

EE 464 Short-Time Fourier Transform Fall and Spectrogram. Many signals of importance have spectral content that EE 464 Short-Time Fourier Transform Fall 2018 Read Text, Chapter 4.9. and Spectrogram Many signals of importance have spectral content that changes with time. Let xx(nn), nn = 0, 1,, NN 1 1 be a discrete-time

More information

Topic. Spectrogram Chromagram Cesptrogram. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

Topic. Spectrogram Chromagram Cesptrogram. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio Topic Spectrogram Chromagram Cesptrogram Short time Fourier Transform Break signal into windows Calculate DFT of each window The Spectrogram spectrogram(y,1024,512,1024,fs,'yaxis'); A series of short term

More information

Lecture 6. Rhythm Analysis. (some slides are adapted from Zafar Rafii and some figures are from Meinard Mueller)

Lecture 6. Rhythm Analysis. (some slides are adapted from Zafar Rafii and some figures are from Meinard Mueller) Lecture 6 Rhythm Analysis (some slides are adapted from Zafar Rafii and some figures are from Meinard Mueller) Definitions for Rhythm Analysis Rhythm: movement marked by the regulated succession of strong

More information

A MULTI-RESOLUTION APPROACH TO COMMON FATE-BASED AUDIO SEPARATION

A MULTI-RESOLUTION APPROACH TO COMMON FATE-BASED AUDIO SEPARATION A MULTI-RESOLUTION APPROACH TO COMMON FATE-BASED AUDIO SEPARATION Fatemeh Pishdadian, Bryan Pardo Northwestern University, USA {fpishdadian@u., pardo@}northwestern.edu Antoine Liutkus Inria, speech processing

More information

Applications of Music Processing

Applications of Music Processing Lecture Music Processing Applications of Music Processing Christian Dittmar International Audio Laboratories Erlangen christian.dittmar@audiolabs-erlangen.de Singing Voice Detection Important pre-requisite

More information

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012 Signal segmentation and waveform characterization Biosignal processing, 5173S Autumn 01 Short-time analysis of signals Signal statistics may vary in time: nonstationary how to compute signal characterizations?

More information

Transforms and Frequency Filtering

Transforms and Frequency Filtering Transforms and Frequency Filtering Khalid Niazi Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading Instructions Chapter 4: Image Enhancement in the Frequency

More information

Convention Paper Presented at the 120th Convention 2006 May Paris, France

Convention Paper Presented at the 120th Convention 2006 May Paris, France Audio Engineering Society Convention Paper Presented at the 12th Convention 26 May 2 23 Paris, France This convention paper has been reproduced from the author s advance manuscript, without editing, corrections,

More information

Single Channel Speaker Segregation using Sinusoidal Residual Modeling

Single Channel Speaker Segregation using Sinusoidal Residual Modeling NCC 2009, January 16-18, IIT Guwahati 294 Single Channel Speaker Segregation using Sinusoidal Residual Modeling Rajesh M Hegde and A. Srinivas Dept. of Electrical Engineering Indian Institute of Technology

More information

SOPA version 2. Revised July SOPA project. September 21, Introduction 2. 2 Basic concept 3. 3 Capturing spatial audio 4

SOPA version 2. Revised July SOPA project. September 21, Introduction 2. 2 Basic concept 3. 3 Capturing spatial audio 4 SOPA version 2 Revised July 7 2014 SOPA project September 21, 2014 Contents 1 Introduction 2 2 Basic concept 3 3 Capturing spatial audio 4 4 Sphere around your head 5 5 Reproduction 7 5.1 Binaural reproduction......................

More information

Encoding a Hidden Digital Signature onto an Audio Signal Using Psychoacoustic Masking

Encoding a Hidden Digital Signature onto an Audio Signal Using Psychoacoustic Masking The 7th International Conference on Signal Processing Applications & Technology, Boston MA, pp. 476-480, 7-10 October 1996. Encoding a Hidden Digital Signature onto an Audio Signal Using Psychoacoustic

More information

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. Audio DSP basics. Paris Smaragdis. paris.cs.illinois.

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. Audio DSP basics. Paris Smaragdis. paris.cs.illinois. UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Audio DSP basics Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Overview Basics of digital audio Signal representations

More information

Phase Vocoder Report for Audio Signal Processing. Gerald Leung V

Phase Vocoder Report for Audio Signal Processing. Gerald Leung V Phase Vocoder Report for Audio Signal Processing Gerald Leung V00659924 Table of Contents 1. Windowed Overlapping Segments... 3 2. Verifying Windowed Overlapping Segments... 3 a. Plotting a 3D spectrogram...

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

MMSE STSA Based Techniques for Single channel Speech Enhancement Application Simit Shah 1, Roma Patel 2

MMSE STSA Based Techniques for Single channel Speech Enhancement Application Simit Shah 1, Roma Patel 2 MMSE STSA Based Techniques for Single channel Speech Enhancement Application Simit Shah 1, Roma Patel 2 1 Electronics and Communication Department, Parul institute of engineering and technology, Vadodara,

More information

The Role of High Frequencies in Convolutive Blind Source Separation of Speech Signals

The Role of High Frequencies in Convolutive Blind Source Separation of Speech Signals The Role of High Frequencies in Convolutive Blind Source Separation of Speech Signals Maria G. Jafari and Mark D. Plumbley Centre for Digital Music, Queen Mary University of London, UK maria.jafari@elec.qmul.ac.uk,

More information

Harmonic Percussive Source Separation

Harmonic Percussive Source Separation Friedrich-Alexander-Universität Erlangen-Nürnberg Lab Course Harmonic Percussive Source Separation International Audio Laboratories Erlangen Prof. Dr. Meinard Müller Friedrich-Alexander Universität Erlangen-Nürnberg

More information

Singing Voice Detection. Applications of Music Processing. Singing Voice Detection. Singing Voice Detection. Singing Voice Detection

Singing Voice Detection. Applications of Music Processing. Singing Voice Detection. Singing Voice Detection. Singing Voice Detection Detection Lecture usic Processing Applications of usic Processing Christian Dittmar International Audio Laboratories Erlangen christian.dittmar@audiolabs-erlangen.de Important pre-requisite for: usic segmentation

More information

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering ADSP ADSP ADSP ADSP Advanced Digital Signal Processing (18-792) Spring Fall Semester, 201 2012 Department of Electrical and Computer Engineering PROBLEM SET 5 Issued: 9/27/18 Due: 10/3/18 Reminder: Quiz

More information

Nonlinear postprocessing for blind speech separation

Nonlinear postprocessing for blind speech separation Nonlinear postprocessing for blind speech separation Dorothea Kolossa and Reinhold Orglmeister 1 TU Berlin, Berlin, Germany, D.Kolossa@ee.tu-berlin.de, WWW home page: http://ntife.ee.tu-berlin.de/personen/kolossa/home.html

More information

ESE531 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing ESE531, Spring 2017 Final Project: Audio Equalization Wednesday, Apr. 5 Due: Tuesday, April 25th, 11:59pm

More information

Speech Coding in the Frequency Domain

Speech Coding in the Frequency Domain Speech Coding in the Frequency Domain Speech Processing Advanced Topics Tom Bäckström Aalto University October 215 Introduction The speech production model can be used to efficiently encode speech signals.

More information

Effective post-processing for single-channel frequency-domain speech enhancement Weifeng Li a

Effective post-processing for single-channel frequency-domain speech enhancement Weifeng Li a R E S E A R C H R E P O R T I D I A P Effective post-processing for single-channel frequency-domain speech enhancement Weifeng Li a IDIAP RR 7-7 January 8 submitted for publication a IDIAP Research Institute,

More information

Orthonormal bases and tilings of the time-frequency plane for music processing Juan M. Vuletich *

Orthonormal bases and tilings of the time-frequency plane for music processing Juan M. Vuletich * Orthonormal bases and tilings of the time-frequency plane for music processing Juan M. Vuletich * Dept. of Computer Science, University of Buenos Aires, Argentina ABSTRACT Conventional techniques for signal

More information

Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau

Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau (Also see: Lecture ADSP, Slides 06) In discrete, digital signal we use the normalized frequency, T = / f s =: it is without a

More information

arxiv: v1 [cs.sd] 15 Jun 2017

arxiv: v1 [cs.sd] 15 Jun 2017 Investigating the Potential of Pseudo Quadrature Mirror Filter-Banks in Music Source Separation Tasks arxiv:1706.04924v1 [cs.sd] 15 Jun 2017 Stylianos Ioannis Mimilakis Fraunhofer-IDMT, Ilmenau, Germany

More information

Spectrum Analysis: The FFT Display

Spectrum Analysis: The FFT Display Spectrum Analysis: The FFT Display Equipment: Capstone, voltage sensor 1 Introduction It is often useful to represent a function by a series expansion, such as a Taylor series. There are other series representations

More information

VQ Source Models: Perceptual & Phase Issues

VQ Source Models: Perceptual & Phase Issues VQ Source Models: Perceptual & Phase Issues Dan Ellis & Ron Weiss Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA {dpwe,ronw}@ee.columbia.edu

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/17s/

More information

Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm

Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm A.T. Rajamanickam, N.P.Subiramaniyam, A.Balamurugan*,

More information

Topic 6. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Topic 6. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Topic 6 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 10 20 30 40 50 60 70 80 90 100 0-1 -0.8-0.6-0.4-0.2 0 0.2 0.4

More information

ScienceDirect. Unsupervised Speech Segregation Using Pitch Information and Time Frequency Masking

ScienceDirect. Unsupervised Speech Segregation Using Pitch Information and Time Frequency Masking Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 46 (2015 ) 122 126 International Conference on Information and Communication Technologies (ICICT 2014) Unsupervised Speech

More information

What is Sound? Part II

What is Sound? Part II What is Sound? Part II Timbre & Noise 1 Prayouandi (2010) - OneOhtrix Point Never PSYCHOACOUSTICS ACOUSTICS LOUDNESS AMPLITUDE PITCH FREQUENCY QUALITY TIMBRE 2 Timbre / Quality everything that is not frequency

More information

From Fourier Series to Analysis of Non-stationary Signals - X

From Fourier Series to Analysis of Non-stationary Signals - X From Fourier Series to Analysis of Non-stationary Signals - X prof. Miroslav Vlcek December 14, 216 Contents Examples and MATLAB project 1 Examples and MATLAB project 2 Contents Examples and MATLAB project

More information

EE422G Solution to Homework #8

EE422G Solution to Homework #8 EE4G Solution to Homework #8. MATLAB >> H = tf([ 4],[ 6 6]); >> H = tf([ ],[ - 5 5 4]); >> step(h).7 Step Response.6.5 Amplitude.4... 4 5 6 >> step(h) Time (sec).5 Step Response.5 Amplitude.5.5.5..5..5..5.4.45

More information

Improving reverberant speech separation with binaural cues using temporal context and convolutional neural networks

Improving reverberant speech separation with binaural cues using temporal context and convolutional neural networks Improving reverberant speech separation with binaural cues using temporal context and convolutional neural networks Alfredo Zermini, Qiuqiang Kong, Yong Xu, Mark D. Plumbley, Wenwu Wang Centre for Vision,

More information

Coding & Signal Processing for Holographic Data Storage. Vijayakumar Bhagavatula

Coding & Signal Processing for Holographic Data Storage. Vijayakumar Bhagavatula Coding & Signal Processing for Holographic Data Storage Vijayakumar Bhagavatula Acknowledgements Venkatesh Vadde Mehmet Keskinoz Sheida Nabavi Lakshmi Ramamoorthy Kevin Curtis, Adrian Hill & Mark Ayres

More information

JOURNAL OF OBJECT TECHNOLOGY

JOURNAL OF OBJECT TECHNOLOGY JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2009 Vol. 9, No. 1, January-February 2010 The Discrete Fourier Transform, Part 5: Spectrogram

More information

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t)

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t) Fourier Transforms Fourier s idea that periodic functions can be represented by an infinite series of sines and cosines with discrete frequencies which are integer multiples of a fundamental frequency

More information

Signal processing preliminaries

Signal processing preliminaries Signal processing preliminaries ISMIR Graduate School, October 4th-9th, 2004 Contents: Digital audio signals Fourier transform Spectrum estimation Filters Signal Proc. 2 1 Digital signals Advantages of

More information

Fourier Transform. louder softer. louder. softer. amplitude. time. amplitude. time. frequency. frequency. P. J. Grandinetti

Fourier Transform. louder softer. louder. softer. amplitude. time. amplitude. time. frequency. frequency. P. J. Grandinetti Fourier Transform * * amplitude louder softer amplitude louder softer frequency frequency Fourier Transform amplitude What is the mathematical relationship between two signal domains frequency Fourier

More information

DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam

DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam DIGITAL IMAGE PROCESSING Quiz exercises preparation for the midterm exam In the following set of questions, there are, possibly, multiple correct answers (1, 2, 3 or 4). Mark the answers you consider correct.

More information

IMPROVED COCKTAIL-PARTY PROCESSING

IMPROVED COCKTAIL-PARTY PROCESSING IMPROVED COCKTAIL-PARTY PROCESSING Alexis Favrot, Markus Erne Scopein Research Aarau, Switzerland postmaster@scopein.ch Christof Faller Audiovisual Communications Laboratory, LCAV Swiss Institute of Technology

More information

Lecture 3, Multirate Signal Processing

Lecture 3, Multirate Signal Processing Lecture 3, Multirate Signal Processing Frequency Response If we have coefficients of an Finite Impulse Response (FIR) filter h, or in general the impulse response, its frequency response becomes (using

More information

SUB-BAND INDEPENDENT SUBSPACE ANALYSIS FOR DRUM TRANSCRIPTION. Derry FitzGerald, Eugene Coyle

SUB-BAND INDEPENDENT SUBSPACE ANALYSIS FOR DRUM TRANSCRIPTION. Derry FitzGerald, Eugene Coyle SUB-BAND INDEPENDEN SUBSPACE ANALYSIS FOR DRUM RANSCRIPION Derry FitzGerald, Eugene Coyle D.I.., Rathmines Rd, Dublin, Ireland derryfitzgerald@dit.ie eugene.coyle@dit.ie Bob Lawlor Department of Electronic

More information

DCSP-10: DFT and PSD. Jianfeng Feng. Department of Computer Science Warwick Univ., UK

DCSP-10: DFT and PSD. Jianfeng Feng. Department of Computer Science Warwick Univ., UK DCSP-10: DFT and PSD Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html DFT Definition: The discrete Fourier transform

More information

Speech Enhancement Using Spectral Flatness Measure Based Spectral Subtraction

Speech Enhancement Using Spectral Flatness Measure Based Spectral Subtraction IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 7, Issue, Ver. I (Mar. - Apr. 7), PP 4-46 e-issn: 9 4, p-issn No. : 9 497 www.iosrjournals.org Speech Enhancement Using Spectral Flatness Measure

More information

Fourier Series and Gibbs Phenomenon

Fourier Series and Gibbs Phenomenon Fourier Series and Gibbs Phenomenon University Of Washington, Department of Electrical Engineering This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

Speech and Music Discrimination based on Signal Modulation Spectrum.

Speech and Music Discrimination based on Signal Modulation Spectrum. Speech and Music Discrimination based on Signal Modulation Spectrum. Pavel Balabko June 24, 1999 1 Introduction. This work is devoted to the problem of automatic speech and music discrimination. As we

More information

Pitch Estimation of Singing Voice From Monaural Popular Music Recordings

Pitch Estimation of Singing Voice From Monaural Popular Music Recordings Pitch Estimation of Singing Voice From Monaural Popular Music Recordings Kwan Kim, Jun Hee Lee New York University author names in alphabetical order Abstract A singing voice separation system is a hard

More information

Combining Pitch-Based Inference and Non-Negative Spectrogram Factorization in Separating Vocals from Polyphonic Music

Combining Pitch-Based Inference and Non-Negative Spectrogram Factorization in Separating Vocals from Polyphonic Music Combining Pitch-Based Inference and Non-Negative Spectrogram Factorization in Separating Vocals from Polyphonic Music Tuomas Virtanen, Annamaria Mesaros, Matti Ryynänen Department of Signal Processing,

More information

Tempo and Beat Tracking

Tempo and Beat Tracking Lecture Music Processing Tempo and Beat Tracking Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Introduction Basic beat tracking task: Given an audio recording

More information

From Fourier Series to Analysis of Non-stationary Signals - VII

From Fourier Series to Analysis of Non-stationary Signals - VII From Fourier Series to Analysis of Non-stationary Signals - VII prof. Miroslav Vlcek November 23, 2010 Contents Short Time Fourier Transform 1 Short Time Fourier Transform 2 Contents Short Time Fourier

More information

CSC475 Music Information Retrieval

CSC475 Music Information Retrieval CSC475 Music Information Retrieval Sinusoids and DSP notation George Tzanetakis University of Victoria 2014 G. Tzanetakis 1 / 38 Table of Contents I 1 Time and Frequency 2 Sinusoids and Phasors G. Tzanetakis

More information

Rhythmic Similarity -- a quick paper review. Presented by: Shi Yong March 15, 2007 Music Technology, McGill University

Rhythmic Similarity -- a quick paper review. Presented by: Shi Yong March 15, 2007 Music Technology, McGill University Rhythmic Similarity -- a quick paper review Presented by: Shi Yong March 15, 2007 Music Technology, McGill University Contents Introduction Three examples J. Foote 2001, 2002 J. Paulus 2002 S. Dixon 2004

More information

SINGING-VOICE SEPARATION FROM MONAURAL RECORDINGS USING DEEP RECURRENT NEURAL NETWORKS

SINGING-VOICE SEPARATION FROM MONAURAL RECORDINGS USING DEEP RECURRENT NEURAL NETWORKS SINGING-VOICE SEPARATION FROM MONAURAL RECORDINGS USING DEEP RECURRENT NEURAL NETWORKS Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, Paris Smaragdis Department of Electrical and Computer Engineering,

More information

The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey

The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey Application ote 041 The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey Introduction The Fast Fourier Transform (FFT) and the power spectrum are powerful tools

More information

OFDM Systems For Different Modulation Technique

OFDM Systems For Different Modulation Technique Computing For Nation Development, February 08 09, 2008 Bharati Vidyapeeth s Institute of Computer Applications and Management, New Delhi OFDM Systems For Different Modulation Technique Mrs. Pranita N.

More information

Music Signal Processing

Music Signal Processing Tutorial Music Signal Processing Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Anssi Klapuri Queen Mary University of London anssi.klapuri@elec.qmul.ac.uk Overview Part I:

More information

Examples of image processing

Examples of image processing Examples of image processing Example 1: We would like to automatically detect and count rings in the image 3 Detection by correlation Correlation = degree of similarity Correlation between f(x, y) and

More information

E Final Exam Solutions page 1/ gain / db Imaginary Part

E Final Exam Solutions page 1/ gain / db Imaginary Part E48 Digital Signal Processing Exam date: Tuesday 242 Final Exam Solutions Dan Ellis . The only twist here is to notice that the elliptical filter is actually high-pass, since it has

More information

Experiment No. 6. Audio Tone Control Amplifier

Experiment No. 6. Audio Tone Control Amplifier Experiment No. 6. Audio Tone Control Amplifier By: Prof. Gabriel M. Rebeiz The University of Michigan EECS Dept. Ann Arbor, Michigan Goal: The goal of Experiment #6 is to build and test a tone control

More information

MINUET: MUSICAL INTERFERENCE UNMIXING ESTIMATION TECHNIQUE

MINUET: MUSICAL INTERFERENCE UNMIXING ESTIMATION TECHNIQUE MINUET: MUSICAL INTERFERENCE UNMIXING ESTIMATION TECHNIQUE Scott Rickard, Conor Fearon University College Dublin, Dublin, Ireland {scott.rickard,conor.fearon}@ee.ucd.ie Radu Balan, Justinian Rosca Siemens

More information

Audio Restoration Based on DSP Tools

Audio Restoration Based on DSP Tools Audio Restoration Based on DSP Tools EECS 451 Final Project Report Nan Wu School of Electrical Engineering and Computer Science University of Michigan Ann Arbor, MI, United States wunan@umich.edu Abstract

More information

Lecture 5: Sinusoidal Modeling

Lecture 5: Sinusoidal Modeling ELEN E4896 MUSIC SIGNAL PROCESSING Lecture 5: Sinusoidal Modeling 1. Sinusoidal Modeling 2. Sinusoidal Analysis 3. Sinusoidal Synthesis & Modification 4. Noise Residual Dan Ellis Dept. Electrical Engineering,

More information

Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective

Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective The objective is to teach students a basic digital communication

More information

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA Department of Electrical and Computer Engineering ELEC 423 Digital Signal Processing Project 2 Due date: November 12 th, 2013 I) Introduction In ELEC

More information

Different Approaches of Spectral Subtraction Method for Speech Enhancement

Different Approaches of Spectral Subtraction Method for Speech Enhancement ISSN 2249 5460 Available online at www.internationalejournals.com International ejournals International Journal of Mathematical Sciences, Technology and Humanities 95 (2013 1056 1062 Different Approaches

More information

Adaptive filtering for music/voice separation exploiting the repeating musical structure

Adaptive filtering for music/voice separation exploiting the repeating musical structure Adaptive filtering for music/voice separation exploiting the repeating musical structure Antoine Liutkus, Zafar Rafii, Roland Badeau, Bryan Pardo, Gaël Richard To cite this version: Antoine Liutkus, Zafar

More information

Estimating Single-Channel Source Separation Masks: Relevance Vector Machine Classifiers vs. Pitch-Based Masking

Estimating Single-Channel Source Separation Masks: Relevance Vector Machine Classifiers vs. Pitch-Based Masking Estimating Single-Channel Source Separation Masks: Relevance Vector Machine Classifiers vs. Pitch-Based Masking Ron J. Weiss and Daniel P. W. Ellis LabROSA, Dept. of Elec. Eng. Columbia University New

More information

SINGING-VOICE SEPARATION FROM MONAURAL RECORDINGS USING DEEP RECURRENT NEURAL NETWORKS

SINGING-VOICE SEPARATION FROM MONAURAL RECORDINGS USING DEEP RECURRENT NEURAL NETWORKS SINGING-VOICE SEPARATION FROM MONAURAL RECORDINGS USING DEEP RECURRENT NEURAL NETWORKS Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, Paris Smaragdis Department of Electrical and Computer Engineering,

More information

HCS 7367 Speech Perception

HCS 7367 Speech Perception HCS 7367 Speech Perception Dr. Peter Assmann Fall 212 Power spectrum model of masking Assumptions: Only frequencies within the passband of the auditory filter contribute to masking. Detection is based

More information

Fundamentals of Signals, DSP and Applica7ons in m- Health. By Deepta Rajan FSE Oct 10, 2013.

Fundamentals of Signals, DSP and Applica7ons in m- Health. By Deepta Rajan FSE Oct 10, 2013. Fundamentals of Signals, DSP and Applica7ons in m- Health By Deepta Rajan FSE 100 - Oct 10, 2013. Outline Signals What are they? Fourier Transform - T/F domain Challenges in Signal Processing The AJDSP

More information

LAB 2 Machine Perception of Music Computer Science 395, Winter Quarter 2005

LAB 2 Machine Perception of Music Computer Science 395, Winter Quarter 2005 1.0 Lab overview and objectives This lab will introduce you to displaying and analyzing sounds with spectrograms, with an emphasis on getting a feel for the relationship between harmonicity, pitch, and

More information

RECENTLY, there has been an increasing interest in noisy

RECENTLY, there has been an increasing interest in noisy IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 535 Warped Discrete Cosine Transform-Based Noisy Speech Enhancement Joon-Hyuk Chang, Member, IEEE Abstract In

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing System Analysis and Design Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro CAMBRIDGE UNIVERSITY PRESS Preface page xv Introduction

More information

Separation of Vocal and Non-Vocal Components from Audio Clip Using Correlated Repeated Mask (CRM)

Separation of Vocal and Non-Vocal Components from Audio Clip Using Correlated Repeated Mask (CRM) University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-9-2017 Separation of Vocal and Non-Vocal Components from Audio Clip Using

More information

Fourier transforms, SIM

Fourier transforms, SIM Fourier transforms, SIM Last class More STED Minflux Fourier transforms This class More FTs 2D FTs SIM 1 Intensity.5 -.5 FT -1.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 Time (s) IFT 4 2 5 1 15 Frequency (Hz) ff tt

More information

A HYPOTHESIS TESTING APPROACH FOR REAL-TIME MULTICHANNEL SPEECH SEPARATION USING TIME-FREQUENCY MASKS. Ryan M. Corey and Andrew C.

A HYPOTHESIS TESTING APPROACH FOR REAL-TIME MULTICHANNEL SPEECH SEPARATION USING TIME-FREQUENCY MASKS. Ryan M. Corey and Andrew C. 6 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 3 6, 6, SALERNO, ITALY A HYPOTHESIS TESTING APPROACH FOR REAL-TIME MULTICHANNEL SPEECH SEPARATION USING TIME-FREQUENCY MASKS

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Amplitude Amplitude Discrete Fourier Transform (DFT) DFT transforms the time domain signal samples to the frequency domain components. DFT Signal Spectrum Time Frequency DFT is often used to do frequency

More information

Pitch Shifting Using the Fourier Transform

Pitch Shifting Using the Fourier Transform Pitch Shifting Using the Fourier Transform by Stephan M. Bernsee, http://www.dspdimension.com, 1999 all rights reserved * With the increasing speed of todays desktop computer systems, a growing number

More information

Problem Session 6. Computa(onal Imaging and Display EE 367 / CS 448I

Problem Session 6. Computa(onal Imaging and Display EE 367 / CS 448I Problem Session 6 Computa(onal Imaging and Display EE 367 / CS 448I Topics Photo- electron shot- noise SNR calcula@ons Deconvolu@on of an image with Poisson noise Wiener deconvolu@on Richardson- Lucy Richardson-

More information

EE 438 Final Exam Spring 2000

EE 438 Final Exam Spring 2000 2 May 2000 Name: EE 438 Final Exam Spring 2000 You have 120 minutes to work the following six problems. Each problem is worth 25 points. Be sure to show all your work to obtain full credit. The exam is

More information

Lecture 9: Time & Pitch Scaling

Lecture 9: Time & Pitch Scaling ELEN E4896 MUSIC SIGNAL PROCESSING Lecture 9: Time & Pitch Scaling 1. Time Scale Modification (TSM) 2. Time-Domain Approaches 3. The Phase Vocoder 4. Sinusoidal Approach Dan Ellis Dept. Electrical Engineering,

More information